МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
Декан факультета С.А. Ярёменко
«18» ноября 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Инструментальные средства искусственного интеллекта в техносферной безопасности»

Направление подготовки 20.04.01 Техносферная безопасность

Программа Искусственный интеллект

Квалификация выпускника магистр

Нормативный период обучения 2 года

Форма обучения очная

Год начала подготовки <u>2022</u>

Авторы программы

Е.Л. Смыслова к.т.н., доцент каф. Автоматизации и управления, Череповецкий государственный университет

В.А. Шабалов к.т.н., доцент каф. Автоматизации и управления, Череповецкий государственный университет

Заведующий кафедрой Техносферной и пожарной безопасности

Руководитель ОПОП

/П.С. Куприенко/

/Н.В. Ильина/

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины формирование у студентов знаний в области искусственного интеллекта, а также получение навыков проектирования систем искусственного интеллекта и работы с инструментальными средствами реализации принципов искусственного интеллекта.

1.2. Задачи освоения дисциплины

- Рассмотреть основные методы, модели и инструментальные средства в области представления знаний;
- Раскрыть принципы построения динамических и статических экспертных систем;
- Показать особенности нейронных сетей, применяемых для распознавания изображений.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Инструментальные средства искусственного интеллекта в техносферной безопасности» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Инструментальные средства искусственного интеллекта в техносферной безопасности» направлен на формирование следующих компетенций:

- УК-7 Способен понимать фундаментальные принципы работы современных систем искусственного интеллекта, разрабатывать правила и стандарты взаимодействия человека и искусственного интеллекта и использовать их в социальной и профессиональной деятельности
- ОПК-6 Способен самостоятельно приобретать, развивать и применять математические, естественнонаучные, социально-экономические, общеинженерные знания и знания в области когнитивных наук для решения основных, нестандартных задач применения искусственного интеллекта, в том числе в новой или незнакомой среде и в междисциплинарном контексте
- ПК-5 Способен исследовать применение интеллектуальных систем для различных предметных областей
- ПК-6 Способен выбирать и участвовать в проведении экспериментальной проверки работоспособности программных платформ систем искусственного интеллекта по обеспечению требуемых критериев эффективности и качества функционирования
- ПК-8 Способен адаптировать и применять методы и алгоритмы машинного обучения для решения прикладных задач в различных предметных областях

Компетенция	Результаты обучения, характеризующие сформированность компетенции
УК-7	Знать
	Стандарты, правила в сфере искусственного интеллекта

	Уметь
	Осуществляет защиту прав результатов интеллектуальной
	Деятельности
	Владеть
	Современными методами и инструменты для
	представления результатов научно-исследовательской
	деятельности
ОПК-6	Знать
	Способы приобретения новых математических,
	естественнонаучных, социально-экономических,
	общеинженерных знания
	Уметь
	Адаптировать математические, естественнонаучные,
	социально-экономические, общеинженерные знания для
	решения нестандартных задач с применением систем,
	основанных на знаниях
	Владеть
	Методологией решения нестандартных задач создания и
	применения с применением математических,
	естественнонаучных, социально-экономических,
	общеинженерных знаний и знаний в области когнитивных
	наук
ПК-5	Знать
	Направления применения систем искусственного
	интеллекта
	Уметь
	выбирать инструментальные средств искусственного
	интеллекта для решения задач в области обеспечения
	техносферной безопасности
	Владеть
	Способами применения аналитических платформ для
	создания интеллектуальных систем и решения прикладных
	задач
ПК-6	Знать
	Программные платформы систем искусственного
	интеллекта
	Уметь
	Выбирать программные платформы систем искусственного
	интеллекта для решения прикладных задач
	Владеть
	Методологией экспериментальной проверки
	работоспособности платформ систем искусственного
THE C	интеллекта
ПК-8	Знать

алгоритмы машинного обучения
Уметь
Решать задачи в области техносферной безопасности с
помощью систем, основанных на знаниях
Владеть
Основами концептуального программирования

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Инструментальные средства искусственного интеллекта в техносферной безопасности» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Duran varabuaŭ nabatu	Всего	Семестры
Виды учебной работы	часов	3
Аудиторные занятия (всего)	32	32
В том числе:		
Лекции	8	8
Практические занятия (ПЗ)	16	16
Лабораторные работы (ЛР)	8	8
Самостоятельная работа	76	76
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Тема 1. Инструментальные средства для разработки систем искусственного интеллекта	Моделирование систем искусственного интеллекта. Алгоритмы машинного обучения, анализа данных и цифровой обработки. LOGINOM — аналитическая платформа для построения систем интеллектуальной обработки данных. Основы работы с Loginom: работа с пакетами, сценарии, компоненты и узлы, модификаторы доступа. Основы работы с Loginom: настройки портов и автосинхронизация, компонент калькулятор. Основы работы с Loginom: переменные и параметризация узлов, компоненты условие и замена. Компонент цикл, наследование и производные компоненты, импорт из промышленных источников данных. Причины загрязнения данных и виды ошибок. Методы очистки данных использование словарей, и таблиц	4	8	4	38	54

2	Тема 2. Программные средства для разработки систем искусственного интеллекта	замены, анализ строк, регулярные выражения, частотный анализ, контрольные числа. Объединение различных методов очистки данных. Общий алгоритм очистки. Разработка приложений искусственного интеллекта. Инструментальные средства и полезные библиотеки. Программная реализация нейронных сетей. Построение многослойных нейронных сетей. Библиотеки РуВгаіп, Scikitlearn, Keras, TensorFlow, ImageAI, OpenCV. Примеры нейронных сетей, их обучения и использования. Обучение нейронных сетей на пользовательских наборах данных.	4	8	4	38	54
		Итого	8	16	8	76	108

5.2 Перечень лабораторных работ

Лабораторная работа № 1 «Базовые навыки работы в аналитической платформе Loginom»

Лабораторная работа № 2 «Визуализация в анатитической платформе Loginom»

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
УК-7	Знать		Выполнение работ	Невыполнение
	Стандарты, правила в сфере	Госты и правила в	в срок,	работ в срок,
	искусственного интеллекта	области охраны	предусмотренный	предусмотренный в
		интеллектуальной	в рабочих	рабочих
		информационной	программах	программах
		собственности		
	Уметь		Выполнение работ	Невыполнение
	Осуществляет защиту прав	Оформляет авторские	в срок,	работ в срок,
	результатов интеллектуальной	права на	предусмотренный	предусмотренный в
	деятельности	разработанные модели	в рабочих	рабочих
		и алгоритмы	программах	программах
	Владеть		Выполнение работ	Невыполнение
	Современными методами и	Представляет	в срок,	работ в срок,

	инструменты для представления результатов научно-исследовательской деятельности	результаты исследований, моделирования с помощью современных методов визуализации	предусмотренный в рабочих программах	предусмотренный в рабочих программах
ОПК-6	Знать Способы приобретения новых математических, естественнонаучных, социально-экономических, общеинженерных знания	•	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь Адаптировать математические, естественнонаучные, социально-экономические, общеинженерные знания для решения нестандартных задач с применением систем, основанных на знаниях		Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	нестандартных задач создания и применения с применением математических, естественнонаучных, социально-экономических,		Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-5	Знать Направления применения систем искусственного интеллекта	Цели и задачи применения систем искусственного интеллекта при решении прикладных задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь выбирать инструментальные средств искусственного интеллекта для решения задач в области обеспечения техносферной безопасности	Выбирает оптимальные интеллектуальные платформы, методы и алгоритмы для решения прикладных задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	аналитических платформ для	и способами работы с	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-6	Знать Программные платформы систем искусственного интеллекта	Знает программную платформу LOGINOM. Основные функциональные возможности, способы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь	анализа данных.	Выполнение работ	Невыполнение

	искусственного интеллекта	программные	в рабочих	рабочих
	для решения прикладных	платформы для	программах	программах
	задач	решения прикладных		
		задач		
	Владеть		Выполнение работ	Невыполнение
	Методологией	Оценивает качество	в срок,	работ в срок,
	экспериментальной проверки		предусмотренный	предусмотренный в
	работоспособности платформ		в рабочих	рабочих
	систем искусственного	платформ и	программах	программах
	интеллекта	построенных моделей		
ПК-8	Знать		Выполнение работ	Невыполнение
	алгоритмы машинного	Знает методы	в срок,	работ в срок,
	обучения	машинного обучения с		предусмотренный в
		учителем и без учителя	в рабочих	рабочих
			программах	программах
	Уметь		Выполнение работ	Невыполнение
		Решает задачи	в срок,	работ в срок,
	техносферной безопасности с	профессиональной		предусмотренный в
	помощью систем, основанных	деятельности с	в рабочих	рабочих
	на знаниях	применением систем,	программах	программах
		основанных на знаниях		
	Владеть		Выполнение работ	Невыполнение
	Основами концептуального	Способы	в срок,	работ в срок,
	программирования	спецификации		предусмотренный в
		предметной области на	в рабочих	рабочих
		формальном языке	программах	программах

7.1.2 Этап промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
УК-7	Знать Стандарты, правила в сфере искусственного интеллекта	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь Осуществляет защиту прав результатов интеллектуальной деятельности	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	Владеть Современными методами и инструменты для представления результатов научно-исследовательской деятельности	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ОПК-6	Знать Способы приобретения новых математических, естественнонаучных, социально-экономических, общеинженерных знания	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь Адаптировать математические, естественнонаучные, социально-экономические, общеинженерные знания для решения нестандартных задач с применением систем, основанных на знаниях	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

	нестандартных задач создания и применения с применением математических, естественнонаучных, социально-экономических, общеинженерных знаний и знаний в области когнитивных наук	предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ПК-5	Знать Направления применения систем искусственного интеллекта	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь выбирать инструментальные средств искусственного интеллекта для решения задач в области обеспечения техносферной безопасности	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	аналитических платформ для	предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ПК-6	Знать Программные платформы систем искусственного интеллекта	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь Выбирать программные платформы систем искусственного интеллекта для решения прикладных задач	практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
		Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ПК-8	Знать Алгоритмы машинного обучения	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь Решать задачи в области техносферной безопасности с помощью систем, основанных на знаниях		Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	Владеть Основами концептуального программирования	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Программная инженерия:
 - software engineering
 - Инструменты создания программного обеспечения

- Коллектив инженеров-программистов, разрабатывающих программное обеспечение для компьютеров
- Дисциплина, изучающая применение строгого систематического количественного подхода к разработке, эксплуатации и сопровождению программного обеспечения
- Комплекс программ, предназначенный для решения инженерных задач, связанных с большим количеством расчетов
- Инженерная индустрия применения прикладного программного обеспечения
- Совокупность инженерных методов и средств создания программного обеспечения
- Прикладное программное обеспечение для решения офисных задач
- 2. Построение SADT-модели включает в себя выполнение следующих действий:
 - Написание программного обеспечения для разрабатываемой системы по требованиям заказчика
 - Сбор информации об объекте, определение его границ
 - Определение цели и точки зрения модели, построение, обобщение и декомпозиция диаграмм
 - Представление исследуемой системы в графическом виде
 - Представление исследуемого объекта средствами системного моделирования
 - Критическая оценка, рецензирование и комментирование
 - Разработка, отладка и тестирование программного обеспечения
 - Использование графических пакетов для представления системы в виде модели
- 3. Моделирование основывается на принципах:
 - Выбор модели оказывает определяющее влияние на подход к решению проблемы и на то, как будет выглядеть это решение
 - Декомпозиции системы на отдельные подзадачи
 - Инкапсуляции и полиморфизма
 - Децентрализации управления системой
 - Каждая модель может быть представлена с различной степенью точности;
 лучшие модели те, что ближе к реальности
 - Открытой трансформируемой системы
 - Нельзя ограничиваться созданием только одной модели. Наилучший подход при разработке любой нетривиальной системы – использовать совокупность нескольких моделей, почти независимых друг от друга
 - Анализа и синтеза проектирования систем
- 4. Объектно-ориентированная методология (OOM) включает в себя составные части:
 - Объектно-ориентированный анализ
 - Объектно-ориентированный подкласс
 - Объектно-ориентированная парадигма
 - Объектно-ориентированная экспозиция
 - Объектно-ориентированное моделирование
 - Объектно-ориентированное программирование
 - Объектно-ориентированная декомпозиция
 - 5. К основным понятиям объектно-ориентированного подхода относятся:
 - Обобщение
 - Полиморфизм
 - Инкапсуляция
 - Реализация

- Агрегирование
- Наследование
- Ассоциация
- Композиция
- 6. Уровни логической модели:
 - Диаграмма сущность
 - Диаграмма связь
 - Диаграмма пакетов
 - Диаграмма сущность-связь
 - Модель данных, основанная на классах
 - Модель данных, основанная на ключах
 - Полная операционная модель
 - Полная атрибутивная модель
- 7. В объектно-ориентированном моделировании между классами существуют типы связей:
 - Слияние
 - Линейность
 - Зависимость
 - Разветвление
 - Цикличность
 - дикли шост
 - ОбобщениеАссоциация
 - A --- --- -
 - Агрегация
 - 8. Программное обеспечение делится на классы:
 - Системное ПО и прикладное ПО
 - Системное ПО, прикладное ПО и инструментальные средства разработки программ
 - Операционные системы, прикладное ПО, утилиты и драйверы
 - Прикладное ПО и инструментальные средства разработки программ
 - Системное ПО и инструментальные средства разработки программ
 - Системное ПО, прикладное ПО и системы программирования
 - Операционные оболочки, операционные системы, офисные программы
 - Системное ПО, прикладное ПО и инструментальное ПО
 - 9. Инструментальные средства разработки программ это:
 - Средства создания новых программ
 - Сервисные средства разработки ПО
 - Аналитические средства разработки ПО
 - Программное обеспечение, предназначенное для разработки и отладки новых программ
 - Средства отладки ПО
 - Средства тестирования ПО
 - Аппаратные и программные инструменты разработки нового ПО
 - Технические инструментальные средства разработки ПО
 - 10. Транслятор это:
 - Программа, выполняющая перевод программы с одного языка программирования на другой
 - Комплекс программ мультимедийных технологий
 - Программа, которая выполняет перевод программы с одного языка программирования на машинные коды
 - Программа-переводчик с одного иностранного языка на другой

- Техническое устройство передачи и преобразования аудио и видеосигналов
- Техническое устройство для кодирования и декодирования информации
- Программное обеспечение для обеспечения защиты информации на компьютере
- Одно из основных средств автоматизации программирования для преобразования программы, написанный на машинно-независимом языке, в программу на машинном языке конкретной ЭВМ
- Совокупность текстовых объектов

7.2.2 Примерный перечень заданий для решения стандартных задач 11. Компилятор – это:

- Один из видов трансляторов
- Прикладное программное обеспечение
- Специальная утилита системного ПО
- Операционная оболочка
- Переводит в коды сразу всю программу и создает независимый исполняемый файл
- Программное обеспечение, используемое в издательских системах
- Программа, которая переводит программу, написанную на языке программирования высокого уровня в программу на машинном языке не участвуя в ее исполнении
- Переводит в машинные коды 1 строчку программы и сразу ее выполняет
 12. Интерпретатор:
 - Программа для создания и редактирования электронных таблиц
 - Программа, анализирующая команды или операторы исходной программы и немедленно выполняющая их
 - Переводит в коды сразу всю программу и создает независимый исполняемый файл
 - Переводит в машинные коды 1 строчку программы и сразу ее выполняет
 - Программа для создания и редактирования текстовых документов
 - Один из видов трансляторов
 - Программа создания и управления базами данных
 - Программа создания файлов мультимедиа

13. Компоновщик – это:

- Программа для компоновки и оформления тестовых документов
- Редактор связей
- Комплекс программ, для создания и ведения баз данных
- Программа, которая из одного или нескольких объектных модулей с привлечением библиотечных программ и стандартных подпрограмм формирует загрузочный модуль
- Программное обеспечение для создания презентаций
- Программа сборки загрузочного модуля из полученных в результате раздельной компиляции объектных модулей с автоматическим поиском и присоединением библиотечных подпрограмм и процедур
- Программа для поиска синтаксических и семантических ошибок в программе
 14. Отладчик:
 - Программа, облегчающая программисту выполнение отладки разрабатываемых им программ
 - Программа для создания системы защиты файла
 - Программа создания системы защиты от вирусных атак

- Программа, помогающая анализировать поведение отлаживаемой программы, обеспечивая ее трассировку
- Операционная оболочка для создания и управления файловыми структурами
- Системное программное обеспечение для настройки операционной системы
- Программа создания и редактирования графических файлов
- Программа, позволяющая выполнять остановы в заданных точках, просмотреть текущие значения переменных и изменять их значения

15. Управление требованиями:

- Задача выявления изначальных проблем заказчика и создание системы, удовлетворяющей этим требованиям
- Процесс систематического выявления, организации и документирования требований к сложной системе
- Выявление требований заказчика и управление ими
- Задача, состоящая в том, чтобы понимать проблемы заказчиков в их предметной области и на их языке и создавать системы, удовлетворяющие их потребности
- Процесс создания программного обеспечения и адаптация его под требования заказчика
- Разработка требований к программному обеспечению и создание ПО на основе этих требований
- Процесс, в ходе которого вырабатывается и обеспечивается соглашение между заказчиком и выполняющей проект группой по поводу меняющихся требований к системе
- Разработка программного обеспечения и выработка требований к изменению работы системы заказчика

16. К методам выявления требований относятся:

- Беседы с первыми руководителями предприятия, для которого разрабатывается программное обеспечение
- Анализ научной и технической литературы, посвященной вопросам разработки программного обеспечения
- Личные встречи и беседы со всеми сотрудниками предприятия
- Анализ технической документации и на основе нее разработка требований к системе
- На начальном этапе требования не выявляются, а формируются по мере разработки программного обеспечения
- Интервью ирование и анкетирование, мозговой штурм и отбор идей
- Совещания, посвященные требованиям, создание прототипов
- Раскадровки, прецеденты, обыгрывание ролей

17. Требования к разрабатываемой системе должны включать:

- Разработку программного обеспечения и выработка требований к изменению работы системы заказчика
- Совокупность условий, при которых предполагается эксплуатировать будущую систему (аппаратные и программные ресурсы, предоставляемые системе; внешние условия ее функционирования; состав людей и работ, имеющих к ней отношение)
- Построение программного обеспечения из отдельных компонентов физически отдельно существующих частей программного обеспечения
- Описание выполняемых системой функций
- Технологию создания сложного программного обеспечения, основанную а объектном представлении кода программы
- Ограничения в процессе разработки (директивные сроки завершения

- отдельных этапов, имеющиеся ресурсы, организационные процедуры и мероприятия, обеспечивающие защиту информации)
- Совокупность рекомендуемых технологических приемов, охватывающих выполнение всех этапов разработки программного обеспечения
 - Технологию разработки программного обеспечения на базе структурной схемы развития языков программирования
- 18. Типы средств, иллюстрирующие цели моделирования системы:
 - Функции, которые система должна выполнять
 - Отношения между данными
 - Зависящее от времени поведение системы (аспекты реального времени)
 - Способы отладки и тестирования программного обеспечения
 - Создание программного обеспечения на основе структурной схемы исследуемого объекта или процесса
 - Выявление требований заказчика и управление ими
 - Технология разработки программного обеспечения на базе структурной схемы развития языков программирования
 - Построение программного обеспечения из отдельных компонентов физически отдельно существующих частей программного обеспечения
- 19. Для различных представлений проектируемой системы используют типы моделей:
 - Статическая модель
 - Динамическая модель
 - Модель классов
 - Модель декомпозиции
 - Модель размещения
 - Модель состояний
 - Модель взаимодействия
 - Модель агрегации
 - 20. К моделированию относится:
 - Система обозначений
 - Система атрибутов
 - Синтаксис языка моделирования
 - Система свойств
 - Совокупность поведении объектов
 - Совокупность графических объектов
 - Семантика языка моделирования

7.2.3 Примерный перечень заданий для решения прикладных задач

- 21. Перечислите признаки, которыми должна обладать задача, чтобы была применена нейронная сеть:
 - отсутствие алгоритма
 - не большой объем информации
 - накоплено достаточно много примеров
 - полные данные
 - противоречивые данные
 - 22. Какие формы представления знаний в ИС существуют:
 - системы продукций;
 - фреймы;
 - рекурсия;
 - абдукция.
 - 23. Лицо, которое принимает участие в разработке ЭС и занимается представлением

знаний в системе, называется:

- системный инженер;
- эксперт
- программист;
- инженер по знаниям.

24. База знаний это:

- обширное, специфическое знание для решения задачи, извлеченное из обучения, чтения и опыта.
- знания, необходимые для понимания, формулирования и решения задач.
- система, которая использует человеческие знания, встраиваемые в компьютер, для решения задач, которые обычно требуют человеческой экспертизы.
- минимальные структуры информации, необходимые для представления класса объектов, явлений или процессов

25. Укажите разрядность нейропроцессора?

- 32 разряда
- 64 разряда
- 16 разрядов
- 128 разрядов

26. Какие методы вывода, управляемыми данными, вы знаете:

- циклический
- метод поиска в глубину
- метод поиска в ширину
- метод принадлежности

27. Что такое данные Варианты ответа:

- отдельные факты, характеризующие объекты
- материальные носители знаний
- процессы и явления предметной области
- свойства процессов и явлений предметной области
- база знаний на машинных носителях

28. Перечислите модели представления знаний?

- продукционные модели
- семантические сети
- фреймы
- формальные логические модели
- базы знаний на машинных носителях

29. Что такое знания

- знания в памяти человека как результат мышления
- закономерности предметной области, полученные в результате практической деятельности
- знания, описанные на языках представления
- отдельные факты, характеризующие объекты
- базы данных на машинных носителях :

30. Какие задачи не решают нейронные сети?

- маршрутизация
- аппроксимация
- память, адресуемая по содержанию
- классификация
- управление

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Моделирование систем искусственного интеллекта в MATLAB.
- 2. Алгоритмы машинного обучения, анализа данных и цифровой обработки в MATLAB.
- 3. LOGINOM аналитическая платформа для построения систем интеллектуальной обработки данных.
- 4. Основы работы с Loginom: работа с пакетами, сценарии, компоненты и узлы, модификаторы доступа.
- 5. Основы работы с Loginom: настройки портов и автосинхронизация, компонент калькулятор.
- 6. Основы работы с Loginom: переменные и параметризация узлов, компоненты условие и замена.
- 7. Компонент цикл, наследование и производные компоненты, импорт из промышленных источников данных.
 - 8. Причины загрязнения данных и виды ошибок.
- 9. Методы очистки данных: использование словарей, и таблиц замены, анализ строк, регулярные выражения, частотный анализ, контрольные числа.
- 10. Объединение различных методов очистки данных. Общий алгоритм очистки.
 - 11. Разработка приложений искусственного интеллекта.
 - 12. Программная реализация нейронных сетей.
 - 13. Построение многослойных нейронных сетей.
 - 14. Библиотека PyBrain.
 - 15. Библиотека Scikit-learn.
 - 16. Библиотека Keras.
 - 17. Библиотека TensorFlow.
 - 18. Библиотека ImageAI.
 - 19. Библиотека TensorFlow.
 - 20. Библиотека OpenCV
 - 21. Примеры нейронных сетей, их обучения и использования.
 - 22. Обучение нейронных сетей на пользовательских наборах данных.
 - **7.2.5 Примерный перечень вопросов для подготовки к экзамену** Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачёт проводится по тест-билетам, каждый из которых содержит 10 вопросов. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов — 10.

- 1. Оценка «Не зачтено» ставится в случае, если студент набрал менее 5 баллов.
- 2. Оценка «Зачтено» ставится в случае, если студент набрал от 6 до 10 баллов

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы)	Код	Наименование оценочного
J\ <u>≅</u> 11/11	дисциплины	контролируемой	средства

		компетенции	
1	Тема 1. Инструментальные	УК-7, ОПК-6, ПК-	Тест, защита лабораторных
	средства для разработки систем	5, ПК-6, ПК-8	работ, защита реферата
	искусственного интеллекта		
2	Тема 2. Программные средства для	УК-7, ОПК-6, ПК-	Тест, защита лабораторных
	разработки систем искусственного	5, ПК-6, ПК-8	работ, защита реферата
	интеллекта		

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- Загорулько, Ю.А. Искусственный интеллект. Инженерия знаний: учебное пособие для вузов / Ю.А. Загорулько, Г. Б. Загорулько. Москва: Издательство Юрайт, 2021. 93 с. То же [Электронный ресурс] URL: https://urait.ru/bcode/474429
- Станкевич, Л.А. Интеллектуальные системы и технологии: учебник и практикум для вузов [Текст] / Л.А. Станкевич. М.: Издательство Юрайт, 2021. 397 с. То же [Электронный ресурс] URL: https://urait.ru/viewer/intellektualnye-sistemy-i-tehnologii-469517
- Андрейчиков А.В. Интеллектуальные информационные системы и методы искусственного интеллекта: учебник / А.В. Андрейчиков, О.Н. Андрейчикова. М.: ИНФРА-М, 2021. 530 с. То же [Электронный ресурс] URL: https://znanium.com/read?id=373119
- Головицына, М.В. Интеллектуальные САПР для разработки современных конструкций и технологических процессов: курс / М. В. Головицына. 2-е изд., испр. Москва: Национальный Открытый Университет «ИНТУИТ», 2016. 250 с. URL:

https://biblioclub.ru/index.php?page=book&id=429255

- Круглова Т.Н. Основы искусственного интеллекта и его техническая имитация: учебно-методическое пособие по выполнению лабораторных работ / Т.Н. Круглова; Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова. Новочеркасск: ЮРГПУ(НПИ) имени М.И. Платова, 2017. 87 с. То же [Электронный ресурс]. URL: https://www.npi-tu.ru/sveden/files/150306-M_MO-1.pdf
- Пенькова, Т.Г. Модели и методы искусственного интеллекта: учеб. пособие [Текст] / Т.Г. Пенькова, Ю В. Вайнштейн. Красноярск: Сибирский федеральный университет, 2019. 116 с. То же [Электронный ресурс]. URL: https://znanium.com/read?id=379870
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
- 1. Национальная стратегия развития искусственного интеллекта на период до 2030 года. Утверждена Указом Президента Российской Федерации от 10 октября 2019 г. № 490. [Электронный ресурс]. URL: http://www.consultant.ru/document/cons_doc_LAW_335184/1f32224a00901d b9cf44793e9a5e35567a4212c7/
- 2. ГОСТ Р 59267-2020. Системы искусственного интеллекта. Способы обеспечения доверия. [Электронный ресурс] URL: http://protect.gost.ru/v.aspx?control=7&id=239557
- 3. ГОСТ Р ИСО/МЭК 20546-2021. Информационные технологии.

 большие данные. Обзор и словарь.

 http://protect.gost.ru/v.aspx?control=7&id=24098
- 4. Толковый словарь по искусственному интеллекту [Электронный ресурс]. URL: http://aihandbook.intsys.org.ru/index.php/intro/ai-glossary
- 5. Официальный сайт журнала «Нечеткие системы и мягкие вычисления» [Электронный ресурс]. URL: http://fuzzy.tversu.ru/
- 6. Официальный сайт аналитической платформы Loginom [Электронный ресурс]. URL: https://loginom.ru/
- 7. Введение в искусственный интеллект. НИУ ВШЭ [Электронный pecypc]. URL: https://openedu.ru/course/hse/INTRAI/
- 8. Машинное обучение и анализ данных. Университет ИТМО [Электронный ресурс]. URL: https://openedu.ru/course/ITMOUniversity/MLDATAN/
- 9. Математические и инструментальные методы машинного обучения НИЯУ МИФИ [Электронный ресурс]. URL: https://openedu.ru/course/mephi/mephi_011_machinelearning/
- 10. Машинное обучение. НИЯУ МИФИ [Электронный ресурс]. URL: https://openedu.ru/course/mephi/mephi_mo/
- 11. Нейронные сети НИЯУ МИФИ [Электронный ресурс]. URL: https://openedu.ru/course/mephi/mephi_ns/

- 12. Основы искусственного интеллекта в науке. МГУ имени М.В. Ломоносова [Электронный ресурс]. URL: https://openedu.ru/course/msu/ARTIFICIALINTELLIGENCE/
- 13. Основы нейроинформатики и машинного обучения. Политех [Электронный ресурс]. URL: https://openedu.ru/course/spbstu/NEUROINF/
- 14. Прикладной искусственный интеллект. Университет ИТМО [Электронный ресурс]. URL: https://openedu.ru/course/ITMOUniversity/APPARTINT2035/
- 15. Программирование глубоких нейронных сетей на Python. УрФУ [Электронный ресурс]. URL: https://openedu.ru/course/urfu/PYDNN/
- 16. Loginom руководство пользователя [Электронный ресурс]. URL: https://help.loginom.ru/userguide/
 - 17. Р7-Офис.Профессиональный (Десктопная версия).
 - 18. Аналитическая платформа Loginom.
 - 19. SciLab+Xcos

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- 1. Специализированная лекционная аудитория;
- 2. Дисплейный класс, оснащенный компьютерами IBM PC для пользователя.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Инструментальные средства искусственного интеллекта в техносферной безопасности» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков работы с аналитическими платформами. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно
	фиксировать основные положения, выводы, формулировки,
	обобщения; помечать важные мысли, выделять ключевые слова,
	термины. Проверка терминов, понятий с помощью энциклопедий,
	словарей, справочников с выписыванием толкований в тетрадь.
	Обозначение вопросов, терминов, материала, которые вызывают
	трудности, поиск ответов в рекомендуемой литературе. Если
	самостоятельно не удается разобраться в материале, необходимо
	сформулировать вопрос и задать преподавателю на лекции или на

	практическом занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с
занятие	конспектом лекций, подготовка ответов к контрольным вопросам,
	просмотр рекомендуемой литературы. Прослушивание аудио- и
	видеозаписей по заданной теме, выполнение расчетно-графических
	заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять
	теоретические знания, полученные на лекции при решении
	конкретных задач. Чтобы наиболее рационально и полно
	использовать все возможности лабораторных для подготовки к ним
	необходимо: следует разобрать лекцию по соответствующей теме,
	ознакомится с соответствующим разделом учебника, проработать
	дополнительную литературу и источники, решить задачи и
	выполнить другие письменные задания.
Самостоятельная	Самостоятельная работа студентов способствует глубокому
работа	усвоения учебного материала и развитию навыков самообразования.
	Самостоятельная работа предполагает следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться
аттестации	не позднее, чем за месяц-полтора до промежуточной аттестации.
	Данные перед зачетом три дня эффективнее всего использовать для
	повторения и систематизации материала.