Аннотация дисциплины

Б1.Б.4 «Компьютерные технологии в научных исследованиях»

Общая трудоемкость изучения дисциплины составляет: 4 ЗЕТ (144 ч).

Цели и задачи дисциплины: изучение программных систем численного моделирования и проектирования приборов электроники и наноэлектроники, современных компьютерных технологий постановки физического эксперимента и проведения научных исследований.

Компетенции обучающегося, формируемые в результате освоения дисциплины

ОПК-1	способностью понимать основные проблемы в своей предметной области,
	выбирать методы и средства их решения
ПК-2	способностью разрабатывать эффективные алгоритмы решения сформули-
	рованных задач с использованием современных языков программирования и
	обеспечивать их программную реализацию
ПК-3	готовностью осваивать принципы планирования и методы автоматизации
	эксперимента на основе информационно-измерительных комплексов как
	средства повышения точности и снижения затрат на его проведение, овла-
	девать навыками измерений в реальном времени

Основные дидактические единицы (разделы):

Понятие и виды научного эксперимента. Уровни и шкалы измерений. Первичная обработка эмпирических данных с помощью прикладного программного обеспечения. Вычисление мер центральной тенденции и мер вариации с помощью прикладного программного обеспечения. Анализ взаимосвязи признаков с помощью прикладного программного обеспечения. Проверка истинности гипотезы исследования с помощью прикладного программного обеспечения. Расчет коэффициентов корреляции с помощью прикладного программного обеспечения. Построение модели прогнозирования в научном исследовании с помощью прикладного программного обеспечения. Системы автоматизации научного эксперимента. Программные средства обработки измерительных данных. Программные системы для решения задач вычислительной математики при обработке результатов эксперимента и моделировании свойств объектов в области электроники и наноэлектроники.

В результате изучения дисциплины «Компьютерные технологии в научных исследованиях» студент-магистрант должен: знать:

– принципы построения локальных и глобальных компьютерных сетей, основы Интернет-технологий, типовые процедуры применения проблемно-

ориентированных прикладных программных средств в дисциплинах профессионального цикла и в профессиональной сфере деятельности (ПК-2);

- современные программно-аппаратные средства постановки экспериментов в научных исследованиях (ПК-3);
 - программные средства анализа экспериментальных данных (ОПК-1);
- программные средства моделирования объектов и процессов в электронике и наноэлектронике (ОПК-1);

уметь:

- использовать современные информационные и компьютерные технологии, средства коммуникаций, способствующие повышению эффективности научной и образовательной сфер деятельности (ПК-2);
- моделировать свойства объектов и процессов в электронике и наноэлектронике (ПК-3);
 - автоматизировать научный эксперимент (ПК-3);
- выбирать методы и программные средства обработки экспериментальных данных (ПК-3);

владеть:

- методами математического моделирования приборов и технологических процессов с целью оптимизации их параметров (ПК-3);
- навыками работы с аппаратными средствами автоматизированных измерительных систем и современными программными средствами обработки данных (ПК-2);
- современными программными средствами (CAD) моделирования, оптимального проектирования и конструирования приборов, схем и устройств электроники и наноэлектроники различного функционального назначения (ПК-2);
- навыками и методиками разработки математических моделей процессов и объектов в области физики и технологии электроники и наноэлектроники (ПК-2).

Виды учебной работы: лабораторные работы, практические занятия. **Формы контроля:** зачет, зачет с оценкой.