985

РАСЧЕТ БАЛКИ НА ПРОЧНОСТЬ

Методические указания к выполнению контрольных и расчетно-графических работ по курсу "Сопротивление материалов" для студентов всех специальностей очной и заочной форм обучения

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

"ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ"

РАСЧЕТ БАЛКИ НА ПРОЧНОСТЬ

Методические указания к выполнению контрольных и расчетно-графических работ по курсу "Сопротивление материалов" для студентов всех специальностей очной и заочной форм обучения

Составители

А.В. Резунов, А.Н. Синозерский

Расчет балки на прочность : метод. указания к выполнению контрольных и расчетно-графических работ по курсу "Сопротивление материалов" для студентов всех специальностей очной и заочной форм обучения / Воронежский ГАСУ; сост.: А.В. Резунов, А.Н. Синозерский. – Воронеж, 2013. – 21 с.

Даются указания по расчету на прочность простых статически определимых балок. Приводится пример, включающий построение эпюр поперечных сил и изгибающих моментов, подбор сечений балок из хрупкого и пластичного материалов, расчет прочности в заданном сечении стальной двутавровой балки. Изложено решение этой же задачи с помощью ПЭВМ.

Предназначены для студентов всех специальностей очной и заочной форм обучения.

Ил. 8. Библиогр.: 5 назв.

УДК 624 ББК 30.121

Печатается по решению научно-методического совета Воронежского ГАСУ

Рецензент – **А.Н. Аверин**, канд. техн. наук, доцент кафедры строительной механики Воронежского ГАСУ

ВВЕДЕНИЕ

Элементы перекрытий зданий и сооружений, пролетных строений мостов, эстакад, оси машин и механизмов и т.д., представляющие собой установленные на опоры и сопротивляющиеся изгибу стержни, называются балками /1–3/. Рассмотрим деформирование статически определимых балок постоянного сечения. Предположим, что балка имеет вертикальную плоскость симметрии, и все внешние нагрузки лежат в этой плоскости. Введем также следующие допущения /1–3/:

- поперечные сечения балки, плоские до деформации, остаются плоскими и перпендикулярными искривленной оси балки после деформации (гипотеза плоских сечений);
- продольные волокна испытывают деформацию растяжения-сжатия и не оказывают давления друг на друга в поперечном направлении;
- > касательные напряжения по ширине поперечного сечения распределены равномерно.

В этом случае балка испытывает плоский поперечный изгиб. Ось \mathbf{x} прямоугольной декартовой системы координат направим горизонтально вправо по оси балки, ось \mathbf{y} — вертикально вниз, ось \mathbf{z} — по главной центральной (горизонтальной) оси инерции поперечного сечения.

В настоящих методических указаниях рассматривается построение эпюр поперечных сил $\mathbf{Q}_{\mathbf{y}} \equiv \mathbf{Q}$ и изгибающих моментов $\mathbf{M}_{\mathbf{z}} \equiv \mathbf{M}$, подбор сечений балок из стали и древесины, расчет прочности стальной балки в заданном сечении.

1. ЗАДАНИЕ

Студенту выдается бланк, содержащий:

- расчетную схему балки с линейными размерами;
- нормативные нагрузки и коэффициент надежности по нагрузке;
- нормативное сопротивление, коэффициент надежности по материалу и модуль упругости для стали и древесины.

Требуется:

- построить эпюры поперечных сил **Q** и изгибающих моментов **M**;
- выполнить поверочный расчет **Q** и **M** на ПЭВМ (по желанию студента);
- по полученным данным определить максимальный по модулю изгибающий момент \mathbf{M}_{\max} и подобрать сечения стальной двутавровой и деревянной круглого сечения балок;
- выполнить расчет прочности стальной балки в поперечном сечении, указанном в задании на расчетной схеме.

2. РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ РАБОТЫ

2.1. Задание

Выписать все заданные величины. Вычислить расчетные нагрузки. Начертить с указанием масштаба расчетную схему балки с действующими на нее расчетными нагрузками.

2.2. Нахождение опорных реакций

Записать необходимые уравнения равновесия. Из них найти значения опорных реакций. Выполнить проверку.

2.3. Построение эпюр Q и М

Поперечная сила ${\bf Q}$ и изгибающий момент ${\bf M}$ в данном поперечном сечении балки являются соответственно главным вектором и главным моментом относительно центра тяжести сечения внутренних сил, действующих в рассматриваемом сечении. Поперечная сила численно равна сумме проекций на нормаль к оси балки (на ось ${\bf y}$) этих сил, а изгибающий момент — сумме моментов тех же сил относительно центра тяжести сечения (рис. 1,а). Для левой отделенной части балки (рис. 1,б) считаются положительными: поперечная сила, если направлена вниз; изгибающий момент, если стремится вращать рассматриваемую часть против хода часовой стрелки. Для правой отделенной части балки (рис. 1,в) правила знаков для ${\bf Q}$ и ${\bf M}$ — противоположные.

Можно пользоваться также следующим правилом: поперечная сила считается положительной, если она стремится повернуть прилегающий к рассматриваемому сечению участок балки по часовой стрелке (рис 1,б,в); изгибающий момент считается положительным, если он вызывает растяжение нижних волокон балки (рис. 1,г).

Построение эпюр выполняется по участкам загружения, в пределах которых не появляются новые сосредоточенные нагрузки и не заканчиваются и претерпевают изменение действующие распределенные вследствие чего аналитические выражения для функций $\mathbf{Q}(\mathbf{x})$ и $\mathbf{M}(\mathbf{x})$ не меняются. Эпюры вычерчиваются с указанием масштаба под расчетной схемой балки. Положительные значения поперечной силы откладываются от базовой линии вверх, изгибающего момента – вниз. На эпюре **Q** проставляется знак плюс на участках, расположенных выше базовой линии, и знак минус на участках ниже базовой линии; на эпюре М – наоборот. При линейных функциях $\mathbf{M}(\mathbf{x})$ и $\mathbf{Q}(\mathbf{x})$ вычисляются их значения на концах участков загружения, для нелинейных выражений $\mathbf{M}(\mathbf{x})$ и $\mathbf{Q}(\mathbf{x})$ – на концах и в середине участков загружения. Кроме того, находятся сечения, в которых поперечная сила обращается в нуль, и приводятся значения ${\bf M}$ в этих сечениях.

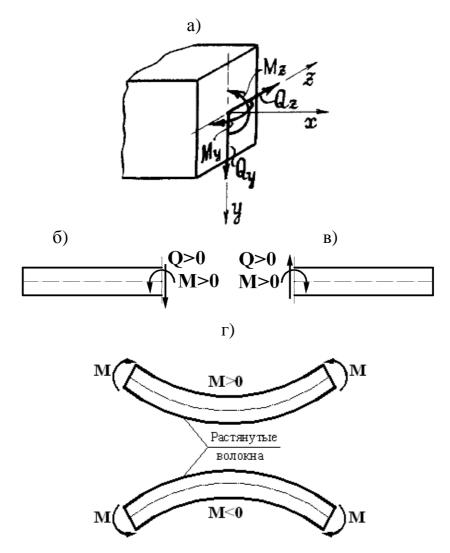


Рис. 1. Правило знаков для поперечной силы и изгибающего момента

2.4. Поверочный расчет Q и M на ПЭВМ

По желанию студент может в вычислительном центре ВГАСУ произвести поверочный расчет поперечных сил и изгибающих моментов на ПЭВМ по программе "БАЛКА" и представить протокол расчета.

2.5. Подбор поперечного сечения балки

2.5.1. Стальная двутавровая балка

Номер двутавра находят, исходя из условия $2S_z \ge W_{\tau p} = M_{max}/R$. Здесь M_{max} – максимальное по абсолютной величине значение изгибающего момента, $W_{\tau p}$ – требуемый момент сопротивления изгибу, R – расчетное сопротивление, S_z – статический момент половины сечения. Из таблиц сортамента прокатной стали по ГОСТ 8239-89 /1–4/ выбирают двутавр с наименьшим значением S_z , удовлетворяющим приведенному неравенству, и выписывают размеры h,b,s,t, момент инерции J_z , статический момент S_z .

2.5.2. Деревянная балка круглого сечения

Количество n расположенных рядом балок находят из условия n $\frac{J_z}{[r]} \ge W_{_{Tp}}$

. Отсюда получим $n \ge \frac{W_{\text{тр}} \cdot [r]}{J_z} = \frac{4\,M_{\text{max}}}{\pi\,R\,[r]^3}$, где $[r] = 0.15\,$ м — наибольший допускаемый радиус сечения одной балки. Беря в качестве п наименьшее целое число, удовлетворяющее данному неравенству, находим требуемый радиус балки по формуле $r_{\text{тр}} = \sqrt[3]{\frac{4\,M_{\text{max}}}{\pi\,R\,n}}$. Окончательно принимаем за r ближайшее число, большее $r_{\text{тр}}$ и кратное $0.005\,$ м.

2.6. Расчет прочности в заданном сечении двутавровой балки

Расчет прочности /5/ выполняют в сечении, указанном в задании на расчетной схеме балки. В рассматриваемом сечении находят величины **Q** и **M**. В масштабе 1:2, а при высоте балки h≥36 см в масштабе 1:3 или 1:4, вычерчивают идеализированный двутавр, представляющий собой совокупность прямоугольных элементов – полок шириной b и толщиной t и стенки высотой (h−2t) и толщиной s.

2.6.1. Вычисление напряжений

В точках 1,3,4,5,7, взятых через одну четверть высоты балки, и в местах сопряжения стенки с полками (точки 2,6) вычисляют нормальные и касательные напряжения по формулам

$$\sigma_{x} \equiv \sigma = \frac{M \cdot y}{J_{z}},$$
 $\tau_{xy} \equiv \tau = \frac{Q \cdot S_{z}^{\omega}}{J_{z} \cdot b},$
(1)

где у — ордината рассматриваемой точки; b = b(y) — ширина сечения; S_z^{ω} — статический момент отсеченной части сечения (для точек 1,7: $S_z^{\omega} = 0$, для точек $2 \div 6$: $S_z^{\omega} = S_z - 0.5 \cdot s \cdot y^2$ и b = s).

Эпюры σ и τ строят в масштабе справа от идеализированного двутавра с указанием значений в рассмотренных выше точках. Эпюру τ строят только в пределах стенки. На эпюрах проставляют знаки нормальных напряжений и указывают направление касательных напряжений (положительных — вниз, отрицательных — вверх).

2.6.2. Нахождение главных напряжений и положения главных сечений

В характерных точках 1÷7 находят значения главных напряжений по формулам для плоского напряженного состояния

$$\sigma_{\max}_{\min} = 0.5 \cdot \sigma \pm \sqrt{0.25 \cdot \sigma^2 + \tau^2}, \quad \sigma_1 = \sigma_{\max}, \quad \sigma_2 = 0, \quad \sigma_3 = \sigma_{\min}.$$
 (2)

Положение сечения, в котором действует главное напряжение σ_{max} , задается углом между положительным направлением оси ${\bf x}$ и внешней нормалью к сечению

$$\alpha_{\text{max}} = \operatorname{arctg}\left(\frac{\sigma_{\text{max}} - \sigma}{\tau}\right) = \operatorname{arctg}\left(\frac{\tau}{\sigma - \sigma_{\text{min}}}\right).$$
 (3)

По полученным данным справа от эпюр на уровне точек $1\div7$ изображают квадратные элементы со сторонами, параллельными координатным осям, с действующими по их граням напряжениями σ и τ , а также элементы со сторонами, параллельными главным сечениям, с действующими на них главными напряжениями σ_{max} и σ_{min} . При этом положительным значениям σ_{max} соответствует угол, отложенный от положительного направления оси σ по ходу часовой стрелки.

2.6.3. Вычисление приведенных напряжений и коэффициента запаса прочности

Для точек 1÷7 по третьей гипотезе прочности вычисляют приведенное напряжение

$$\sigma_{i} = \sigma_{1} - \sigma_{3} = \sigma_{\max} - \sigma_{\min}, \tag{4}$$

проверяют выполнение условия прочности

$$\sigma_i \le R$$
 (5)

и находят коэффициент запаса прочности

$$k_{nq} = R_n / \sigma_i \quad , \tag{6}$$

где $R_{\scriptscriptstyle n}$ - нормативное сопротивление.

По полученным данным строят эпюры σ_i и $k_{\mbox{\tiny пч}}$.

3. ИНСТРУКЦИЯ ПО РАБОТЕ С ПРОГРАММОЙ "БАЛКА"

Программа "БАЛКА", разработанная в виде Delphi приложения, предназначена для расчета статически определимой балки постоянной жесткости на действие сосредоточенных и линейно распределенных нагрузок.

Ввод исходных данных выполняется путем редактирования в окне приложения файла шаблона в соответствии с содержащимися в нем комментариями, либо из заранее подготовленного файла. Начало отсчета выбрано на левом конце балки, ось х направлена вправо. Сосредоточенные силы и распределенные нагрузки считаются положительными, если направлены вниз. Момент пары сил считается положительным, если направлен по часовой стрелке. Вводить следует значения нормативных нагрузок.

Исходные данные расположены в следующем порядке:

- > фамилия студента, инициалы, номер группы или специальность;
- ➤ тип балки: 0 шарнирно опертая, 1 консольная;
- длина балки;
- > для шарнирно опертой балки координаты опор;

- для консольной балки указание на то, левый или правый конец защемлен;
- > коэффициент надежности по нагрузке;
- число сосредоточенных сил и для каждой силы величина и координата точки приложения;
- число пар сил и для каждой пары сил величина и координата сечения, в котором она действует;
- нагрузки в начале и в конце участка, на котором она действует, и координаты концов этого участка;
- число сечений для вывода результатов.

Вводить исходные данные можно в любой последовательности. При этом доступны стандартные для WINDOWS сочетания клавиш для редактирования текста. Если какой-либо тип нагрузок отсутствует, например, сосредоточенные силы, то следует положить число этих нагрузок равным единице, а величину и координату точки приложения равными нулю (необходимо для правильной работы программы).

Расчет на прочность выполняется на действие расчетных нагрузок. Выходная информация выдается на экран монитора и включает в себя:

- исходные данные;
- > значения опорных реакций;
- **»** величину максимального изгибающего момента и координату сечения, в котором он действует;
- таблицу значений поперечной силы, изгибающего момента на множестве равноотстоящих сечений;
- ▶ номер двутавра, подобранного в соответствии с п. 2.5.1, и значения указанных в п. 2.5.1 геометрических параметров сечения (при этом по запросу программы следует задать нормативное сопротивление и коэффициент надежности по материалу стали);
- ▶ в заданном поперечном сечении балки в характерных точках 1÷7 значения величин, указанных в п.п. 2.6.1–2.6.3;
- эпюры поперечных сил и изгибающих моментов с возможностью получить значения этих силовых факторов в любом поперечном сечении.

Кроме того, в число расчетных сечений включаются те, в которых действуют сосредоточенные нагрузки, а также сечения, в которых поперечная сила равна нулю. При этом искомые величины находятся непосредственно слева и справа от этих сечений.

Для расчета балки на действие нелинейно распределенной нагрузки необходимо разбить нагрузку на участки, на каждом из которых заменить нелинейную эпюру полигональной.

По желанию пользователя выходные данные можно сохранить в файлах и напечатать.

С содержанием данного раздела можно ознакомиться, выбрав соответствующий пункт главного меню программы.

По программе "БАЛКА" можно также выполнить расчет простой статически определимой балки на жесткость.

4. ПРИМЕР

4.1. Задание

 $a=3.9\text{m},\quad b=0.9\text{m},\quad c=1.2\text{m},\quad q_{1\text{n}}=15\,\text{кH/m}\;,\quad q_{2\text{n}}=12.5\,\text{кH/m}\;,\quad F_{\text{n}}=10$ кH,

 $m_n = 5\kappa H \cdot M$, $\gamma_f = 1.2$;

сталь: $R_n = 250 \,\mathrm{MHa}$, $E = 200 \,\mathrm{FHa}$, $\gamma = 1.05$;

древесина: $R_n = 24 \, \text{M}\Pi a$, $E = 10 \, \Gamma \Pi a$, $\gamma = 2.0$.

Расчетные нагрузки:

 $q_1 = 15 \cdot 1.2 = 18 \, \kappa \text{H/m} \; , \; q_2 = 12.5 \cdot 1.2 = 15 \, \kappa \text{H/m} \; , \; \; F = 10 \cdot 1.2 = 12 \, \kappa \text{H} \; , \qquad m = 5 \cdot 1.2 = 6 \, \kappa \text{H·m} \; .$

Расчетная схема балки приведена на рис. 2,а.

4.2. Вычисление опорных реакций

Из уравнений равновесия получим

$$\sum y = 0$$
, $-R_A - R_B - 12 + 18 \cdot 3.9 + 15 \cdot 1.2 = -43.68 - 32.52 - 12 + 88.2 = -88.2 + 88.2 = 0$.

4.3. Построение эпюр Q и М

Построение эпюр Q и M будем выполнять по участкам загружения, которых в рассматриваемом примере три. В пределах каждого из участков загружения проводится поперечное сечение и рассматривается та часть балки, на которую действует меньше внешних нагрузок. Наряду с внешними нагрузками и реакциями связей прикладываем к рассматриваемой части балки, действующие в проведенном сечении внутренние усилия – поперечную силу Q и изгибающий момент M, считая их положительными. Для полученной системы сил составляем два уравнения равновесия – сумму проекций всех сил на ось у и сумму моментов всех сил относительно центра сечения. Из этих уравнений находим аналитические выражения для Q и M.

Можно сразу получить выражения для Q и M, если учесть, что поперечная сила равна алгебраической сумме проекций на ось у действующих на рассматриваемую часть балки внешних сил и реакций связей, а изгибающий момент – сумме моментов этих сил относительно центра сечения.

Для правильного определения знака того или иного слагаемого в выражениях для поперечной силы ${\bf Q}$ и изгибающего момента ${\bf M}$ следует мысленно закрепить рассматриваемую часть балки (левую или правую) в проведенном сечении /2,3/.

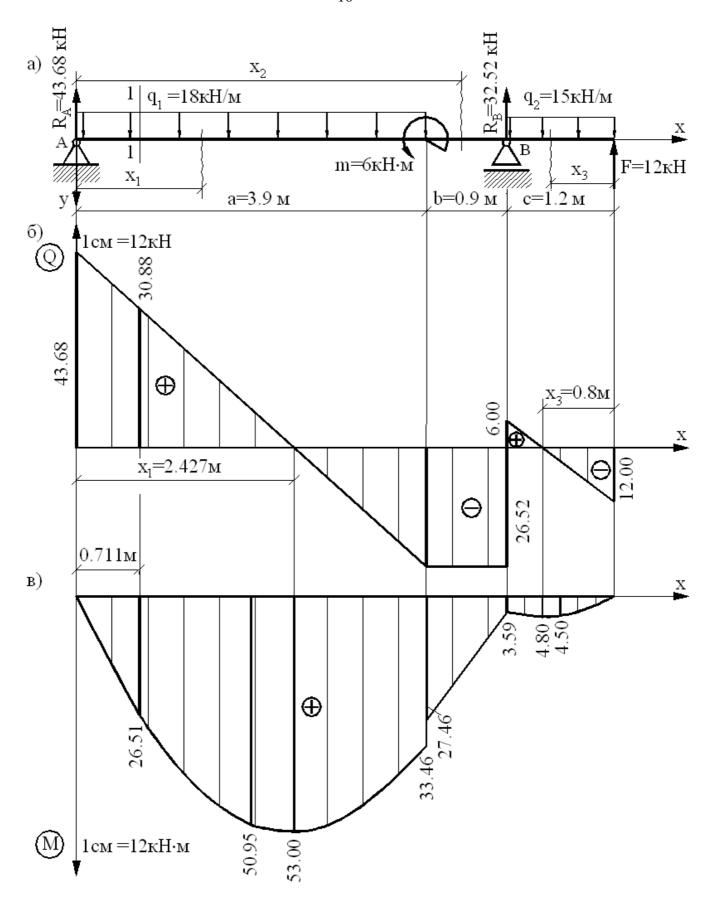
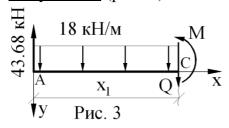



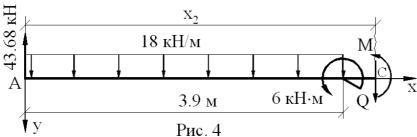
Рис. 2. М1:60

Тогда в выражение для \mathbf{Q} силовые факторы, стремящиеся повернуть рассматриваемую часть балки по ходу часовой стрелки, входят со знаком плюс, а силовые факторы, стремящиеся повернуть рассматриваемую часть балки против хода часовой стрелки, входят со знаком минус. В выражении для изгибающего момента \mathbf{M} слагаемые, вызывающие растяжение нижних волокон балки, берутся со знаком плюс, а слагаемые, вызывающие растяжение верхних волокон, – со знаком минус.

1-й участок (рис. 3): $0 \le x_1 \le 3.9 \,\mathrm{M}$.

$$\Sigma Y = 0$$
, $-43.68 + 18 \cdot x_1 + Q = 0$;

$$Q(x_1) = 43.68 - 18 \cdot x_1$$
; $Q(0) = 43.68 \hat{e} \hat{I}$; $Q(3.9) = 43.68 - 18 \times 3.9 = -26.52 \hat{e} \hat{I}$.


На концах участка функция $Q(x_1)$ меняет знак. Найдем положение сечения, в котором $Q(x_1) = 0$. Имеем: $43.68 - 18 \cdot x_1 = 0$ и $x_1 = 2.427$ м.

$$\Sigma M_C = 0$$
, $43.68 \cdot x_1 - 18 \cdot x_1 \cdot x_1 / 2 - M = 0$;

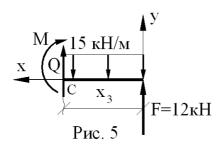
$$M(x_1) = 43.68 \cdot x_1 - 18 \cdot x_1 \cdot x_1 / 2 = 43.68 \cdot x_1 - 9 \cdot x_1^2; \quad M(0) = 0;$$

$$M(1.95) = 50.95 \hat{e} \hat{I} \cdot \hat{i}$$
; $M(2.427) = 53.00 \text{ kH} \cdot \text{m}$; $M(3.9) = 33.46 \text{ kH} \cdot \text{m}$.

<u>2-й участок</u> (рис. 4): $3.9 \,\mathrm{m} \le \mathrm{x}_2 \le 4.8 \,\mathrm{m}$.

$$\Sigma Y = 0$$
, $-43.68 + 18 \cdot 3.9 + Q = 0$;

$$Q(x_2) = 43.68 - 18 \cdot 3.9 = -26.52 \,\mathrm{kH};$$


$$\Sigma M_C = 0$$
, $43.68 \cdot x_2 - 18 \cdot 3.9 \cdot (x_2 - 1.95) - 6 - M = 0$;

$$M(x_2) = 43.68 \cdot x_2 - 18 \cdot 3.9 \cdot (x_2 - 1.95) - 6;$$

$$M(3.9) = 43.68 \cdot 3.9 - 70.2 \cdot (3.9 - 1.95) - 6 = 27.46 \,\mathrm{kH}$$
;

$$M(4.8) = 43.68 \cdot 4.8 - 70.2 \cdot (4.8 - 1.95) - 6 = 3.59 \,\mathrm{kH} \;.$$

<u>3-й участок</u> (рис. 5): $0 \le x_3 \le 1.2$ м.

$$\Sigma Y = 0$$
, $-12 + 15 \cdot x_3 - Q = 0$;

$$Q(x_3) = -12 + 15 \cdot x_3; \quad Q(0) = -12 \kappa H \; ; \quad Q(1.2) = -12 + 15 \cdot 1.2 = 6 \kappa H \; .$$

Найдем сечение, в котором $Q(x_3) = 0$.

$$Q(x_3) = -12 + 15 \cdot x_3 = 0,$$
 $x_3 = 0.8 \text{ M}.$

Имеем далее

$$\Sigma M_C = 0$$
, $-12 \cdot x_3 + 15 \cdot x_3 \cdot x_3 / 2 + M = 0$;

$$M(x_3) = 12 \cdot x_3 - 15 \cdot x_3 \cdot x_3 / 2;$$

$$M(0) = 0$$
; $M(0.6) = 12 \cdot 0.6 - 7.5 \cdot 0.6^2 = 4.5 \text{ kH} \cdot \text{m}$;

$$M(0.8) = 12 \cdot 0.8 - 7.5 \cdot 0.8^2 = 4.8 \, \text{kH} \cdot \text{m}; \quad M(1.2) = 12 \cdot 1.2 - 7.5 \cdot 1.2^2 = 3.6 \, \text{kH} \cdot \text{m}.$$

Эпюры \mathbf{Q} и \mathbf{M} изображены на рис. 2,6 и рис. 2,в.

4.4. Подбор поперечного сечения балки

По эпюре **M** находим наибольший по модулю изгибающий момент $M_{max} = 53.00\, \mathrm{kH} \cdot \mathrm{m}$.

4.4.1. Стальная двутавровая балка

Расчетное сопротивление стали $R=R_{\rm n} / \gamma = 250/1.05 = 238.1\,{\rm M}\Pi A.$ Требуемый момент сопротивления балки изгибу

$$W_{\delta\delta} = M_{max} \ / \ R = 53 \cdot 10^{-3} \ / \ 238.1 = 2.226 \cdot 10^{-4} \hat{\imath}^{-3} = 222.6 \hat{m} \hat{\imath}^{-3}.$$

Из таблиц сортамента прокатной стали по ГОСТ 8239-89 /1-4/ в соответствии с условием $2S \ge W_{_{TP}}$ выбираем двутавр №22, у которого $S \equiv S_z = 131$ ñì $^3 > W_{_{\delta\delta}} / 2 = 111.3$ ñì 3 , и выписываем следующие данные: h = 220 мм, b = 110 мм, s = 5.4 мм, t = 8.7 мм — соответственно высота, ширина полок, толщина стенки и полок; $J \equiv J_z = 2550$ см 4 .

4.4.2. Деревянная балка

Вычисляем:

расчетное сопротивление — $R = R_n / \gamma = 24/2 = 12 \, \text{М}\Pi a$; требуемый момент сопротивления изгибу — $W_{\text{тр}} = M_{\text{max}} / R = 53 \cdot 10^{-3} / 12 = 4.417 \cdot 10^{-3} \, \text{м}^3$;

количество балок круглого сечения —
$$n \ge \frac{4 \cdot 4.417 \cdot 10^{-3}}{\pi \cdot [0.15]^3} = 1.67$$
 и, полагая $n = 2$,

требуемый радиус сечения –
$$r_{\text{тp}} = \sqrt[3]{\frac{4 \cdot 4.417 \cdot 10^{-3}}{2 \cdot \pi}} = 0.141 \,\text{м}$$
.

Принимаем $r = 0.145 \, \text{m} > r_{_{TP}}$ и находим момент инерции балок, момент сопротивления и наибольшее напряжение

$$\begin{split} J &= \frac{n\pi r^4}{4} = \frac{2 \cdot \pi \cdot 0.145^4}{4} = 6.94 \cdot 10^{-4} \, \text{m}^4 \, , \\ W &= J/r = 6.94 \cdot 10^{-4} \, / 0.145 = 4.79 \cdot 10^{-3} \, \text{m}^3 > W_{_{TP}} = 4.417 \cdot 10^{-3} \, \text{m}^3 \, , \\ \sigma_{max} &= M_{_{max}} \, / \, W = 53 \cdot 10^{-3} \, / \, 4.79 \cdot 10^{-3} = 10.06 M \Pi a < R = 12 M \Pi a \, . \end{split}$$

4.5. Расчет прочности двутавровой балки

Пусть в задании на расчетной схеме балки на расстоянии 0.711 м от левой опоры задано сечение 1-1 (см. рис. 2,а), расположенное на первом участке загружения с $Q(x_1) = 43.68 - 18 \cdot x_1$ и $M = M(x_1) = 43.68 \cdot x_1 - 9 \cdot x_1^2$ (см. п. 4.3). Расчетные поперечная сила $Q = Q(0.711) = 43.68 - 9 \cdot 0.711 = 30.88$ кН и изгибающий момент $M = M(0.711) = 43.68 \cdot 0.711 - 9 \cdot 0.711^2 = 26.51$ кН·м показаны на рис. 2,6 и рис. 2,8. Идеализированное поперечное сечение двутавра изображено на рис. 6,а.

4.5.1. Вычисление напряжений

По формулам (1) определяем нормальные σ и касательные τ напряжения в точках 1÷7 поперечного сечения.

$$\begin{split} &\frac{\text{Точка 1}}{\sigma} = \frac{9.51 \cdot 10^{-3} \cdot 110 \cdot 10^{-3}}{2550 \cdot 10^{-8}} = 114.36 \grave{1} \;\; \grave{1} \;\; \grave{a}, \quad \tau = 0 \;\; \text{М}\Pi a. \\ &\frac{\text{Точка 2}}{2550 \cdot 10^{-8}} = 105.31 \grave{1} \;\; \grave{1} \;\; \grave{a}, \quad \tau = 0 \;\; \text{M}\Pi a. \\ &\sigma = \frac{26.51 \cdot 10^{-3} \cdot 101.3 \cdot 10^{-3}}{2550 \cdot 10^{-8}} = 105.31 \grave{1} \;\; \grave{1} \;\; \grave{a}, \\ &\tau = \frac{30.88 \cdot 10^{-3}}{2550 \cdot 10^{-8} \cdot 5.4 \cdot 10^{-3}} \Big(131 - 0.5 \cdot 5.4 \cdot 10^{-1} \cdot 101.3^2 \cdot 10^{-2}\Big) \cdot 10^{-6} = \\ &= 29.377 - 6.055 \cdot 10^{-4} \cdot 101.3^2 = 23.16 \grave{1} \;\; \grave{1} \;\; \grave{a}. \\ &\frac{\text{Точка 3}}{2550 \cdot 10^{-8}} = 57.18 \grave{1} \;\; \grave{1} \;\; \grave{a}, \quad \tau = 29.377 - 6.055 \cdot 10^{-4} \cdot 55^2 = 27.55 \grave{1} \;\; \grave{1} \;\; \grave{a}. \\ &\frac{\text{Точка 4}}{2550 \cdot 10^{-8}} = 57.18 \grave{1} \;\; \grave{1} \;\; \grave{a}, \quad \tau = 29.377 - 6.055 \cdot 10^{-4} \cdot 55^2 = 27.55 \grave{1} \;\; \grave{1} \;\; \grave{a}. \\ &\frac{\text{Точка 4}}{2550 \cdot 10^{-8}} = 9. \quad \tau = 29.377 - 6.055 \cdot 10^{-4} \cdot 0 = 29.38 \grave{1} \;\; \grave{1} \;\; \grave{a}. \end{split}$$

Точка 5
$$y_5 = -h/4 = -55 \,\text{мм}$$
,

$$\sigma = \frac{26.51 \cdot 10^{-3} \cdot (-55 \cdot 10^{-3})}{2550 \cdot 10^{-8}} = -57.18 \dot{I} \dot{I} \dot{a},$$

$$\tau = 29.377 - 6.055 \cdot 10^{-4} \cdot (-55)^2 = 27.55 \grave{1} \; \ddot{1} \; \grave{a}.$$

$$y_6 = -h/2 + t = -110 + 8.7 = -101.3 \,\text{мм}$$
,

$$\sigma = \frac{26.51 \cdot 10^{-3} \cdot (-101.3 \cdot 10^{-3})}{2550 \cdot 10^{-8}} = -105.31 \ \ddot{I} \ \dot{a},$$

$$\tau = 29.377 - 6.055 \cdot 10^{-4} \cdot (-101.3)^2 = 23.16 \text{ Ì} \ \text{\"a}.$$

Точка 7
$$y_7 = -h/2 = -110 \text{ мм},$$

По этим данным на рис. 6,6 и рис. 6,в построены эпюры напряжений σ и τ.

4.5.2. Главные напряжения и сечения в характерных точках

По данным п. 4.5.1 на рис. 6,г изображены напряжения в точках 1÷7 поперечного сечения двутавровой балки.

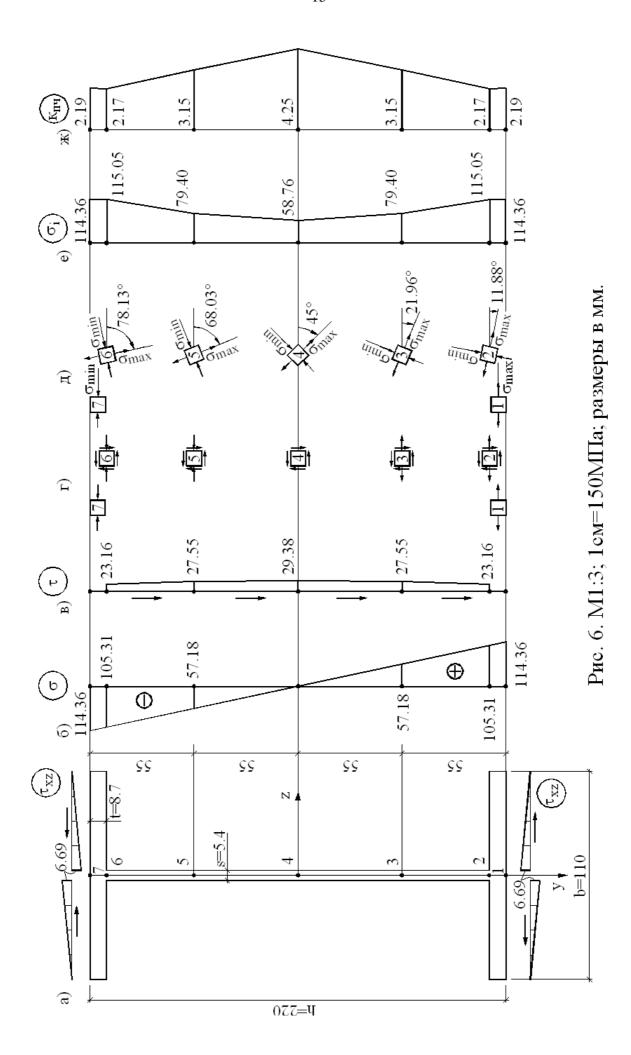
По формулам (2), (3) найдем значения главных напряжений σ_{max} , σ_{min} и угол α_{max} , определяющий положение главного сечения, в котором действует σ_{max} .

Точка 1

Так как $\tau = 0$, то σ является главным напряжением, и будем иметь

$$\sigma_{\text{max}} = 114.36\,\grave{l}\;\; \ddot{l}\; \grave{a}\;, \quad \sigma_{\text{min}} = 0\;, \quad \alpha_{\text{max}} = 0^{\circ}.$$

Точка 2


$$\sigma_{\text{max}} = \frac{105.31}{2} + \sqrt{\left(\frac{105.31}{2}\right)^2 + 23.16^2} = 52.655 + 57.523 \approx 110.18 \, \ddot{\text{I}} \, \, \dot{\text{a}} \, ,$$

$$\sigma_{\min} = 52.655 - 57.523 \approx -4.87 \, \dot{I} \, \dot{a}, \quad \alpha_{\max} = \arctan\left(\frac{110.18 - 105.31}{23.16}\right) = 11.88^{\circ}.$$

Точка 3

$$\sigma_{\text{max}} = \frac{57.18}{2} + \sqrt{\left(\frac{57.18}{2}\right)^2 + 27.55^2} = 28.590 + 39.704 \approx 68.29 \, \check{\text{I}} \, \; \check{\text{a}} \, ,$$

$$\sigma_{\min} = 28.590 - 39.704 \approx -11.11\dot{1} \ \ddot{1} \ \dot{a}, \ \alpha_{\max} = \arctan\left(\frac{68.29 - 57.18}{27.55}\right) = 21.96^{\circ}.$$

Точка 4

$$\sigma_{\text{max}} = \sqrt{(-29.38)^2} = 29.38 \grave{1} \;\; \grave{i} \;\; \grave{a} \;, \;\; \sigma_{\text{min}} = -29.38 \grave{1} \;\; \grave{i} \;\; \grave{a} \;, \;\; \alpha_{\text{max}} = \text{arctg} \bigg(\frac{29.38 - 0}{29.38} \bigg) = 45^\circ.$$

Точка 5

$$\sigma_{\text{max}} = -\frac{57.18}{2} + \sqrt{\left(\frac{57.18}{2}\right)^2 + 27.55^2} = -28.590 + 39.704 \approx 11.11 \grave{\text{I}} \;\; \grave{\text{a}} \; ,$$

$$\sigma_{\text{min}} = -28.590 - 39.704 \approx -68.29 \,\grave{I} \;\; \grave{I} \; \grave{a}, \;\; \alpha_{\text{max}} = arctg \bigg(\frac{11.11 + 57.18}{27.55} \bigg) = 68.03^{\circ}.$$

Точка 6

$$\sigma_{\text{max}} = -\frac{105.31}{2} + \sqrt{\left(\frac{105.31}{2}\right)^2 + 23.16^2} = -52.655 + 57.523 \approx 4.87 \, \ddot{\text{I}} \, \, \ddot{\text{a}} \, ,$$

$$\sigma_{\min} = -52.655 - 57.523 \approx -110.18 \,\grave{\text{I}} \;\; \grave{\text{a}} \;, \;\; \alpha_{\max} = \arctan\left(\frac{4.87 + 105.31}{23.16}\right) = 78.13^{\circ}.$$

Точка 7

$$\sigma_{\text{max}} = 0$$
, $\sigma_{\text{min}} = -114.36$ $\ddot{\text{I}}$ $\ddot{\text{a}}$, $\alpha_{\text{max}} = 90^{\circ}$.

Главные сечения и действующие на них главные напряжения изображены на рис. 6,д.

4.5.3. Вычисление приведенных напряжений и коэффициента запаса прочности

С использованием выражений (4), (6) получим.

<u>Точки 1, 7</u>

$$\sigma_i = 114.36 - 0 = 114.36\dot{I} \ \ddot{I} \ \dot{a} < R = 238.1\dot{I} \ \ddot{I} \ \dot{a}, \ k_{T+} = 250/114.36 = 2.19.$$

Точки 2, 6

$$\sigma_{_{i}} = 110.18 - (-4.87) = 115.05\,\grave{l}\;\; \ddot{l}\;\; \grave{a} < R, \quad k_{_{\ddot{l}\,+}} = 250/115.05 = 2.17\,.$$

<u>Точки 3, 5</u>

$$\sigma_{_{i}} = 68.29 - (-11.11) = 79.40 \grave{1} \;\; \grave{i} \;\; \grave{a} < R, \quad k_{_{\ddot{i}}\,\div} = 250 \, / \, 79.40 = 3.15.$$

Точка 4

$$\sigma_i = 29.38 - (-29.38) = 58.76 \,\text{M}\Pi a < R, \quad k_{\Pi H} = 250/58.76 = 4.25.$$

Видим, что условие прочности (5) выполняется во всех точках. Наиболее напряженными оказались точки 2 и 6, в которых $\sigma_i = 115.05\,\grave{l}\,\,\ddot{l}\,\,\grave{a}\,,\,\,k_{_{\ddot{i}\,\div}} = 2.17\,.$

По полученным данным на рис. 6,е и рис. 6,ж изображены эпюры величин σ_i и $k_{\pi y}$.

<u>Замечание.</u> В полках в пределах $s/2 \le z \le b/2$ и $-b/2 \le z \le -s/2$ от поперечной силы $\mathbf{Q}_{\!\!\!\!\! y}$ возникают касательные напряжения $\mathbf{\tau}_{\!\!\! xz}$, изменяющиеся по линейному закону от нуля при $z=\pm b/2$ до $\pm \mathbf{Q}_{\!\!\!\! y} \cdot (b-s) \cdot (h-t)/4/\mathbf{J}_{\!\!\! z}$ при $z=\pm s/2$. Для рассматриваемого примера наибольшие значения $\mathbf{\tau}_{\!\!\! xz}$ будут равны

$$\pm 30.88 \cdot 10^{-3} \cdot (110 - 5.4) \cdot (220 - 8.7) \cdot 10^{-6} / (4 \cdot 2550 \cdot 10^{-8}) = \pm 6.69 \,\mathrm{MHz},$$

что значительно меньше действующих в полках нормальных напряжений (см. п. 4.5.1). Поэтому существенного влияния на прочность балки напряжения $\boldsymbol{\tau}_{xz}$ не оказывают. Направления напряжений $\boldsymbol{\tau}_{xz}$ определяют по правилу слияния и разделения потоков с напряжениями $\boldsymbol{\tau}_{xy}$ в стенке. Положительные касательные напряжения $\boldsymbol{\tau}_{xz}$ направлены в положительном направлении оси z. Эпюры $\boldsymbol{\tau}_{xz}$ для случая $Q_y = 30.88$ МПа > 0 построены на рис. 6,а.

4.6. Поверочный расчет Q и М на ПЭВМ

На рис. 7 приведена расчетная схема балки из рассмотренного примера с действующими на нее нормативными нагрузками.

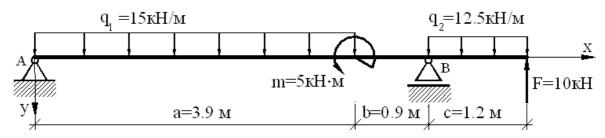


Рис. 7. Расчетная схема балки

Содержимое соответствующего текстового файла с исходными данными для программы "BALKA" и результаты расчетов по ней.

Петров А.И., 125 гр. // тип балки (0 - шарнирно опертая, 1 - консольная) 6 // длина балки (м) 0 // координата левой опоры (м) (для шарнирно опертой балки) // координата правой опоры (м) (для шарнирно опертой балки) 4.8 // 0 - защемлен левый;1 - защемлен правый конец консоли 0 1.2 // коэффициент надежности по нагрузке // число сосредоточенных сил 1 -10 6 // величина 1-ой силы (кН) и ее координата (м) // число пар сил 1 // величина 1-ой пары (кНм) и ее координата (м) -5 3.9 2 // число распределенных нагрузок 15 15 0 3.9 // величина 1-ой нагрузки (кН/м) и ее координаты (м) 12.5 12.5 4.8 6 // величина 2-ой нагрузки (кН/м) и ее координаты (м) // число сечений для вывода результатов 10

Расчет выполнил: Петров А.И., 125 гр.

Исходные данные.

Тип балки: шарнирно опертая.

Длина балки: 6.00 м.

Координата левой опоры: 0.00 м. Координата правой опоры: 4.80 м.

Коэффициент надежности по нагрузке: 1.20

Расчетные нагрузки.

На балку действуют 1 сосредоточенная сила.

Величина 1-ой силы: -12.000 кН, ее координата: 6.000 м.

На балку действуют 1 пара сил.

Величина 1-ой пары сил: -6.000 кНм, ее координата: 3.900 м.

На балку действуют 2 распределенные нагрузки.

Величина 1-ой нагрузки:

q1 = 18.000 kH/m, q2 = 18.000 kH/m,

ее координаты: x1 = 0.000 м, x2 = 3.900 м.

Величина 2-ой нагрузки:

q1 = 15.000 kH/m, q2 = 15.000 kH/m,

ее координаты: x1 = 4.800 м, x2 = 6.000 м.

Результаты расчетов.

Значения опорных реакций: Ra = -43.681 кH, Rb = -32.519 кH.

Величина максимального изгибающего момента:

Mmax = 53.00 кHm, Xmax = 2.427 м.

Поперечная сила и изгибающий момент (от действия расчетных нагрузок)

Q(x), кН ¦	М(х), кНм
43.681	0.000
32.881	22.969
22.081	39.458
11.281	49.466
0.481	52.995
0.000	53.001
-10.319	50.044
-21.119	40.613
-26.519	33.467
-26.519	27.467
-26.519	19.511
-26.519	3.600
6.000	3.600
0.000	4.800
-12.000	0.000
	Q(x), кH 43.681 32.881 22.081 11.281 0.481 0.000 -10.319 -21.119 -26.519 -26.519 -26.519 6.000 0.000 -12.000 -12.000

Нормативное сопротивление: $Rn = 250.00 \text{ M}\Pi a$,

коэффициент надежности по материалу: gamma = 1.05.

Принимаем двутавр №22:

 $h=22 \text{ cm}, b=11.0 \text{ cm}, s=0.54 \text{ cm}, t=0.87 \text{ cm}, S=131.0 \text{ cm}^3, J=2550 \text{ cm}^4$

Расчет прочности в заданном сечении.

x = 0.711 м, Q = 30.883 кH, M = 26.508 МПа

Расчетное сопротивление: R = 238.10 МПа

Сечение - двутавр №22

Точка 1: (у=11.000 см)

Sx=114.347 MΠa, Txy= 0.000 MΠa, Smax=114.347 MΠa, Smin= 0.0 MΠa,

ALFAmax= 0.00°, Si=114.347 МПа, Кпч= 2.19

Точка 2: (у=10.130 см)

Sx=105.303 МПа, Txy=23.167 МПа, Smax=110.174 МПа, Smin=-4.871 МПа,

ALFAmax=11.87°, Si=115.046 МПа, Кпч= 2.17

Точка 3: (у=5.500 см)

Sx=57.173 МПа, Txy=27.549 МПа, Smax=68.287 МПа, Smin=-11.114 МПа,

ALFAmax=21.97°, Si=79.401 МПа, Кпч= 3.15

Точка 4: (у=0.000 см)

Sx= 0.000 МПа, Txy=29.381 МПа, Smax=29.381 МПа, Smin=-29.381 МПа,

ALFAmax=45.00°, Si=58.761 МПа, Кпч= 4.25

Точка 5: (у=-5.500 см)

Sx=-57.173 МПа, Txy=27.549 МПа, Smax=11.114 МПа, Smin=-68.287 МПа,

ALFAmax=68.03°, Si=79.401 МПа, Кпч= 3.15

Точка 6: (у=-10.130 см)

Sx=-105.303 МПа, Txy=23.167 МПа, Smax=4.871 МПа, Smin=-110.174 МПа,

ALFAmax=78.13°, Si=115.046 МПа, Кпч= 2.17

Точка 7: (у=-11.000 см)

Sx=-114.347 МПа, Txy=0.000 МПа, Smax= 0.000 МПа, Smin=-114.347 МПа,

ALFAmax=90.00°, Si=114.347 МПа, Кпч= 2.19

Эпюры, приведенные на рис. 8, построены при задании числа сечений для вывода результатов равным четырем. Отрицательное значение опорных реакций означает, что они направлены в отрицательном направлении оси \mathbf{y} .

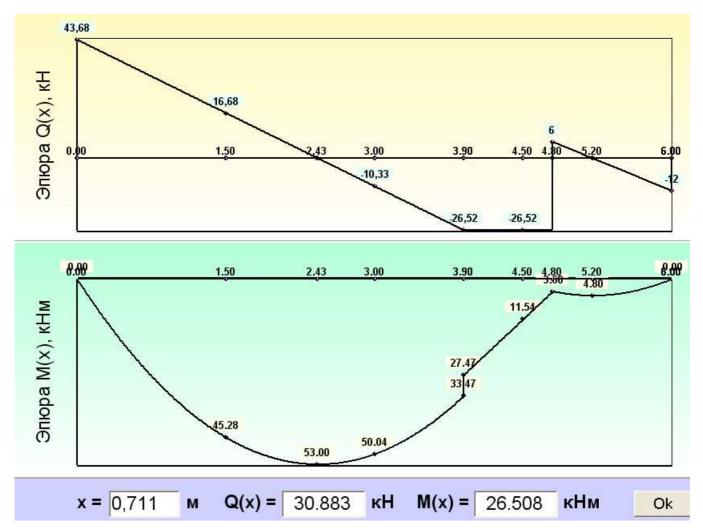


Рис. 8. Эпюры поперечных сил и изгибающих моментов

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов. М., Высшая шк., 2000. 560 с.
- 2. Андреев В.И., Паушкин А.Г., Леонтьев А.И. Техническая механика (для учащихся строительных вузов и факультетов): Учебник. М., Издательство АСВ, 2012. 251с.
- 3. Варданян Г.С., Атаров Н.М., Горшков А.А. Сопротивление материалов (с основами строительной механики). М., ИНФА-М, 2003. 480 с.
- 4. Вычисление моментов инерции сложных фигур: Метод. ук. к контрольной работе и задачам по курсу "Сопротивление материалов"/ Сост.: А.Н. Синозерский, Г.Е. Габриелян; Воронеж. гос. арх.— строит. ун-т. Воронеж: 2001. 25 с.
- 5. Сборник расчетных работ по сопротивлению материалов на базе персональных ЭВМ: Учеб. пособие/ В.С. Сафронов, А.Н. Синозерский, М.В. Шитикова и др. Под общ. Ред. В.С. Сафронова; Воронеж. гос. арх.-строит. академия, 1995. 170 с.

ОГЛАВЛЕНИЕ

Введение	. 3
1. Задание	. 3
2. Рекомендации по выполнению работы	.4
3. Инструкция по работе с программой "БАЛКА"	.7
4. Пример	.9
Библиографический список	20

РАСЧЕТ БАЛКИ НА ПРОЧНОСТЬ

Методические указания
к выполнению контрольных и расчетно-графических работ по курсу
"Сопротивление материалов"
для студентов всех специальностей
очной и заочной форм обучения

СОСТАВИТЕЛИ: доцент, канд. физ.-мат. наук Резунов Александр Васильевич, профессор ВГАСУ, канд. техн. наук Синозерский Александр Николаевич

Подписано в печать 15.11. 2013. Формат 60x84 1/16. Учизд. л. 1,4
Услпеч. 1,5. Бумага писчая. Тираж 500 экз. Заказ №
Отпечатано: отдел оперативной полиграфии
издательства учебной литературы и учебно-методических пособий
Воронежского ГАСУ.
394006 Воронеж, ул. 20-летия Октября, 84