МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Декан порожно-транспортного факультета
нациенизацие факультета
В.Л. Тюнин
и.о. Фамилия
31 августа
2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

Сопротивление материалов с основами строительной механики

наименование дисциплины (модуля) в соответствии с учебным планом)

Направле	ние подготовки (сп	ециальность)	08.03.01 «Строительство»
_		код	и наименование направления подготовки/специальности
Профиль	(специализация)	Автомоби	льные дороги
		название	профиля/программы
Квалифин	сация выпускника	бакала	вр
Норматив	вный период обучен		
		Очно	ля/очно-заочная/заочная (при наличии)
Форма обу	учения Очная		
Год начал	на подготовки <u>202</u> 3	<u>l r.</u>	
Автор(ы) г	программы	The face fes	Р.А. Мухтаров
•	ий кафедрой ной механики/	BA nograpes	В.А. Козлов
Руководит	ель ОПОП	Beef-	О.А. Волокитина

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Дать современному специалисту необходимые представления, а также приобрести навыки в области анализа работы и расчета конструкций и их отдельных элементов, выполненных из различных материалов, на прочность, жесткость и устойчивость при различных воздействиях с использованием современного вычислительного аппарата.

1.2. Задачи освоения дисциплины

Изучить основные методы и практические приемы расчета реальных конструкций, статически определимых и неопределимых стержневых систем и их элементов из различных материалов по предельным расчетным состояниям на различные воздействия с определением усилий и перемещений. Вооружить будущего специалиста необходимыми знаниями для анализа работы и расчета строительных конструкций и их отдельных элементов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Сопротивление материалов с основами строительной механики» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Сопротивление материалов с основами строительной механики» направлен на формирование следующих компетенший:

ПК-1 - Способен проводить и организовывать изыскания для разработки проекта, строительства, ремонта и реконструкции транспортных сооружений, мостовых и аэродромных конструкций, анализировать их результаты

Компетенция	сформированность компетенции				
ПК-1	знать:				
	основные положения и гипотезы сопротивления материалов,				
	фундаментальные основы строительной механики;				
	методы и практические приёмы расчета статически опреде-				
	лимых и неопределимых стержневых систем и их элемен				
	тов из различных материалов на различные воздействия, в				
	том числе с использованием универсальных и спе-				
	циализированных программно-вычислительных ком-				
	плексов и систем автоматизированного проектирования;				
	методику применения приборов и оборудования, необхо-				
	димых при выполнении инженерных изысканий строитель-				
	ных конструкций.				
	уметь:				
	самостоятельно применять полученные знания по матема-				

тике, физике, теоретической и технической механике, сопротивлению материалов;

определять усилия и перемещения в статически определимых и неопределимых стержневых системах;

анализировать устойчивость стержневых систем, в том числе используя современную вычислительную технику; применять приборы и оборудование при выполнении инженерных изысканий строительных конструкций.

владеть:

навыками определения напряженно-деформированного состояния стержней при различных воздействиях с помощью теоретических методов с использованием современной вычислительной техники, готовых программ.

первичными навыками и основными методами решения стандартных задач, расчета усилий, перемещений и устойчивости стержневых систем, проведения кинематического анализа расчетной схемы сооружения;

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Сопротивление материалов с основами строительной механики» составляет 4 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Dayya yarabayay nabatay	Всего	Семестры		
Виды учебной работы		5	6	
Аудиторные занятия (всего)	90	54	36	
В том числе:				
Лекции	36	18	18	
Практические занятия (ПЗ)	36	18	18	
Лабораторные работы (ЛР)	18	18	1	
Самостоятельная работа	54	18	36	
Виды промежуточной аттестации - зачет	+	+	+	
Общая трудоемкость:				
академические часы	144	72	72	
зач.ед.	4	2	2	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	ных схем и воздействий	Связь строительной механики с другими дисциплинами. Понятие о расчетной схеме. Типы опор. Классификация расчетных схем по геометрии, способу опирания, структуре, статиче-	2	-	1	2	4

Ty cx	инематический и струк- /рный анализ расчетных кем асчет статически пределимых систем	ским и кинематическим свойствам. Классифи- кация воздействий. Принцип суперпозиции. Основные положения кинематического анализа расчетных схем, связь между их статическими и кинематическими свойствами. Формулы для определения числа степеней свободы и числа избыточных связей. Анализ геометрической структуры. Признаки образования геометрически неизменяемых, геометрически изменяемых и мгновен- но-изменяемых систем. Расчет МШБ. Монтажная (поэтажная) схема, определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней. Классификация рам по способу опирания.	2	2	2	2	8
Ty cx	урный анализ расчетных кем	Основные положения кинематического анализа расчетных схем, связь между их статическими и кинематическими свойствами. Формулы для определения числа степеней свободы и числа избыточных связей. Анализ геометрической структуры. Признаки образования геометрически неизменяемых, геометрически изменяемых и мгновенно-изменяемых систем. Расчет МШБ. Монтажная (поэтажная) схема, определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.	2	2	2	2	8
3 P2	асчет статически	и кинематическими свойствами. Формулы для определения числа степеней свободы и числа избыточных связей. Анализ геометрической структуры. Признаки образования геометрически неизменяемых, геометрически изменяемых и мгновенно-изменяемых систем. Расчет МШБ. Монтажная (поэтажная) схема, определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.	2	2	2	2	8
3 Pε	асчет статически	определения числа степеней свободы и числа избыточных связей. Анализ геометрической структуры. Признаки образования геометрически неизменяемых, геометрически изменяемых и мгновенно-изменяемых систем. Расчет МШБ. Монтажная (поэтажная) схема, определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.	2	2	2	2	8
		избыточных связей. Анализ геометрической структуры. Признаки образования геометрически неизменяемых, геометрически изменяемых и мгновенно-изменяемых систем. Расчет МШБ. Монтажная (поэтажная) схема, определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.	2	2	2	2	8
		Анализ геометрической структуры. Признаки образования геометрически неизменяемых, геометрически изменяемых и мгновенно-изменяемых систем. Расчет МШБ. Монтажная (поэтажная) схема, определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.				2	0
		образования геометрически неизменяемых, геометрически изменяемых и мгновенно-изменяемых систем. Расчет МШБ. Монтажная (поэтажная) схема, определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.					
-		геометрически изменяемых и мгновенно-изменяемых систем. Расчет МШБ. Монтажная (поэтажная) схема, определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.					
		но-изменяемых систем. Расчет МШБ. Монтажная (поэтажная) схема, определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.					
		определение усилий. Расчет балочной фермы. Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.					
oī	пределимых систем	Методы аналитического определения усилий в стержнях фермы. Признаки нулевых стержней.					
		стержнях фермы. Признаки нулевых стержней.					
		Определение опорных реакций. Обобщение					
		понятий внутренних усилий М, Q, N. Способы	4	4	2	2	12
		построения эпюр в рамах. Проверки эпюр. Учет					
		симметрии.					
		Расчет арок. Определение усилий M, Q, N в					
		трехшарнирной арке при расчете на вертикаль-					
		ную нагрузку. Рациональная ось арки.					
	бщая теория линий	Понятие о линии влияния. Действие подвижной					
	пияния. Основы расчета	нагрузки на сооружения. Линии влияния в про-					
на	а временную нагрузку	стых и многопролетных шарнирных балках, фермах. Определение внутренних усилий от					
		различных нагрузок при помощи линий влияния.	2	2	2	3	9
		Определение по линиям влияния опасного					
		положения временной и подвижной					
		нагрузки.					
5 O	сновные теоремы об	Понятие о действительной (собственной) и воз-					
	пругих системах.	можной (дополнительной) работах. Теорема о					
	пределение перемеще-	взаимности работ и ее следствия. Принцип					
ΗV	ий	возможных перемещений. Групповые силы и					
		обобщенные перемещения. Линейно и нели- нейно деформируемые системы. Универсальное	2	4	4	2	12
		обозначение перемещений. Формула Мора для					
		определения перемещений от нагрузки, смеще-					
		ния связей и изменения температуры. Правило					
		Верещагина для вычисления интегралов Мора.					
6 M	Геханические	Усталость материалов. Концентрация напряже-					
	арактеристики	ний. Растяжение полосы с круговым и эллипти-	-	-	2	2	4
	атериалов	ческим вырезом.					
	асчёт статически	Элементы рационального проектирования про-					
	еопределимых стерж-	стейших систем. Расчёт по несущей способно-	2	_	_	_	0
	евых систем с помощью	сти. Расчет статически неопределимых стерж-	2	2	3	2	9
M	етода сил.	невых систем на воздействие температуры и неточности изготовления. Расчёт прочности.					
8 Pa	асчет статически	Заданная и основная системы. Условия их ста-					
-	еопределимых систем	тической и кинематической эквивалентности.					
He	•	Канонические уравнения метода сил, истолко-					
	етодом сил.				2	2	1 /
М	етодом сил. асчёт рамы методом сил	вание и определение коэффициентов и свобод-	4	4	3	3	14
М			4	4		ı I	
М		вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки.	4	4			
М		вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически	4	4			
М		вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского).	4	4	-		
M [©] Pe	асчёт рамы методом сил	вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского). 6-й семестр	4	4			
ме Ра	родольно-поперечный	вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского). 6-й семестр Дифференциальное уравнение продольного	4	4			
ме Ра	асчёт рамы методом сил	вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского). 6-й семестр Дифференциальное уравнение продольного изгиба. Напряжения и перемещения Расчет				4	8
ме Ра	родольно-поперечный	вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского). 6-й семестр Дифференциальное уравнение продольного изгиба. Напряжения и перемещения Расчет прочности и жесткости при продоль-	2	2	-	4	8
9 П _ј из	родольно-поперечный вгиб стержня.	вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского). 6-й семестр Дифференциальное уравнение продольного изгиба. Напряжения и перемещения Расчет прочности и жесткости при продольно-поперечном изгибе.			-	4	8
9 Пјиз	родольно-поперечный вгиб стержня.	вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского). 6-й семестр Дифференциальное уравнение продольного изгиба. Напряжения и перемещения Расчет прочности и жесткости при продольно-поперечном изгибе. Динамический коэффициент при движении с	2	2	-		
9 Пјиз	родольно-поперечный вгиб стержня. инамические и ериодические нагрузки.	вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского). 6-й семестр Дифференциальное уравнение продольного изгиба. Напряжения и перемещения Расчет прочности и жесткости при продольно-поперечном изгибе.			-	4	8
9 Пјиз	родольно-поперечный вгиб стержня. инамические и ериодические нагрузки. дар.	вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского). 6-й семестр Дифференциальное уравнение продольного изгиба. Напряжения и перемещения Расчет прочности и жесткости при продольно-поперечном изгибе. Динамический коэффициент при движении с ускорением и при ударе.	2	2	-		
9 III III III III	родольно-поперечный вгиб стержня. инамические и ериодические нагрузки. дар.	вание и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки. Определение перемещений в статически неопределимых системах (теорема Уманского). 6-й семестр Дифференциальное уравнение продольного изгиба. Напряжения и перемещения Расчет прочности и жесткости при продольно-поперечном изгибе. Динамический коэффициент при движении с	2	2	-		

12	Расчет статически неопределимых систем методом сил. Расчёт многопролётной неразрезной балки.	Рациональный выбор основной системы для расчёта неразрезной балки. Уравнение трёх моментов. Понятие об объемлющих (огибающих) эпюрах.	4	4	-	8	16
13	Расчет статически неопределимых систем методом перемещений	Заданная система. Основная система, способы её образования. Статические условия эквивалентности основной и заданной системы. Канонические уравнения. Построение единичных эпюр для балок с неподвижными концами от нагрузки и смещения опорных связей. Определение коэффициентов и свободных членов канонических уравнений метода перемещений статическим и кинематическим способами. Построение окончательных эпюр, их проверки. Особенности расчета рам с бесконечно жесткими элементами. Учет симметрии.	4	4	-	8	16
14	Смешанный метод расчёта стержневых систем	Смешанный метод расчета для систем произвольной структуры. Области рационального применения смешанного метода. Образование основной системы и условия эквивалентности ее заданной системы. Вывод канонических уравнений смешанного метода. Смысл особых коэффициентов. Определение коэффициентов и свободных членов канонических уравнений.	2	2	1	4	8
10	неразрезной балки на	Образование основной системы и условия эквивалентности ее заданной системы. Вывод канонических уравнений смешанного метода. Смысл особых коэффициентов.	2	2	-	4	8
		Итого	36	36	18	54	144

5.2 Перечень лабораторных работ

- 1. Определение ударной вязкости стали (лаб. раб. №16),
- 2. Растяжение стальной полосы, ослабленной круглым отверстием (лаб. раб.№26).
- 3. Определение положение центра изгиба тонкостенной балки открытого профиля (лаб. раб. №22).
- 4. Потеря плоской формы изгиба балки (лаб. раб. №25).

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

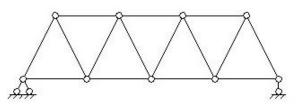
«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	знать: основные положения и гипотезы сопротивления материалов, фундаментальные основы строительной механики; методы и практические приёмы расчета статически определимых и неопределимых стержневых систем и их элементов из различных материалов на различные воздействия, в том числе с использованием универсальных и специализированных программно-вычислительных комплексов и систем автоматизированного проектирования; методику применения приборов и оборудования, необходимых при выполнении инженерных изысканий строительных конструкций.	Полное или частичное посещение лекционных и практических занятий. Выполнение РГР с оценкой «отлично», «хорошо» или «удовлетворительно» в установленные сроки	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь: самостоятельно применять полученные знания по математике, физике, теоретической и технической механике, сопротивлению материалов; определять усилия и перемещения в статически определимых и неопределимых стержневых системах; анализировать устойчивость стержневых	-	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть: навыками определения напряжен- но-деформированного состояния стержней при различных воздействиях с помощью теоретических методов с использованием современной вычислительной техники, го- товых программ. первичными навыками и основными мето- дами решения стандартных задач, расчета	тельно» в уста- новленные сроки	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 5, 6 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

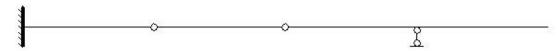
«не зачтено»

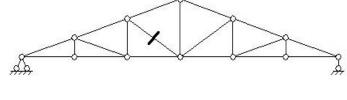

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ПК-1	знать: основные положения и гипотезы сопротивления материалов, фундаментальные основы строительной механики; методы и практические приёмы расчета статически определимых и неопределимых стержневых систем и их элементов из раз-	Тест	Выполнение теста на 70-100%	Выполнение менее 70%

личных материалов на различные воздействия,			
в том числе с использованием универсаль-			
ных и специализированных программ-			
но-вычислительных комплексов и систем			
автоматизированного проектирования;			
методику применения приборов и оборудова-			
ния, необходимых при выполнении инженер-			
ных изысканий строительных конструкций.			
уметь:	Решение	Продемонстри-	Задачи не
самостоятельно применять полученные знания	стандартных	рова н верный	решены
по математике, физике, теоретической и тех-	практических	ход решения в	•
нической механике, сопротивлению материа-	задач	большинстве	
лов;		задач	
определять усилия и перемещения в статиче-			
ски определимых и неопределимых стержне-			
вых системах;			
анализировать устойчивость стержневых си-			
стем, в том числе используя современную			
вычислительную технику;			
применять приборы и оборудование при вы-			
полнении инженерных изысканий строитель-			
ных конструкций.			
владеть:	Решение при-	Продемонстри-	Задачи не
	кладных задач в	рова н верный	решены
но-деформированного состояния стержней при		ход решения в	
различных воздействиях с помощью теорети-	предметной об-	большинстве	
ческих методов с использованием современной	ласти	задач	
вычислительной техники, готовых программ.			
первичными навыками и основными методами			
решения стандартных задач, расчета усилий,			
перемещений и устойчивости стержневых си-			
стем, проведения кинематического анализа			
расчетной схемы сооружения;			ļ
7.2 Harrison		,	

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

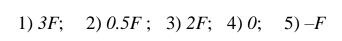
7.2.1 Примерный перечень заданий для подготовки к тестированию

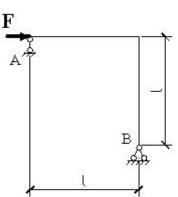

- 1. К какому виду относится изображенная на рисунке стержневая система?
 - 1) балка;
 - 2) рама;
 - 3) ферма;
 - 4) арка;
 - 5) комбинированная система

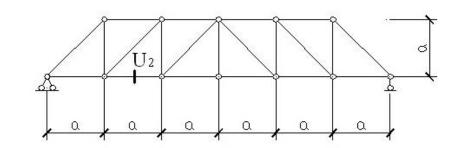

2. Определите число избыточных связей стержневой системы

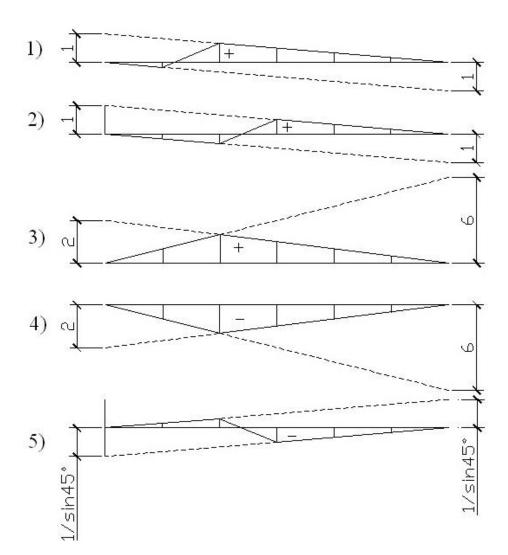


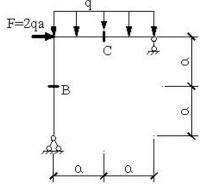
3. Выполните анализ геометрической структуры и дайте заключение



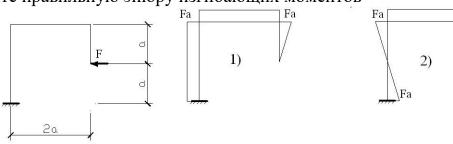

- 1) геометрически изменяемая;
- 2) мгновенно изменяемая;
- 3) геометрически неизменяемая
- **4.** Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?
 - 1) метод проекций;
 - 2) метод моментных точек (метод Риттера);
 - 3) метод вырезания узлов;
 - 4) комбинированный метод
- **5.** Определите усилие в стержне O_2

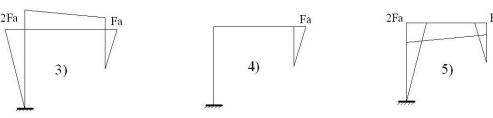


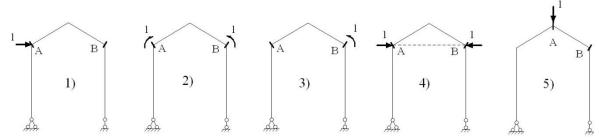

- 1) 0; 2) -F; 3) -2F; 4) 1.5F; 5) 2F
- **6.** Определите реакцию опоры A



7. Укажите правильное очертание линии влияния усилия в стержне U_2



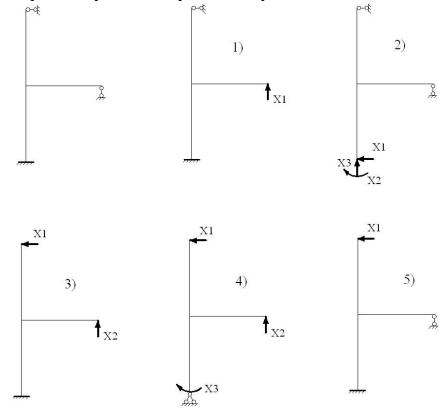

8. Определите поперечную силу в сечении B


1) qa; 2) 3qa; 3) 0.5qa; 4) 1.5qa; 5) 2qa

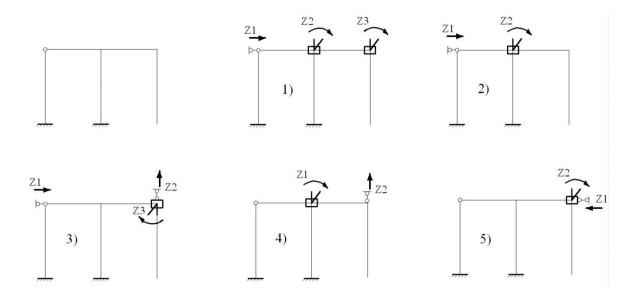
9. Укажите правильную эпюру изгибающих моментов

10.Выберите правильное вспомогательное состояние для определения горизонтального перемещения сечения A

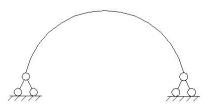
11.Укажите уравнения трех моментов для расчета неразрезной балки на действие заданной нагрузки


1)
$$\Delta_i = \sum_l \frac{Mm_i}{EI} ds$$
; 2) $\Delta_i = \sum_l \alpha \int_l m_i \Delta t' ds + \sum_l \alpha \int_l n_i \Delta t_0 ds$;

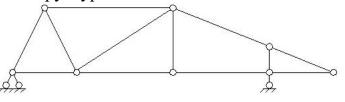
3)
$$\Delta_{i} = -\sum_{j=1}^{n} r_{ji} c_{j}$$
; 4) $l_{n} x_{n-1} + 2(l_{n} + l_{n+1}) x_{n} + l_{n+1} x_{n+1} = -6 \left(\frac{S_{n}^{A}}{l_{n}} + \frac{S_{n}^{B}}{l_{n+1}} \right)$;

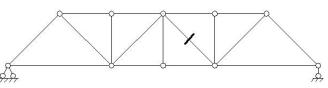

5)
$$l_{n} x_{n-1} + 2(l_{n} + l_{n+1}) x_{n} + l_{n+1} x_{n+1} = -6EI(\Theta_{n+1} + \Theta_{n})$$

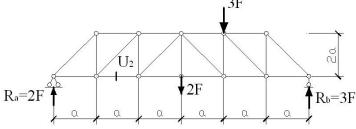
- **12.**Определите угол поворота сечения C, используя правило Верещагина
 - 1) $\frac{2Fa^2}{3EI}$; 2) $\frac{3Fa^2}{2EI}$; 3) $\frac{4Fa^2}{2EI}$; 4) $\frac{5Fa^2}{4EI}$; EJ C
 B
 5) $\frac{3Fa^2}{4EI}$
- 13. Назовите основные неизвестные при расчете неразрезной балки
- 1) усилия и реакции в избыточных связях;
- 2) перемещения узлов;
- 3) реакции в избыточных связях и перемещения узлов;


- 4) перемещения по направлению отброшенных связей;
- 5) реакции наложенных связей
- **14.**Укажите правильную формулировку физического смысла свободных членов канонических уравнений метода перемещений
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
- 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей
- 15. Выберите правильную основную систему метода сил

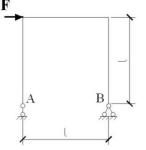

16. Выберите правильную основную систему метода перемещений


- 17.К какому виду относится изображенная на рисунке стержневая система?
 - 1) балка;
 - 2) рама;
 - 3) ферма;
 - 4) арка;
 - 5) комбинированная система

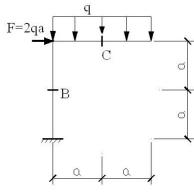

- 18. Определите число избыточных связей стержневой системы
 - 1) 3; 2) 0; 3) 1; 4) 5; 5) 2


- 19. Выполните анализ геометрической структуры и дайте заключение
 - 1) геометрически изменяемая;
 - 2) мгновенно изменяемая;
 - 3) геометрически неизменяемая.

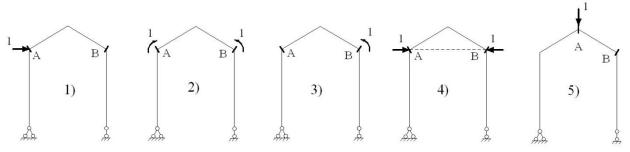
- **20.**Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?
 - 1) метод проекций;
 - 2) метод моментных точек (метод Риттера);
 - 3) метод вырезания узлов;
 - 4) комбинированный метод
- **21.**Определите усилие в стержне U_2



- 1) 2F; 2) -3F; 3) 0; 4) 1.5F;
- 5) -0.5F



22.Определите вертикальную составляющую опорной реакции в опоре B


1) 0; 2) F; 3) 2F; 4) 0.5F; 5) 3F

- **23.**Определите изгибающий момент в сечении C
 - 1) 0; 2) $4qa^2$; 3) $2.5qa^2$; 4) $0.5qa^2$; 5) $3qa^2$

24. Выберите правильное вспомогательное состояние для определения взаимного смещения сечений А и В

- 25. Укажите уравнения трех моментов для расчета неразрезной балки на действие заданной нагрузки
- 1) $\Delta_i = \sum_i \frac{Mm_i}{EI} ds$;

- 1) $\Delta_{i} = \sum_{l} \frac{Mm_{i}}{EI} ds$;
 2) $\Delta_{i} = \sum_{l} \alpha \int_{l} m_{i} \Delta t' ds + \sum_{l} \alpha \int_{l} n_{i} \Delta t_{0} ds$;

 3) $\Delta_{i} = -\sum_{j=1}^{n} r_{ji} c_{j}$;
 4) $l_{n} x_{n-1} + 2(l_{n} + l_{n+1}) x_{n} + l_{n+1} x_{n+1} = -6 \left(\frac{S_{n}^{A}}{l_{n}} + \frac{S_{n}^{B}}{l_{n+1}} \right)$;
- 5) $l_n x_{n-1} + 2(l_n + l_{n+1}) x_n + l_{n+1} x_{n+1} = -6EI(\Theta_{n+1} + \Theta_n)$

7.2.2 Примерный перечень заданий для решения стандартных задач

РГР №1 «Расчет статически определимых стрежневых систем»

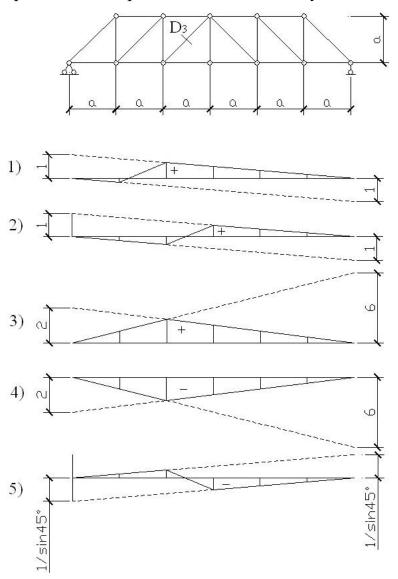
часть 1: «Расчёт многопролётной шарнирной балки»;

часть 2: «Расчет балочной фермы»;

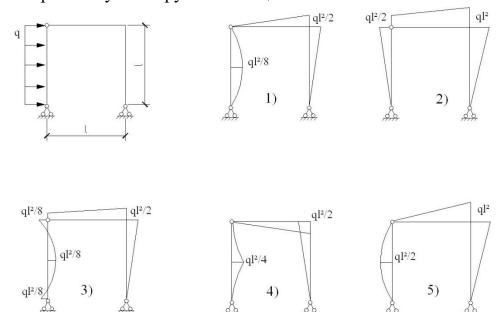
часть 3: «Расчет статически определимой рамы с вычислением перемещений»;

РГР №2 «Расчет статически неопределимых стержневых систем»;

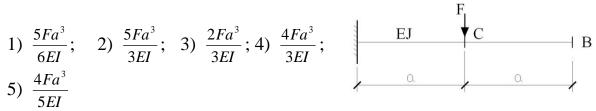
РГР №3 «Расчет статически неопределимой системы методом сил»;


РГР №4 «Расчет балки на поперечный удар»;

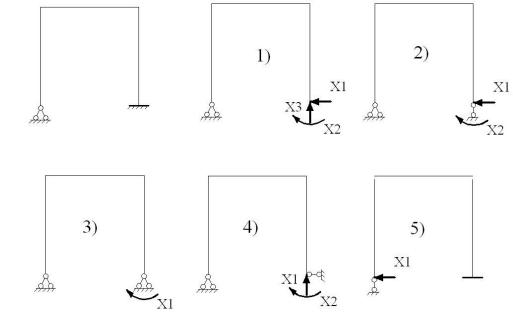
РГР №5 «Расчет статически неопределимой системы методом перемещений»;


РГР №6 часть 1: «Расчет многопролётной неразрезной балки»

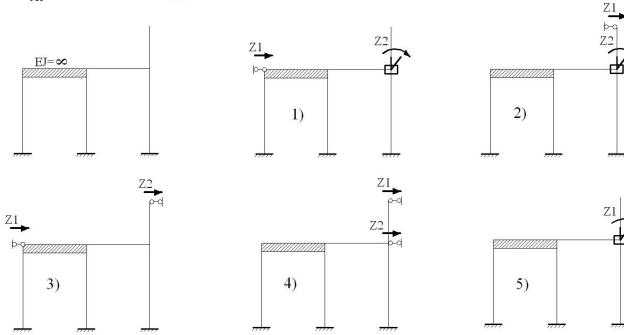
часть 2: «Расчет многопролётной неразрезной балки на упруго-оседающих опорах»


1. Укажите правильное очертание линии влияния усилия в стержне D_3

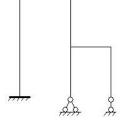
2. Укажите правильную эпюру изгибающих моментов



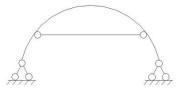
3. Определите вертикальное перемещение точки B, используя правило Верещагина



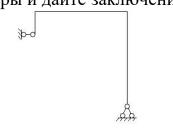
- 4. Укажите правильную формулировку физического смысл специальных коэффициентов r'_{ki} смешанного метода
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей
- 5. Укажите правильную формулировку физического смысла свободных членов канонических уравнений метода сил
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
- 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей


6. Выберите правильную основную систему метода сил

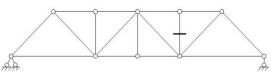
7. Выберите правильную основную систему метода перемещений

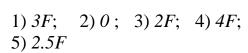


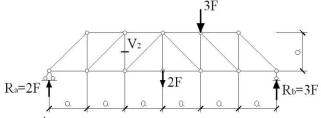
- 8. К какому виду относится изображенная на рисунке стержневая система?
 - 1) балка;
 - 2) рама;
 - 3) ферма;
 - 4) арка;
 - 5) комбинированная система



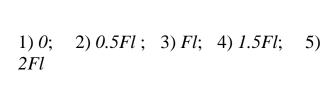
9. Определите число избыточных связей стержневой системы

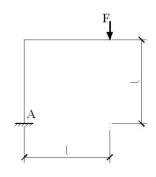

1) 3; 2) 0; 3) 1; 4) 5; 5) 2

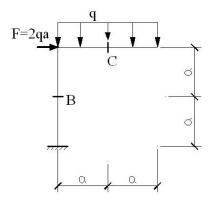

- 10. Выполните анализ геометрической структуры и дайте заключение
 - 1) геометрически изменяемая;
 - 2) мгновенно изменяемая;
 - 3) геометрически неизменяемая



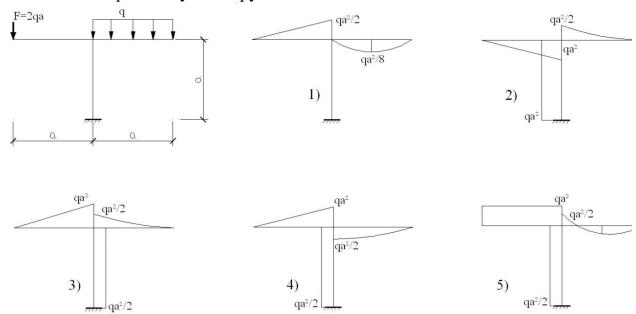
- 11. Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?
 - 1) метод проекций;
 - 2) метод моментных точек (метод Риттера);
 - 3) метод вырезания узлов;
 - 4) комбинированный метод

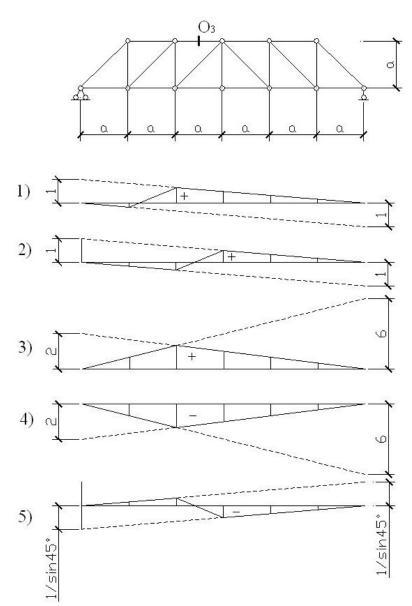


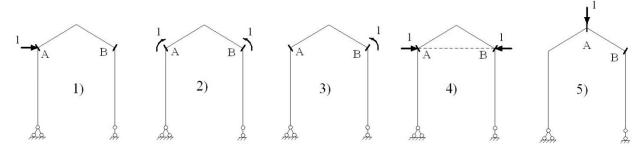

12. Определите усилие в стержне V_2



13. Определите опорный момент в заделке A

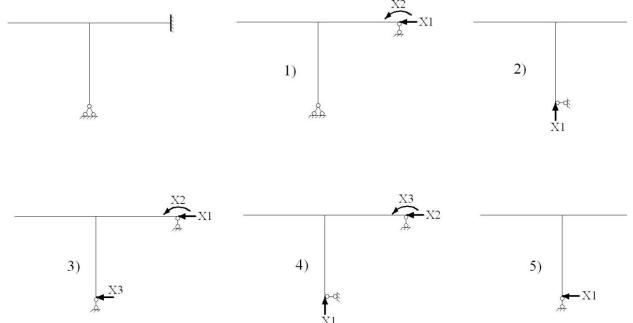



- 14. Определите изгибающий момент в сечении B
 - 1) 0; 2) 4qa²; 3) 2.5qa²; 4) 0.5qa²; 5) 3qa²


15. Укажите правильную эпюру изгибающих моментов

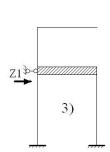
16. Укажите правильное очертание линии влияния усилия в стержне O_3

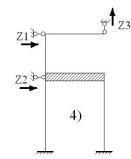
17. Выберите правильное вспомогательное состояние для определения вза-имного угла поворота сечений A и B

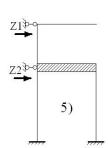

18. Укажите формулу Мора для определения перемещений от действия заданной нагрузки

1)
$$\Delta_{i} = \sum_{l} \int_{l}^{1} \frac{Mm_{i}}{EI} ds$$
; 2) $\Delta_{i} = \sum_{l} \alpha \int_{l} m_{i} \Delta t' ds + \sum_{l} \alpha \int_{l} n_{i} \Delta t_{0} ds$; 3) $\Delta_{i} = -\sum_{j=1}^{n} r_{ji} c_{j}$; 4) $l_{n} x_{n-1} + 2(l_{n} + l_{n+1}) x_{n} + l_{n+1} x_{n+1} = -6 \left(\frac{S_{n}^{A}}{l_{n}} + \frac{S_{n}^{B}}{l_{n+1}} \right)$; 5) $l_{n} x_{n-1} + 2(l_{n} + l_{n+1}) x_{n} + l_{n+1} x_{n+1} = -6 EI(\Theta_{n+1} + \Theta_{n})$

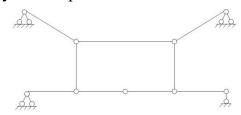

19. Определите угол поворота сечения B, используя правило Верещагина

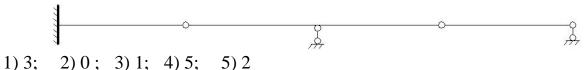

- 1) $\frac{Fl^2}{4EI}$; 2) $\frac{Fl^2}{EI}$; 3) $\frac{Fl^2}{3EI}$; 4) $\frac{3Fl^2}{4EI}$;
- 5) $\frac{Fl^2}{2EI}$
- 20. Назовите основные неизвестные смешанного метода
- 1) усилия и реакции в избыточных связях;
- 2) перемещения узлов;
- 3) реакции в избыточных связях и перемещения узлов;
- 4) перемещения по направлению отброшенных связей;
- 5) реакции наложенных связей
- 21. Укажите правильную формулировку физического смысла коэффициентов канонических уравнений метода сил
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
- 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей


22. Выберите правильную основную систему метода сил

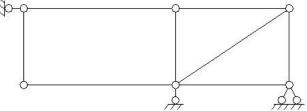


23. Выберите правильную основную систему метода перемещений

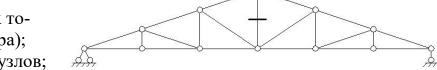




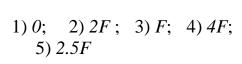
- 24. К какому виду относится изображенная на рисунке стержневая система?
 - 1) балка;
 - 2) рама;
 - 3) ферма;
 - 4) арка;
 - 5) комбинированная система

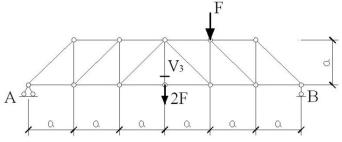


25. Определите число избыточных связей стержневой системы

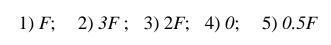

7.2.3 Примерный перечень заданий для решения прикладных задач

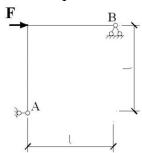
- 1. Выполните анализ геометрической структуры и дайте заключение
 - 1) геометрически изменяемая;
 - 2) мгновенно изменяемая;
 - 3) геометрически неизменяемая

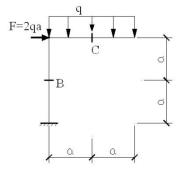



2. Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?

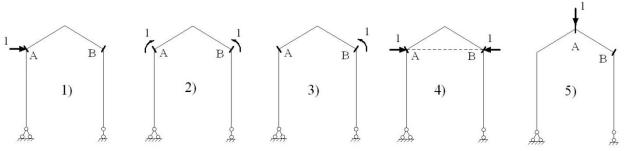
- 1) метод проекций;
- 2) метод моментных точек (метод Риттера);

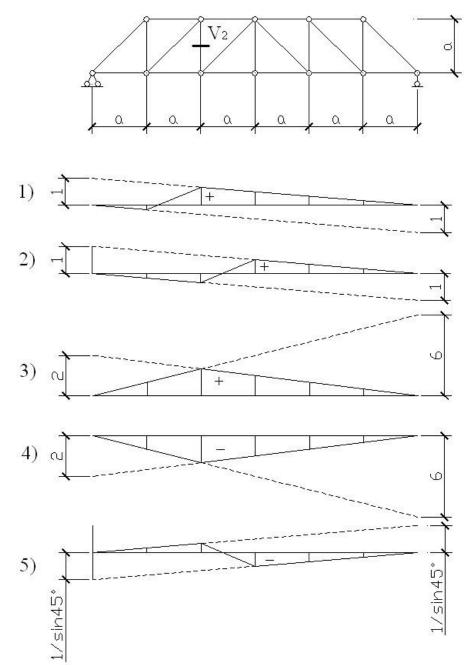



- 3) метод вырезания узлов;
- 4) комбинированный метод
- 3. Определите усилие в стержне V_3



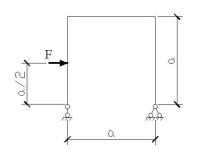
4. Определите вертикальную составляющую опорной реакции в опоре B

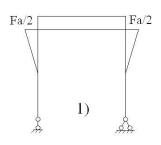


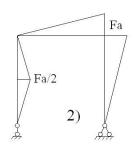

5. Определите продольную силу в сечении B

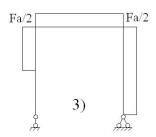
6. Выберите правильное вспомогательное состояние для определения вертикального перемещения сечения A

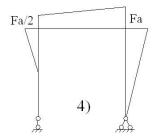
7. Укажите правильное очертание линии влияния усилия в стержне V_2 при езде поверху

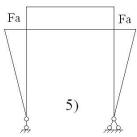

8. Укажите формулу Мора для определения перемещений от действия смещения опор в рамах

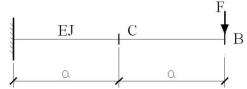

1)
$$\Delta_i = \sum_l \int_l \frac{Mm_i}{EI} ds$$
; 2) $\Delta_i = \sum_l \alpha \int_l m_i \Delta t' ds + \sum_l \alpha \int_l n_i \Delta t_0 ds$;


3)
$$\Delta_i = -\sum_{j=1}^n r_{ji} c_j$$
; 4) $l_n x_{n-1} + 2(l_n + l_{n+1}) x_n + l_{n+1} x_{n+1} = -6 \left(\frac{S_n^A}{l_n} + \frac{S_n^B}{l_{n+1}} \right)$;


5)
$$l_n x_{n-1} + 2(l_n + l_{n+1})x_n + l_{n+1}x_{n+1} = -6EI(\Theta_{n+1} + \Theta_n)$$

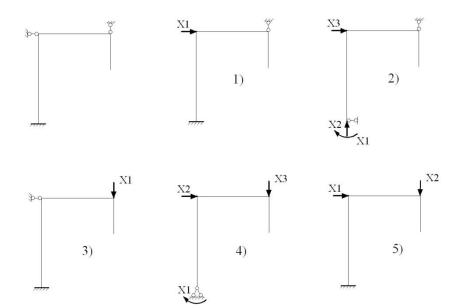

9. Укажите правильную эпюру изгибающих моментов

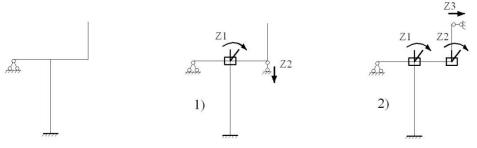


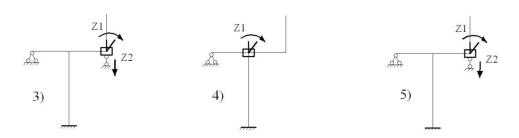

10. Определите вертикальное перемещение точки C, используя правило Верещагина

1)
$$\frac{5Fa^3}{3EI}$$
;

$$2) \frac{2Fa^3}{3EI}$$

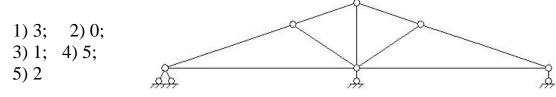

1)
$$\frac{5Fa^3}{3EI}$$
; 2) $\frac{2Fa^3}{3EI}$; 3) $\frac{8Fa^3}{3EI}$; 4) $\frac{4Fa^3}{3EI}$;




- 11. Назовите основные неизвестные метода перемещений
- 1) усилия и реакции в избыточных связях;
- 2) перемещения узлов;
- 3) реакции в избыточных связях и перемещения узлов;
- 4) перемещения по направлению отброшенных связей;
- 5) реакции наложенных связей
- 12. Укажите правильную формулировку физического смысла специального коэффициента δ_{ik} смешанного метода
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
- 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей

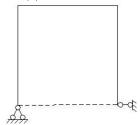
13. Выберите правильную основную систему метода сил

14. Выберите правильную основную систему метода перемещений



15. К какому виду относится изображенная на рисунке стержневая система? 9

- 2) рама;
- 3) ферма;
- 4) арка;
- 5) комбинированная система
- 16. Определите число избыточных связей стержневой системы

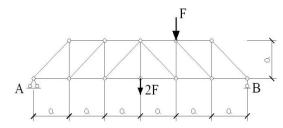


17. Выполните анализ геометрической структуры и дайте заключение

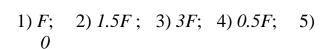
3) геометрически неизменяемая

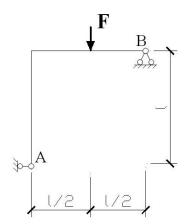
18. Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?

1) метод проекций;

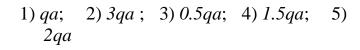

2) метод моментных точек (метод Риттера);

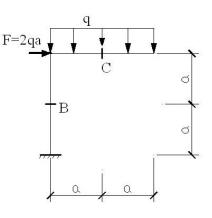
3) метод вырезания узлов;

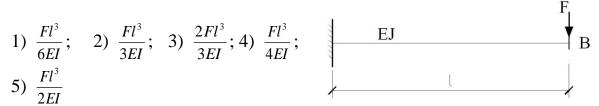

4) комбинированный метод


19. Определите опорную реакцию опоры B

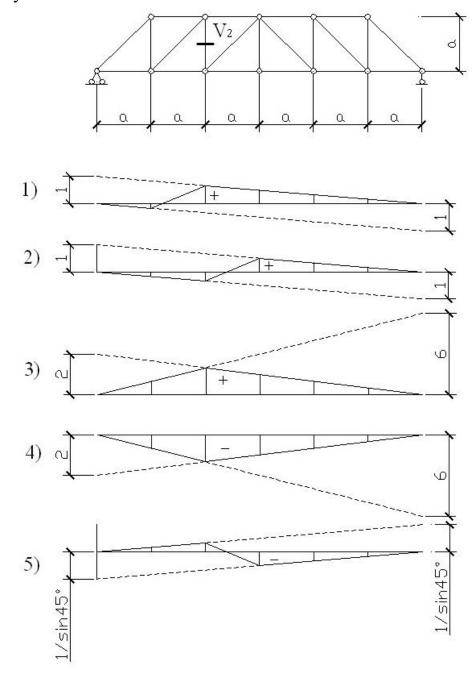
1)
$$\frac{2}{3}F$$
; 2) $\frac{4}{3}F$; 3) $2F$; 4) $\frac{3}{4}F$; 5) $\frac{5}{3}F$

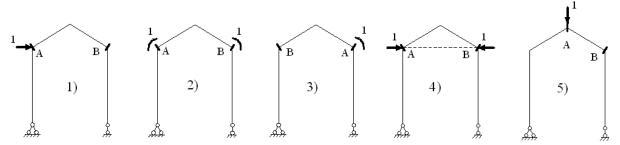


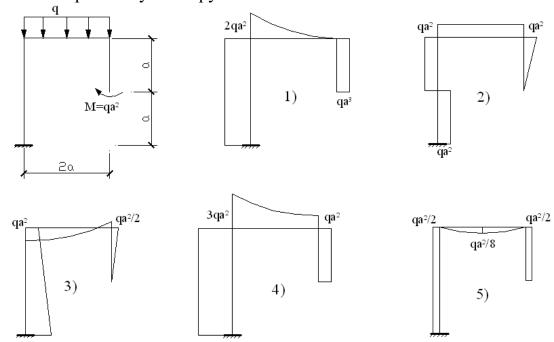

20. Определите реакцию опоры A



21. Определите поперечную силу в сечении C




22. Определите вертикальное перемещение точки B, используя правило Верещагина


23. Укажите правильное очертание линии влияния усилия в стержне V_2 при езде понизу

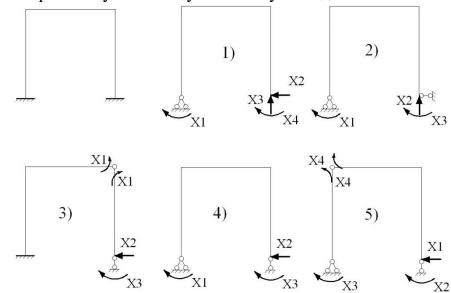
24. Выберите правильное вспомогательное состояние для определения угла поворота сечения $\ A$

25. Укажите правильную эпюру моментов

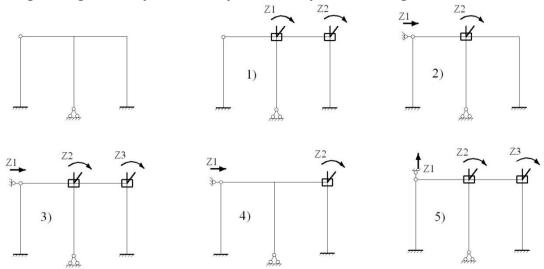
26. Укажите формулу Мора для определения перемещений от действия изменения температуры

1)
$$\Delta_i = \sum_{l} \int_{I} \frac{Mm_i}{EI} ds$$
;

2)
$$\Delta_i = \sum \alpha \int_l m_i \Delta t' ds + \sum \alpha \int_l n_i \Delta t_0 ds$$
;


3)
$$\Delta_i = -\sum_{j=1}^n r_{ji} c_j;$$

4)
$$l_n x_{n-1} + 2(l_n + l_{n+1})x_n + l_{n+1}x_{n+1} = -6\left(\frac{S_n^A}{l_n} + \frac{S_n^B}{l_{n+1}}\right);$$


5)
$$l_n x_{n-1} + 2(l_n + l_{n+1}) x_n + l_{n+1} x_{n+1} = -6EI(\Theta_{n+1} + \Theta_n)$$

- 27. Назовите основные неизвестные метода сил
- 1) усилия и реакции в избыточных связях;
- 2) перемещения узлов;
- 3) реакции в избыточных связях и перемещения узлов;
- 4) перемещения по направлению отброшенных связей;
- 5) реакции наложенных связей
- 28. Укажите правильную формулировку физического смысла коэффициентов канонических уравнений метода перемещений
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;

- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
- 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей
- 29. Выберите правильную основную систему метода сил

30. Выберите правильную основную систему метода перемещений

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Понятие о расчётной схеме конструкции. Модели материала, формы, связей и нагрузок. Типы опорных связей. Основные допущения статики стержневых систем. Классификация расчётных схем.
- 2. Кинематический анализ плоских стержневых систем. Связь между статическими и кинематическими свойствами расчётных схем. Определение числа степеней свободы и числа избыточных связей расчётной схемы. Понятия: диска, узла, стержня, простого и кратного шарниров. Фиктивный шарнир. Структурный анализ. Признаки образования геометрически не-

- изменяемых систем.
- 3. Определение усилий в многопролётных шарнирных балках (МШБ) от постоянных нагрузок. Кинематический анализ. Монтажная схема. Определение опорных реакций и построение эпюр усилий.
- 4. Понятие о ферме. Классификация ферм. Обозначения элементов ферм. Кинематический анализ. Определение опорных реакций. Аналитические методы определения усилий в стержнях плоских статически определимых ферм. Признаки выделения «нулевых» стержней.
- 5. Понятие о линиях влияния. Построение линий влияния опорных реакций, поперечных сил и изгибающих моментов в простых балках и МШБ статическим способом. Понятие о построении линий влияния кинематическим способом.
- 6. Построение линий влияния усилий в стержнях плоских ферм. Отличия линий влияния при езде понизу и поверху.
- 7. Определение усилий по линиям влияния от различных нагрузок: от сосредоточенной силы; от группы сил; от распределённой нагрузки; от сосредоточенного момента. Определение экстремальных значений усилий по линиям влияния от подвижных и временных нагрузок.
- 8. Определение усилий в плоских статически определимых рамах. Классификация рам. Кинематический анализ. Обобщение понятий M, Q, N, правило знаков. Определение опорных реакций. Построение эпюр усилий и их статические проверки. Использование симметрии при расчёте рам.
- 9. Понятие арки, распора. Классификация арок. Определение усилий в трёхшарнирной арке. Сопоставление с балкой. Определение опорных реакций и построение эпюр усилий. Понятие о рациональном очертании оси арки.
- 10. Элементы теории перемещений. Понятия о линейно и нелинейно деформируемых системах. Принцип суперпозиции. Собственная и дополнительная работа внешних сил. Групповые силы и обобщённые перемещения. Принцип возможных перемещений. Теоремы о взаимности работ и взаимности перемещений. Универсальное обозначение перемещений.
- 11. Дополнительная работа внутренних сил. Формулы Мора для определения перемещений от нагрузки, изменения температуры и заданного смещения опорных связей. Правило Верещагина для вычисления интегралов при использовании формулы Мора.
- 12. Определение усилий в плоских статически неопределимых стержневых системах методом сил. Кинематический анализ, определение числа избыточных связей. Выбор основной системы. Канонические уравнения метода сил и их смысл. Определение коэффициентов и свободных членов и их проверки. Построение окончательных эпюр усилий и их проверки.
- 13. Особенности расчёта рам методом сил на изменение температуры и смещения опорных связей. Учёт симметрии. Группировки неизвестных при выборе рациональных основных систем метода сил. Теорема Уманского.
- 14. Определение усилий в плоских статически неопределимых стержневых системах методом перемещений. Кинематический анализ, определение

- степени кинематической неопределимости. Основная система. Канонические уравнения метода перемещений и их смысл. Определение коэффициентов и свободных членов. Построение окончательных эпюр усилий и их проверки.
- 15. Учёт симметрии при расчёте рам методом перемещений. Расчёт рам с бесконечно жёсткими элементами. Комбинированный метод расчёта симметричных рам.
- 16. Сопоставление метода сил и метода перемещений (на примере рамы). Определение усилий в плоских статически неопределимых стержневых системах смешанным методом. Выбор основной системы. Канонические уравнения смешанного метода и их смысл.
- 17. Определение коэффициентов и свободных членов канонических уравнений смешанного метода и их проверки. Построение окончательных эпюр усилий и их проверки.
- 18. Неразрезные балки. Определение усилий от постоянных нагрузок. Кинематический анализ. Выбор основной системы. Вывод уравнений трёх моментов и их смысл. Построение окончательных эпюр усилий и определение опорных реакций. Определение усилий в неразрезных балках от осадки опор.
- 19. Объемлющие эпюры изгибающих моментов в неразрезной балке от временной нагрузки. Построение объемлющих эпюр от совместного действия постоянных и временных нагрузок. Пример практического применения объемлющих эпюр.
- 20. Расчет смешанным методом балок на упруго-оседающих (податливых) опорах. Понятие и характеристики упругой связи. Образование основной системы и условия эквивалентности ее заданной системы. Определение коэффициентов и свободных членов канонических уравнений. Смысл и вычисление специальных коэффициентов. Окончательные уравнения для расчета. Построение окончательных эпюр. Проверки.
- 21. Определение усилий в плоских рамах с использованием деформированной расчетной схемы методом перемещений. Основные допущения. Пример расчёта сжато-изогнутого стержня. Понятие о устойчивости первого и второго рода.
- 22. Расчёт плоских рам на устойчивость методом перемещений. Основные допущения. Учёт симметрии при расчётах рам на устойчивость.
- 23. Топология стержневой конструкции. Представление геометрической и физической информации для элементов. Матричные формы записей уравнений равновесия, совместности деформаций и физических соотношений.
- 24. Виды конечных элементов и условия сопряжения между ними. Представление основных зависимостей в матричной форме. Использование локальных и глобальной систем координат. Основные типы конечных элементов и их применение: КЭ для стержня, плоской задачи, КЭ для изгиба плит.

7.2.5 Примерный перечень заданий для решения прикладных задач Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

(Например: Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов — 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

	12.7 Hachopi oucho mbix marepha	· · · · · · · · · · · · · · · · · · ·	
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемо й компетенции	Наименование оценочного средства
1	Связь строительной механики с други-	ПК-1	Тест, контрольная ра-
	ми дисциплинами. Понятие о расчет-		бота, стандартные за-
	ной схеме. Типы опор. Классифика-		дачи на практических
	ция расчетных схем по геометрии,		занятиях, устный опрос
	способу опирания, структуре, статиче-		
	ским и кинематическим свойствам.		
	Классификация воздействий.		
	Принцип суперпозиции.)		
2	Основные положения кинематиче-	ПК-1	Тест, контрольная ра-
	ского анализа расчетных схем, связь		бота, стандартные за-
	между их статическими и кинемати-		дачи на практических
	ческими свойствами. Формулы для		занятиях, устный опрос
	определения числа степеней свободы		
	и числа избыточных связей. Анализ		
	геометрической структуры. Признаки		
	образования геометрически неизме-		
	няемых, геометрически изменяемых		
	и мгновенно-изменяемых систем.		
3	Расчет МШБ. Расчет ферм. Методы	ПК-1	Тест, контрольная ра-
	аналитического определения усилий в		бота, стандартные за-
	стержнях. Признаки нулевых стержней.		дачи на практических
	Расчет рам. Определение опорных ре-		занятиях, устный опрос
	акций. Обобщение понятий внутренних		
	усилий M, Q, N. Способы построения		
	эпюр в рамах. Проверки эпюр. Учет		
	симметрии.		
	Расчет арок. Определение усилий M, Q,		

	la r		
	N в трехшарнирной арке при расчете на		
	вертикальную нагрузку. Рациональная		
	ось арки.		
4	Понятие о линии влияния. Действие	ПК-1	Тест, контрольная ра-
	подвижной нагрузки на сооружения.		бота, стандартные за-
	Линии влияния в простых и многопро-		дачи на практических
	летных шарнирных балках, фермах.		занятиях, устный опрос
	Определение внутренних усилий от		
	различных нагрузок при помощи линий		
	влияния. Определение по линиям		
	влияния опасного положения вре-		
	менной и подвижной нагрузки.		
5	Понятие о действительной (собствен-	ПК-1	Тест, контрольная ра-
3	ной) и возможной (дополнительной)	11111-1	бота, стандартные за-
	работах. Теорема о взаимности работ и		дачи на практических
	ее следствия. Принцип возможных		занятиях, устный опрос
			занятиях, устный опрос
	перемещений. Групповые силы и		
	обобщенные перемещения. Линейно и		
	нелинейно деформируемые системы.		
	Универсальное обозначение переме-		
	щений. Формула Мора для определения		
	перемещений от нагрузки, смещения		
	связей и изменения температуры.		
	Правило Верещагина для вычисления		
	интегралов Мора.		
6	Расчет статически неопределимых си-	ПК-1	Тест, контрольная ра-
	стем методом сил. Заданная и основная		бота, стандартные за-
	системы. Условия их статической и		дачи на практических
	кинематической эквивалентности. Ка-		занятиях, устный опрос
	нонические уравнения метода сил, ис-		
	толкование и определение коэффици-		
	ентов и свободных членов уравнений.		
	Их проверки. Построение окончатель-		
	ных эпюр, кинематические проверки.		
	Определение перемещений в статиче-		
	ски неопределимых системах (теорема		
	Уманского). Учёт симметрии.		
7	Рациональный выбор основной системы	ПК-1	Тест, контрольная ра-
	для расчёта неразрезной балки.		бота, стандартные за-
	Уравнение трёх моментов. Понятие об		дачи на практических
	объемлющих (огибающих) эпюрах.		занятиях, устный опрос
8	Расчет статически неопределимых си-	ПК-1	Тест, контрольная ра-
	стем методом перемещений Заданная		бота, стандартные за-
	система. Основная система, способы её		дачи на практических
	образования. Статические условия эк-		занятиях, устный опрос
	вивалентности основной и заданной		запятиях, устный опрос
	системы. Вывод канонических уравне-		
	ний. Построение единичных эпюр для		
	балок с неподвижными концами от		
	нагрузки и смещения опорных связей.		
	Определение коэффициентов и сво-		
	бодных членов канонических уравне-		

	1	Ī	T
	ний метода перемещений (два способа).		
	Построение окончательных эпюр, их		
	проверки. Особенности расчета рам с		
	бесконечно жесткими элементами. Учет		
	симметрии.		
9	Смешанный метод расчета для систем	ПК-1	Тест, контрольная ра-
	произвольной структуры. Области ра-		бота, стандартные за-
	ционального применения смешанного		дачи на практических
	метода. Образование основной си-		занятиях, устный опрос
	стемы и условия эквивалентности ее		7 7 1
	заданной системы. Вывод канонических		
	уравнений смешанного метода. Смысл		
	особых коэффициентов. Определение		
	коэффициентов и свободных членов		
10	канонических уравнений.	ПГ 1	T
10	Многопролётная неразрезная балка на		Тест, контрольная ра-
	упруго – податливых (оседающих)		бота, стандартные за-
	опорах. Образование основной си-		дачи на практических
	стемы, условия эквивалентности ее и		занятиях, устный опрос
	заданной системы. Вывод канонических		
	уравнений смешанного метода. Смысл		
	особых коэффициентов. Уравнения		
	пяти моментов.		
11	Топология стержневой конструкции.	ПК-1	Тест, контрольная ра-
	Представление геометрической и фи-		бота, стандартные за-
	зической информации для элементов.		дачи на практических
	Матричные формы записей уравнений		занятиях, устный опрос
	равновесия, совместности деформаций		1
	и физических соотношений. Матричная		
	форма метода сил и метода		
	перемещений.		
12	Основные понятия метода конечных	ПК-1	Тест, контрольная ра-
12	элементов. Виды конечных элементов и		бота, стандартные за-
			_
	условия сопряжения между ними.		дачи на практических
	Представление основных зависимостей		занятиях, устный опрос
	в матричной форме. Использование		
	локальных и глобальной систем коор-		
	динат. Основные типы конечных эле-		
	ментов (КЭ) и их применение: КЭ для		
	стержня, плоской задачи, КЭ для изгиба		
	плит и др. Вопрос сходимости и		
	источники погрешностей МКЭ.		
	72 M		

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи ком-

пьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

8.1.1. Основная литература:

- 1. Дарков А.В., Шапошников Н.Н. Строительная механика: Учебник СПб.: Издательство «Лань», 2004 г. 656 с.
- 2. Дарков А.В., Клейн Г.К. и др. Строительная механика. М.: Выс-шая школа, $1976 \, \text{г.} 600 \, \text{c.}$
- 3. Рабинович И.М. Основы строительной механики стержневых систем. М.: Стройиздат, $1960 \, \Gamma$. $520 \, \mathrm{c}$.
- 4. Киселев В.А. Строительная механика. Общий курс. М.: Стройиздат, $1986\ \Gamma. 520\ c.$
- 5. Ржаницын А.Р. Строительная механика. М.: Высшая школа, 1991 г. 440 с.
- 6. Снитко Н.К. Строительная механика. М.: Высшая школа, 1980 г. 432 с.
- 7. Клейн Г.К., Леонтьев Н.Н. и др. Руководство к практическим занятиям по курсу строительной механики. / Под общ. ред. Г.К. Клейна. М.: Высшая школа, 1980 г. 384 с.

8.1.2. Дополнительная литература:

- 1. Леонтьев Н.Н., Соболев Д.Н., Амосов А.А. Основы строительной механики стержневых систем. М.: Изд-во АСВ, 1996 г. 541 с.
- 2. Смирнов А.Ф. Александров А.В. и др. Строительная механика. Стержневые системы. / Под ред. А.Ф. Смирнова. М.: Стройиздат, 1981 г. 512 с.
- 3. Кузьмин Н.Л., Рекач В.Г., Розенблат Г.И. Сборник задач по курсу строительной механики. М.: Стройиздат, $1963 \, \text{г.} 332 \, \text{c.}$
- 4. Смирнов А.Ф. Александров А.В. и др. Строительная механика. Динамика и устойчивость сооружений. /Под ред. А.Ф. Смирнова. М.: Стройиздат, 1984 г. 416 с.
- 5. Клейн Г.К., Рекач В.Г., Розенблат Г.И. Руководство к практическим занятиям по курсу строительной механики (основы теории устойчивости динамики сооружений и расчета пространственных систем).

- M.: Высшая школа, 1972 г. - 318 c.

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Библиотека программ, разработанная на кафедре строительной механики для выполнения РГР.

Перечень лицензионного программного обеспечения: Internet Explorer, Microsoft Word, для работы с электронными учебниками требуется наличие таких программных средств, как Adobe Reader для Windows и DjVuBrowser-Plugin..

Для работы в сети рекомендуется использовать сайты (базы данных, информационно-справочные и поисковые системы):

http://elibrary.ru

http://www.knigafund.ru

http://www.fepo.ru

http://encycl.yandex.ru (энциклопедии и словари).

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Oct meet bitein obitio obities obities of in order		
№ п/п	Вид аудиторного фонда	Требования
1	Лекционная аудитория	Аудитория должна быть оборудована как обычной доской, так и техническими средствами для реализации мультимедийной технологии проведения лекции (проектор, экран, или интерактивная доска, Notebook или стационарный ПК.
2	Компьютерные клас- сы.	Оснащение специализированной учебной мебелью. Оснащение техническими средствами обучения: ПК с возможностью подключения к локальным сетям и Интернету. Наличие ВТ из расчёта один ПК на одного студента.
3	Аудитория для прак- тических занятий.	Аудитория должна быть оборудована как обычной доской, так и техническими средствами для реализации мультимедийной технологии проведения практических занятий (проектор, экран, или интерактивная доска, Notebook или стационарный ПК).

Перечень материально-технического обеспечения дисциплины:

- Специализированная аудитория (компьютерный класс [ауд. 2121]), оборудованная интерактивными технологиями представления видеоматериала при проведении лекционных и практических занятий, а также для выполнения расчетно-графических работ и проведения всех видов контрольных мероприятий с помощью компьютерного тестирования.
 - Методические указания к РГР и контрольным работам.
- Методические и учебные пособия для выполнения курсового проекта и расчетно-графических работ.
- Испытательная лаборатория (ауд. 2116) для проведения лабораторных работ. Проводятся механические испытания различных материалов и лабораторных образцов для студентов. В наличии имеются испытательные машины:
 - ✓ ГМС-20 (растяжение-сжатие, изгиб стали и чугуна);
 - УИМ-50 (растяжение-сжатие, изгиб стали и чугуна);
 - ✓ ГРМ-2А (растяжение-сжатие, изгиб стали и чугуна);
 - ✓ Копёр КМ-30 (ударная вязкость стали);
 - ✓ P-0,5 (растяжение-сжатие стальной пружины);
 - ✓ P-10 (растяжение-сжатие, скалывание древесины);
 - ✓ КМ-50-1 (закона Гука при кручении [без разрушения], сталь);
 - ✓ Машина Амслера (кручение образцов из стали и чугуна до разрушения);
 - ✓ ИМ-4Р (срез нагеля, смятие-сжатие древесины);
 - ✓ ТШ-2 (определение твёрдости по Бринеллю);

ТК-2М (определение твёрдости по Роквеллу);

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Сопротивление материалов с основами строительной механики» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета строительных конструкции. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных	Деятельность студента
занятий	·
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом, зачетом три дня эффективнее всего использовать для повторения и систематизации материала.