МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Радионе УТВЕРЖДАЮ радионе хники и электроники радионе и небольсин В.А. «От» февраля 2024 г.

РАБОЧАЯ ПРОГРАММА дисциплины

«Архитектура и программирование микроконтроллеров»

Направление подготовки <u>11.04.03</u> <u>Конструирование и технология</u> <u>электронных средств</u>

Профиль Силовая электроника

Квалификация выпускника магистр Нормативный период обучения 2 года / 2 года 3 мес Форма обучения очная / заочная

Год начала подготовки <u>2024</u>

Автор программы _______/Пирогов А.А./

Заведующий кафедрой конструирования и производства радиоаппаратуры

Руководитель ОПОП / Башкиров А.В./

Воронеж 2024

/Башкиров А.В./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

является изучение теоретических основ микропроцессорных устройств и микроконтроллеров.

1.2. Задачи освоения дисциплины

- получение знаний о принципах действия и архитектуре микропроцессорных устройств и микроконтроллеров, их применении;
- получение знаний об основах автоматизированном проектировании микропроцессорных систем и микроконтроллеров;
 - получение навыков программирования микроконтроллеров.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Архитектура и программирование микроконтроллеров» относится к факультативным дисциплинам.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Архитектура и программирование микроконтроллеров» направлен на формирование следующих компетенций:

ПК-2 - Способен определять цели, осуществлять постановку задач проектирования электронных приборов, схем и устройств различного функционального назначения, подготавливать технические задания на выполнение проектных работ

Компетенция	Результаты обучения, характеризующие сформированность компетенции				
ПК-2	Знать средства автоматизированного				
	проектирования микропроцессорных систем				
	архитектуру и основы применения				
	микроконтроллеров				
	Уметь разрабатывать принципиальные схемы				
	функциональных узлов				
	информационно-вычислительных систем на				
	основе микроконтроллеров для решения задач				
	цифровой обработки сигналов				
	Владеть навыками программирования				
	микроконтроллеров на языке ассемблера				

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Архитектура и программирование микроконтроллеров» составляет 2 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Виды учебной работы		Семестры
		2
Аудиторные занятия (всего)	36	36
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)		
Самостоятельная работа	18	18
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	72	72
зач.ед.	2	2

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	T	очная форма обучения				7
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Архитектура микропроцессорной системы и микроконтроллера	 Архитектура микропроцессора микроконтроллера. Организация памяти и функционирование микроконтроллера. Способы и средства программирования микроконтроллеров 	6	8	10	24
2	Система команд микроконтроллера	 Система команд. Структура программы на ассемблере Инициализация портов ввода/вывода микроконтроллера. Организация программной задержки. Организация управления светодиодной системой индикации с общим катодом и с общим анодом. 	4	10	10	24
3	Основы применения микроконтроллеров	1. Разработка схемы формирователя частоты 2. Частотомеры и периодомеры на основе микроконтроллеров. 3. Порядок инициализации встроенного АЦП микроконтроллера 4. Описание и применение протоколов SPI, I ² C.	4	10	10	24
		Итого	18	18	14	28

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-2	Знать средства автоматизированного проектирования микропроцессорных систем архитектуру и основы применения микроконтроллеров	практических занятиях, ответ не менее чем на половину заданных в	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренн ый в рабочих программах
	Уметь разрабатывати принципиальные схемь функциональных узлог информационно-вычислительных систем на основомикроконтроллеров для решения задач цифровог обработки сигналов	половины стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренн ый в рабочих программах
	Владеть навыками программирования микроконтроллеров на языко ассемблера	половины прикладных	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренн ый в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ПК-2	Знать средства автоматизированного проектирования микропроцессорных систем, архитектуру и основы применения микроконтроллеров		Выполнение теста на 70-100%	Выполнение менее 70%
	* '	стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

обработки сигнал	ПОВ			
Владеть	навыками	Решение	Продемонстрирова н	Задачи не решены
программирован	ия	прикладных задач в	верный ход решения	
микроконтроллер	ров на	конкретной	в большинстве задач	
языке ассемблера	a	предметной области		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Каким регистром определяется направление передачи данных портов ввода/вывода?
 - 2. В чем необходимость установки стека?
 - 3. Каким регистром определяется частота преобразования АЦП?
 - 4. Как включить 3 канал $AU\Pi$?
 - 5. Сколько разрядов имеет АЦП?
 - 6. В каких режимах может работать АЦП?
 - 7. Какое максимальное напряжение может преобразовать $A \coprod \Pi$?
 - 8. Каким регистром определяется направление передачи данных?
 - 9. Назначение регистра PINx?
 - 10. Какова роль подтягивающих резисторов?
- 11. Каким образом подключить и отключить подтягивающие резисторы?
- 12. Каким сигналом (логический 0 или логическая 1) можно включить светодиод?
 - 13. Каким образом перевести линии порта в Z- состояние?
 - 14. Зачем используется таблица перекодировки?
- 15. В чем необходимость введения временной задержки при использовании механических переключателей?

7.2.2 Примерный перечень заданий для решения стандартных задач Задание №1.

Каким регистром определяется направление передачи данных?

Задание №2.

Какова роль подтягивающих резисторов?

Задание №3.

Каким сигналом (логический 0 или логическая 1) можно включить светодиод?

Задание №4.

Каким регистром определяется направление передачи данных портов ввода/вывода?

Задание №5

Сколько разрядов имеет АЦП МК АТ mega 16?

Задание №6.

Назначение регистра PINx?

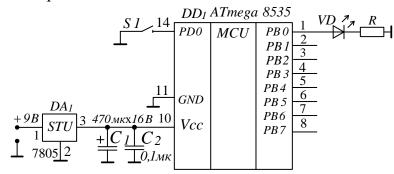
Задание №7.

Каким образом подключить и отключить подтягивающие резисторы?

Задание №8.

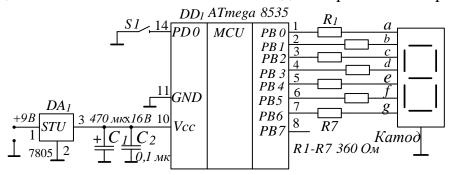
В чем необходимость введения временной задержки при использовании механических переключателей?

Задание №9.

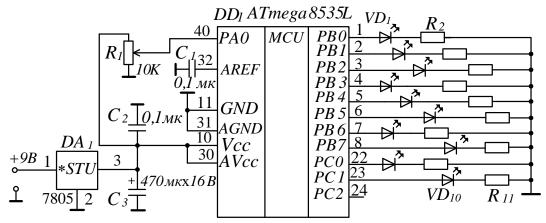

В каких режимах может работать АЦП?

Задание №10.

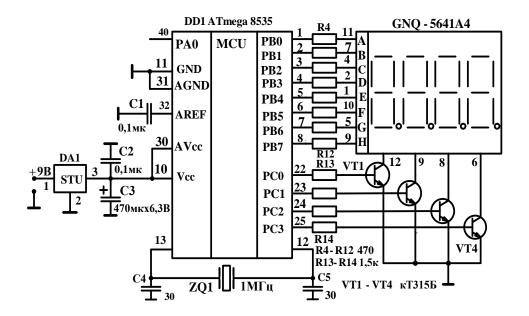
Как включить 3 канал АЦП?


7.2.3 Примерный перечень заданий для решения прикладных задач Задание №1.

Провести инициализацию портов ввода/вывода микроконтроллера согласно приведенной схеме


Задание №2.

Провести инициализацию портов ввода/вывода микроконтроллера для вывода символов на семисегментный индикатор согласно приведенной схеме


Задание №3.

Провести инициализацию встроенного АЦП и портов ввода/вывода микроконтроллера согласно приведенной схеме

Задание №4.

Провести инициализацию таймер/счетчика микроконтроллера для работы системы динамической индикации согласно приведенной схеме

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом

7.2.5 Примерный перечень заданий для решения прикладных задач

- 1. Архитектуры и классификация микропроцессоров (МП). Основные определения. Фактор повышения производительности МП.
 - 2. Структура микропроцессорной системы (МПС).
 - 3. Управление памятью и внешними устройствами в МПС.
 - 4. Структура и функционирование микропроцессора.
- 5. Архитектура микроконтроллера семейства AVR. Параметры микроконтроллеров AVR.
 - 6. Организация и функционирование микроконтроллеров AVR.
 - 7. Архитектура РІС микроконтроллеров. Основные параметры.
- 8. Интегрированная среда разработки Atmel Studio. Основные инструменты программирования. Порядок создания и тестирования проекта.
- 9. Директивы и функции Ассеблера. Структура программы на языке Ассеблера.
 - 10. Система команд микроконтроллера семейства AVR.
- 11. Организация управления семисегментным светодиодным индикатором. Схемы включения с общим анодом (OA) и с общим катодом (OK).
- 12. Арифметические операции в микроконтроллерах. Стандартные арифметические операции.
- 13. Арифметические операции в микроконтроллерах. Умножение многоразрядных чисел.
- 14. Арифметические операции в микроконтроллерах. Деление многоразрядных чисел.

- 15. Арифметические операции в микроконтроллерах. Операции с дробными числами.
- 16. Арифметические операции в микроконтроллерах. Генератор случайных чисел.
- 17. Арифметические операции в микроконтроллерах. Операции с числами в формате BCD.
- 18. Арифметические операции в микроконтроллерах. Операции с отрицательными числами.
- 19. Арифметические операции над вещественными числами. Операции сложения и вычитания.
- 20. Арифметические операции над вещественными числами. Операции умножения и деления.
- 21. Структура восьмиразрядного таймер/счетчика. Регистры управления.
 - 22. Режимы работы восьмиразрядного таймер/счетчика.
- 23. Структура шестнадцатиразрядного таймер/счетчика. Регистры управления.
 - 24. Режимы работы шестнадцатиразрядного таймер/счетчика.
 - 25. Частотомеры и периодомеры на основе микроконтроллеров.
 - 26. Динамическая индикация.
 - 27. Таймеры в режиме PWM.
 - 28. Запись и чтение EEPROM.
 - 29. Запись и чтение SRAM.
 - 30. Запись и чтение Flash.
 - 31. Интегрирующий АЦП микроконтроллера.
 - 32. Порядок инициализации встроенного АЦП микроконтроллера.
 - 33. Описание и применение протокола SPI.
 - 34. Инициализация аппаратного SPI микроконтроллера.
 - 35. Запись и чтение памяти через SPI.
 - 36. Базовый протокол I^2C . Принцип обмена данными по шине TWI (I^2C).
 - 37. Структура модуля TWI (I^2C). Режимы работы модуля TWI (I^2C).
 - 38. Прием и передача данных по протоколу UART/USART.
 - 39. Преобразователи уровня для RS-232. Интерфейс RS-485.
- 40. Структура программируемого связного адаптера (ПСА). Схемы передачи данных. Общие сведения.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов – 20.

- 1. Оценка «Зачтено» ставится в случае, если студент набрал менее 10 баллов.
 - 2. Оценка «Не зачтено» ставится в случае, если студент набрал от 10 до

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Архитектура микропроцессорной	ПК-2	Тест
	системы и микроконтроллера		
2	Система команд	ПК-2	Тест
	микроконтроллера		
3	Основы применения	ПК-2	Тест
	микроконтроллеров		

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Клочков Г.Л. Цифровые устройства и микропроцессоры [Текст]: Учебное пособие. Воронеж: ВИРЭ, 2006. 531 с.
- 2. Ревич Ю.В., Практическое программирование микроконтроллеров Atmel AVR на языке ассемблера. / СПб.: БхВ Петербург, 2011 г.
- 3. Угрюмов Е.П. Цифровая схемотехника. / СПб.: БхВ Петербург. 2010 г.
- 4. Белов А.В. Микроконтроллеры AVR в радиолюбительской практике / СПб.: Наука и техника. 2007 г.

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

http://www.tverhtk.ru/library/predmets/pc_systems/Arhitektura_i_organizacija_EVM.pdf

http://www.tverhtk.ru/library/predmets/pc_systems/Mikroprocessornye_sistemy_2009.pdf

http://www.tverhtk.ru/library/predmets/pc_systems/Cifrovye_ustrojstva_i_m ikroprocessory_2005.pdf

http://www.gaw.ru/html.cgi/txt/doc/micros/avr/asm/start.htm

http://nikolaew.org/avr_old/u3.htm

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебная аудитория укомплектованное специализированной мебелью, оборудованное техническими средствами обучения: персональными компьютерами с лицензионным программным обеспечением с возможностью подключения к сети «Интернет» и доступом в электронную информационно-образовательную среду университета.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Архитектура и программирование микроконтроллеров» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовой проект.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета параметров микроконтроллера для его инициализации, составлению блок-схем алгоритмов. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсового проекта изложена в учебно-методическом пособии. Выполнять этапы курсового проекта должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсового проекта, защитой курсового проекта.

Вид учебных занятий		Деятел	ьность сту	дента	
Лекция	Написание	конспекта	лекций:	кратко,	схематично,
	последовател	ьно фиксирог	вать основн	не положе	ения, выводы,

	T
	формулировки, обобщения; помечать важные мысли, выделять
	ключевые слова, термины. Проверка терминов, понятий с
	помощью энциклопедий, словарей, справочников с
	выписыванием толкований в тетрадь. Обозначение вопросов,
	терминов, материала, которые вызывают трудности, поиск
	ответов в рекомендуемой литературе. Если самостоятельно не
	удается разобраться в материале, необходимо сформулировать
	вопрос и задать преподавателю на лекции или на практическом
	занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с
занятие	конспектом лекций, подготовка ответов к контрольным
	вопросам, просмотр рекомендуемой литературы.
	Прослушивание аудио- и видеозаписей по заданной теме,
	выполнение расчетно-графических заданий, решение задач по
	алгоритму.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому
	усвоения учебного материала и развитию навыков
	самообразования. Самостоятельная работа предполагает
	следующие составляющие:
	- работа с текстами: учебниками, справочниками,
	дополнительной литературой, а также проработка конспектов
	лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций,
	олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует
промежуточной	систематически, в течение всего семестра. Интенсивная
аттестации	подготовка должна начаться не позднее, чем за месяц-полтора
	до промежуточной аттестации. Данные перед экзаменом,
	экзаменом три дня эффективнее всего использовать для
	повторения и систематизации материала.
	•

11 Лист регистрации изменений

			Подпись
No		Дата	заведующего
,	Перечень вносимых изменений	внесения	кафедрой,
п/п		изменений	ответственной за
			реализацию ОПОП
1			
2			
3			