МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета радиотехники

и электроники

/ В.А. Небольсин /

31 августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Технология материалов электронной техники»

Направление подготовки 11.03.04 Электроника и наноэлектроника

Профиль Микроэлектроника и твердотельная электроника

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 4 года и 11 мес.

Форма обучения очная / заочная

Год начала подготовки 2020

Автор программы

И.о. заведующего кафедрой полупроводниковой электроники и наноэлектроники

Руководитель ОПОП

Е.Ю. Плотникова

А.В. Строгонов

А.В. Арсентьев

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

– изучение студентами комплекса теоретических и практических знаний, позволяющих им свободно ориентироваться в современном производстве материалов электронной техники.

1.2. Задачи освоения дисциплины

- сформировать представление о физико-химических основах технологии производства материалов электронной техники;
- установить взаимосвязь параметров технологических процессов со свойствами получаемых материалов;
- изучить конкретные процессы получения материалов электронной техники (получение элементарных полупроводников, соединений АшВv, основных металлов микро- и наноэлектроники, диэлектриков); ознакомить с используемыми видами технологического оборудования;
- ознакомить с перспективами и тенденциями развития технологии материалов электронной техники в связи с современными требованиями микро- и наноэлектроники (металлоорганические соединения, некристаллические материалы, углеродные материалы);
- дать представление об особенностях технологии вспомогательных материалов;
- сформировать навыки экспериментальных исследований свойств материалов электронной техники согласно соответствующему ГОСТу (19658-81 и 26239-84 для кремния, 16153-80 для германия, 25948-83 для GaAs и GaP, и т.д.).

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина Б1.В.04 «Технология материалов электронной техники» относится к дисциплинам части блока Б1 учебного плана, формируемой участниками образовательных отношений.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Технология материалов электронной техники» направлен на формирование следующих компетенций:

ПК-1: способность строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования;

ПК-6: готовность к применению современных технологических процессов и технологического оборудования на этапах разработки и производства микроэлектронных приборов и устройств твердотельной электроники.

Компе-	Результаты обучения, характеризующие					
тенция	сформированность компетенции					
ПК-1	знать физико-химические основы технологии производства мате-					
	риалов электронной техники;					
	уметь ориентироваться в многообразии современных технологиче					
	ских методов, определять оптимальные режимы отдельных техно-					
	логических операций;					
	владеть представлениями о тенденциях развития технологии мато					
	риалов электронной и микроэлектронной техники, материалов					
	наноэлектроники, навыками исследования основных характеристик					
	материалов электронной техники.					
ПК-6	знать взаимосвязь параметров технологических процессов со свой-					
	ствами получаемых материалов;					
	уметь использовать конкретные процессы получения материалов					
	электронной техники, применять перспективные материалы элек-					
	тронной техники в связи с современными требованиями микро- и					
	наноэлектроники;					
	владеть навыками экспериментальных исследований свойств мате-					
	риалов электронной техники согласно соответствующим ГОСТам.					

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Технология материалов электронной техники» составляет 4 зачетных единицы.

Распределение трудоемкости дисциплины по видам занятий:

очная форма обучения

Вид учебной работы	Всего	Семестр
	часов	6
Аудиторные занятия (всего)	50	50
В том числе:		
Лекции	34	34
Практические занятия (ПЗ)	16	16
Самостоятельная работа	94	94
Вид промежуточной аттестации – зачет с оценкой	+	+
Общая трудоемкость час	144	144
зач. ед.	4	4

заочная форма обучения

suo mun poput ooy remin						
Всего	Семестр					
часов	7					
10	10					
6	6					
4	4					
130	130					
4	4					
+	+					
144	144					
4	4					
	часов 10 6 4 130 4 +					

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	The price of terms							
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак. зан.	CPC	Всего, час		
1	Технология изготовления элементарных полупроводников. Кремний	Физические и химические свойства кремния. Технология выращивания монокристаллического кремния. Тепло- и массообмен при выращивании твердых монокристаллов.	6	-	10	16		
2	Технология изготовления элементарных полупроводников. Германий	Физические и химические свойства германия. Получение поли- кристаллического германия. Выращивание монокристаллическо- го германия. Легирование германия.	6	2	10	18		
3	Технология A ³ B ⁵	Природа полупроводниковых соединений. Свойства полупроводниковых соединений. Особенности технологии соединений. Получение монокристаллов с заданными свойствами.	6	2	10	18		
4	Технология металлов. Часть 1	Общие вопросы. Алюминий и его соединения.	2	2	9	13		
5	Технология металлов. Часть 2	Индий. Галлий. Вольфрам.	4	2	9	15		
6	Технология легирующих примесей	Бор. Фосфор. Мышьяк.	2	2	9	13		
7	Технология диэлектриков	Диэлектрические свойства материалов. Стеклообразные диэлектрики. Стеклокерамические диэлектрики. Керамические диэлектрики.	2	2	9	13		
8	Технология углеродных материалов	Модификации угля. Технология поликристаллических алмазов. Технология алмазных и алмазоподобных пленок. Фуллерены.	2	2	9	13		
9	Технология металлоорга- нических материалов	Органические соединения элементов 1 группы. Органические соединения элементов 2 группы. Органические соединения элементов 3 группы. Органические соединения элементов 4 группы.	2	2	9	13		
10	Технология некристаллических и вспомогательных материалов	Технология диспергируемых некристаллических материалов. Технология ленточных некристаллических материалов. Технология очистки газов.	2	-	10	12		
		Итого:	34	16	94	144		

заочная форма обучения

№ п/п	Наименование темы	Содержание раздела		Прак. зан.	CPC	Всего, час
	Технология изготовления элементарных полупроводников. Кремний	Физические и химические свойства кремния. Технология выращивания монокристаллического кремния. Тепло- и массообмен при выращивании твердых монокристаллов.		2	13	17
2	Технология изготовления элементарных полупро-	Физические и химические свойства германия. Получение поликристаллического германия. Выращивание монокристалличе-	2	2	13	17

	водников. Германий	ского германия. Легирование германия.				
3	Технология А ³ В ⁵	Природа полупроводниковых соединений. Свойства полупроводниковых соединений. Особенности технологии соединений. Получение монокристаллов с заданными свойствами.	2	-	13	15
4	Технология металлов. Часть 1	Общие вопросы. Алюминий и его соединения.	1	-	13	13
5	Технология металлов. Часть 2	Индий. Галлий. Вольфрам.	1	-	13	13
6	Технология легирующих примесей	Бор. Фосфор. Мышьяк.	-	-	13	13
7	Технология диэлектриков	Диэлектрические свойства материалов. Стеклообразные диэлектрики. Стеклокерамические диэлектрики. Керамические диэлектрики.	1	-	13	13
8	Технология углеродных материалов	Модификации угля. Технология поликристаллических алмазов. Технология алмазных и алмазоподобных пленок. Фуллерены.	-	-	13	13
9	Технология металлоорга- нических материалов	Органические соединения элементов 1 группы. Органические соединения элементов 2 группы. Органические соединения элементов 3 группы. Органические соединения элементов 4 группы.	1	-	13	13
10	Технология некристалли- ческих и вспомогательных материалов	Технология диспергируемых некристаллических материалов. Технология ленточных некристаллических материалов. Технология очистки газов.	-	-	13	13
		Всего:	6	4	130	140
		Контроль:				4
		Итого:				144

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины «Технология материалов электронной техники» не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе: «аттестован» / «не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
	знать физико-химические основы техноло-	Сдана теория,	Выполнение работ	Невыполнение ра-
ПК-1	гии производства материалов электронной	выполнены	в срок, предусмот-	бот в срок, преду-
	техники;	лабораторные	ренный в рабочих	смотренный в ра-
		работы	программах	бочих программах
	уметь ориентироваться в многообразии со-	Сдана теория,	Выполнение работ	Невыполнение ра-
	временных технологических методов, опре-	выполнены	в срок, предусмот-	бот в срок, преду-
	делять оптимальные режимы отдельных	лабораторные	ренный в рабочих	смотренный в ра-
	технологических операций;	работы	программах	бочих программах
	владеть представлениями о тенденциях	Сдана теория,	Выполнение работ	Невыполнение ра-
	развития технологии материалов электрон-	выполнены	в срок, предусмот-	бот в срок, преду-

	ной и микроэлектронной техники, материа-	лабораторные	ренный в рабочих	смотренный в ра-
	лов наноэлектроники, навыками исследова-	работы	программах	бочих программах
	ния основных характеристик материалов			
	электронной техники.			
	знать взаимосвязь параметров технологиче-	Сдана теория,	Выполнение работ	Невыполнение ра-
ПК-6	ских процессов со свойствами получаемых	выполнены	в срок, предусмот-	бот в срок, преду-
	материалов;	лабораторные	ренный в рабочих	смотренный в ра-
		работы	программах	бочих программах
	уметь использовать конкретные процессы	Сдана теория,	Выполнение работ	Невыполнение ра-
	получения материалов электронной техники,	выполнены	в срок, предусмот-	бот в срок, преду-
	применять перспективные материалы элек-	лабораторные	ренный в рабочих	смотренный в ра-
	тронной техники в связи с современными	работы	программах	бочих программах
	требованиями микро- и наноэлектроники;			
	владеть навыками экспериментальных ис-	Сдана теория,	Выполнение работ	Невыполнение ра-
	следований свойств материалов электрон-	выполнены	в срок, предусмот-	бот в срок, преду-
	ной техники согласно соответствующим	лабораторные	ренный в рабочих	смотренный в ра-
	ГОСТам.	работы	программах	бочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6 семестре для очной формы обучения, 7 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл	Неудовл
ПК-1	знать физико-химические основы технологии производства материалов электронной техники;	Тест	Выполнение теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
	уметь ориентироваться в многообразии современных технологических методов, определять оптимальные режимы отдельных технологических операций;	Решение стандартных практических задач	Задачи ре- шены в полном объ- еме и полу- чены вер- ные ответы	Продемонстрирован верный ход решения всех, но не получен верный ответ во всех задачах	верный ход решения в	Задачи не решены
	владеть представлениями о тенденциях развития технологии материалов электронной и микроэлектронной техники, материалов наноэлектроники, навыками исследования основных характеристик материалов электронной техники.	Решение прикладных задач в конкретной предметной области	Задачи ре- шены в полном объ- еме и полу- чены вер- ные ответы	Продемонстрирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемон- стрирован верный ход решения в	Задачи не решены
ПК-6	знать взаимосвязь параметров технологических процессов со свойствами получаемых материалов;	Тест	Выполнение теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
	уметь использовать кон- кретные процессы получени материалов электронной тех	Решение стандартных практиче-	Задачи ре- шены в полном объ-	Продемонстрирован верный ход решения всех, но	Продемон- стрирован верный ход	Задачи не решены

ники, применять перспектив	ских задач	еме и полу-	не получен вер-	решения в	
ные материалы электронной		чены вер-	ный ответ во всех	большин-	
техники в связи с современ-		ные ответы	задачах	стве задач	
ными требованиями микро-					
наноэлектроники;					
владеть навыками экспе-	Решение	Задачи ре-	Продемонстри-	Продемон-	Задачи не
риментальных исследова-	прикладных	шены в	рован верный ход	стрирован	решены
ний свойств материалов	задач в кон-	полном объ-	решения всех, но	верный ход	
электронной техники со-	кретной	еме и полу-	не получен вер-	решения в	
гласно соответствующим	предметной	чены вер-	ный ответ во всех	большин-	
ГОСТам.	области	ные ответы	задачах	стве задач	

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. Для получения кремния марки КЭФ в качестве примеси используется:	
1) бор;	
2) бром;	

- 3) фтор;4) фосфор;
- алюминий.
- 2. Химическая формула силана:
 - 1) SiCl₄;
 - 2) SiH₄;
 - 3) SiHCl₃;
 - 4) SiBr₄;
 - 5) SiH₂Cl₂.
- 3. После глубокой очистки GeC_{14} из него получают GeO_2 методом:
 - 1) химического транспорта;
 - 2) окисления;
 - 3) восстановления;
 - 4) пиролиза;
 - 5) гидролиза.
- 4. Основным промышленным методом получения полупроводникового Si является его восстановление из:
 - 1) SiCl₄;
 - 2) SiHCl₃;
 - 3) SiH₂Cl₂;
 - 4) SiH₄;
 - 5) SiBr₄.
- 5. Растворитель, используемый при выращивании кристаллов из раствора, должен:
 - 1) иметь высокий коэффициент распределения;
 - 2) повышать температуру плавления;

быть нейтральной примесью;

- 4) быть электрически активным;
- 5) выпадать в виде включений второй фазы.

- 6. Постоянство состава монокристалла, выращиваемого с использованием методов подпитки, достигается:
 - 1) изменением скорости роста;
 - 2) изменением эффективного коэффициента распределения примеси;
 - 3) постоянством состава расплава;
 - 4) постоянством температуры расплава;
 - 5) постоянством скорости роста.
- 7. Активным методом выравнивания состава монокристалла не является метод:
 - 1) программирования кристаллизационного процесса;
 - 2) подпитки расплава твердой фазой;
 - 3) подпитки расплава жидкой фазой;
 - 4) подпитки расплава газовой фазой;
 - 5) выращивания кристалла малого объема по сравнению с объемом расплава.
- 8. Метод жидкостной герметизации является разновидностью метода:
 - 1) Бриджмена;
 - 2) горизонтальной направленной кристаллизации;
 - 3) Чохральского;
 - 4) горизонтальной зонной плавки;
 - 5) бестигельной зонной плавки.
- 9. Уменьшение диаметра монокристалла, выращиваемого методом Чохральского, происходит при:
 - 1) повышении температуры расплава;
 - 2) понижении скорости кристаллизации;
 - 3) повышении скорости вращения монокристалла;
 - 4) повышении скорости вращения тигля;
 - 5) понижении давления.
- 10. Преимущества метода горизонтальной направленной кристаллизации заключаются в:
 - 1) отсутствии в монокристалле механических напряжений;
 - 2) возможности выращивания монокристаллов различающихся соединений;
 - 3) возможности получения кристаллов с равномерным распределением примесей;
 - 4) возможности получения кристаллов с минимальной плотностью дислокаций;
 - 5) отсутствии загрязнений примесями тигля.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Основные свойства кремния
- 2. Кремний + кислород
- 3. Кремний + галогены
- 4. Кремний + водород
- 5. Кремний + водород + галогены
- 6. Растворение кремния
- 7. Основные операции получения кремния
- 8. Тетрахлоридный метод получения кремния
- 9. Трихлорсилановый метод получения кремния
- 10. Методы получения германия

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Номенклатура, классификация и общие требования к материалам электронной техники
- 2. Свойства индивидуальных веществ и их смесей, используемых в электронной технике
- 3. Чистота материалов. Классификация материалов по их чистоте
- 4. Теория подобия. Основные подходы к моделированию технологических процессов
- 5. Разделение гетерогенных систем в гравитационном, центробежном и электрическом полях
- 6. Процесс фильтрования. Промывка осадков
- 7. Процессы переноса вещества
- 8. Движущая сила массопереноса. Методы ее расчета
- 9. Абсорбция
- 10. Экстракция

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Номенклатура, классификация и общие требования к материалам электронной техники
- 2. Свойства индивидуальных веществ и их смесей, используемых в электронной технике
- 3. Чистота материалов. Классификация материалов по их чистоте
- 4. Теория подобия. Основные подходы к моделированию технологических процессов
- 5. Разделение гетерогенных систем в гравитационном, центробежном и электрическом полях
- 6. Процесс фильтрования. Промывка осадков
- 7. Процессы переноса вещества
- 8. Движущая сила массопереноса. Методы ее расчета
- 9. Абсорбция
- 10. Экстракция
- 11.Перегонка жидкостей
- 12. Ректификация
- 13.Высушивание влажных материалов
- 14. Адсорбция
- 15.Ионный обмен
- 16. Кристаллизация из растворов
- 17. Кристаллизация из расплавов
- 18. Получение однородно легированных по длине монокристаллов
- 19. Химические транспортные реакции
- 20. Процессы очистки, основанные на фазовом переходе жидкость пар
- 21.По каким характеристикам Ge разделяют на группы промышленных марок?

- 22. Какие структурные дефекты являются основными для совершенной структуры Ge?
- 23.В методе химического травления при определении плотности дислокаций как устанавливается образец? (что будет видном в поле микроскопа)?
- 24. Селективный травитель для Ge? Зачем он нужен?
- 25.Полосы скольжения в Ge (откуда берутся и как выглядят)?
- 26. Какое расхождение диаметра монокристалла Ge допускается по слитку?
- 27. Методы определения дислокаций в Ge (5 шт.)?
- 28. Как полируют образец Ge для дальнейшего химического травления?
- 29. Типы картин распределения дислокаций? (с пояснениями)
- 30. Как влияет плотность дислокаций на удельное сопротивление и время жизни неосновных носителей заряда? (с графиком)
- 31. Физические свойства германия
- 32.Получение двуокиси германия
- 33. Получение тетрахлорида германия
- 34. Сырьевые источники германия
- 35.Схема получения поликристаллического германия
- 36. Разложение германиевого концентрата
- 37. Дистилляция тетрахлорида германия
- 38. Ректификация тетрахлорида германия
- 39. Параметры гидролиза тетрахлорида германия
- 40.Получение германия из двуокиси

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по билетам, каждый из которых содержит 2 вопроса и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 3 балла

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 3 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал 3 балла.
 - 3. Оценка «Хорошо» ставится в случае, если студент набрал 4 балла.
- 4. Оценка «Отлично» ставится, если студент набрал 5 баллов, то есть выполнил все задания из билета.

При получении оценок «Отлично», «Хорошо» и «Удовлетворительно» требуемые в рабочей программе знания, умения, владения по соответствующим компетенциям на промежуточном этапе считаются достигнутыми.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контроли- руемой компе- тенции	Наименование оценочного средства
1	Технология изготовления элементарных полупроводников. Кремний	ПК-1, ПК-6	Тест
2	Технология изготовления элементарных полу- проводников. Германий	ПК-1, ПК-6	Тест
3	Технология A^3B^5	ПК-1, ПК-6	Тест
4	Технология металлов. Часть 1	ПК-1, ПК-6	Тест
5	Технология металлов. Часть 2	ПК-1, ПК-6	Тест
6	Технология легирующих примесей	ПК-1, ПК-6	Тест
7	Технология диэлектриков	ПК-1, ПК-6	Тест
8	Технология углеродных материалов	ПК-1, ПК-6	Тест
9	Технология металлоорганических материалов	ПК-1, ПК-6	Тест
10	Технология некристаллических и вспомогательных материалов	ПК-1, ПК-6	Тест

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном/электронном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Основная литература

- 1. **Новокрещенова Е.П.** Технология материалов электронной техники: учеб. пособие / Е.П. Новокрещенова. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2009. 222 с.
- 2. **Липатов Г.И.** Технология материалов и изделий электронной техники: учеб. пособие. Ч. 1. / Г.И. Липатов. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2005. 142 с.

- 3. **Липатов Г.И.** Технология материалов и изделий электронной техники: учеб. пособие. Ч. 2. / Г.И. Липатов. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2006. 172 с.
- 4. **Липатов Г.И.** Технология материалов и изделий электронной техники: учеб. пособие. Ч. 3. / Г.И. Липатов. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2008. 227 с.
- 5. **Липатов Г.И.** Технология материалов и изделий электронной техники: учеб. пособие. Ч. 4. / Г.И. Липатов. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2010. 173 с.
- 6. **Александров С.Е.** Технология полупроводниковых материалов [Электронный ресурс]: учеб. пособие / С.Е. Александров, Ф.Ф. Греков. 2-е изд., испр. СПб.: Лань, 2021. 240 с. Книга из коллекции Лань Инженерно-технические науки. ISBN 978-5-8114-1290-7. URL: https://e.lanbook.com/book/168401
- **7. Родионов Ю.А.** Технологические процессы в микро- и наноэлектронике [Электронный ресурс]: учеб. пособие / Ю.А. Родионов. М., Вологда: Инфра-Инженерия, 2019. 352 с. Гарантированный срок размещения в ЭБС до 12.08.2024 (автопролонгация). ISBN 978-5-9729-0337-5. URL: http://www.iprbookshop.ru/86656.html

Дополнительная литература

- 8. **Шилова О.А.** Золь-гель технология микро- и нанокомпозитов [Электронный ресурс]: учеб. пособие / О.А. Шилова. СПб.: Лань, 2021. 304 с. ISBN 978-5-8114-1417-8. URL: https://e.lanbook.com/book/168546
- 9. **Подвигалкин В.Я.**Толстые пленки радиоэлектроники. Физико-технические основы, гетероструктурные среды, приложения [Электронный ресурс]: учеб. пособие / В.Я. Подвигалкин. 1-е изд. : Лань, 2017. -212 с. Книга из коллекции Лань -Инженернотехнические науки. ISBN 978-5-8114-2404-7.URL: https://e.lanbook.com/book/91290
- 10. **Липатов Г.И.** Расчеты процессов очистки и получения пленок и слоев методами физического и химического осаждения [Электронный ресурс]: учеб. пособие / Г.И. Липатов. Воронеж: Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, 2019. 102 с. Гарантированный срок размещения в ЭБС до 01.03.2025 (автопролонгация). ISBN 978-5-7731-0798-9. URL: http://www.iprbookshop.ru/93336.html
- 11. **Синтез и свойства металлооксидных пленок** [Электронный ресурс]: монография / С.И. Рембеза, Е.С. Рембеза, Т.В. Свистова, Н.Н. Кошелева. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2017.
- 12. **Васильев В.Ю.** Технология тонких пленок для микро- и наноэлектроники [Электронный ресурс]: учеб. пособие / В.Ю. Васильев. Новосибирск : Новосибирский государственный технический университет, 2019. 107 с. Гарантированный срок размещения в ЭБС до 07.09.2025 ISBN 978-5-7782-3915-9. URL: http://www.iprbookshop.ru/98748.html
- 13. **Орликов Л.Н.** Технология материалов и изделий электронной техники. Ч. 1 [Электронный ресурс]: учеб. пособие / Л.Н. Орликов. М.: ТУСУР, 2012. 98 с. URL: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=4932
- 14. **Орликов Л.Н.** Технология материалов и изделий электронной техники. Ч. 2 [Электронный ресурс]: учеб. пособие / Л.Н. Орликов. Н. М.: ТУСУР, 2012. 100 с. URL: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=4931
- 15. **Киреев В.Ю.** Технологии микроэлектроники. Химическое осаждение из газовой фазы / В.Ю. Киреев, А.А. Столяров. М.: Техносфера, 2006. 192 с. ISBN 5-94836-039-3
- 16. Энциклопедия технологии полупроводниковых материалов: пер. сангл. Э.П. Домашевской. Т. 1: Электронная структура и свойства полупроводников / Под ред. К.А. Джексона, В. Шретера. Воронеж: Водолей, 2004. 982 с. ISBN 5-88563-041-0
- 17. **Таиров Ю.М.** Технология полупроводниковых и диэлектрических материалов: учебник / Ю.М. Таиров, В.Ф. Цветков. 3-е изд., стереотип. СПб.: Лань, 2002. 424 с. (Учебники для вузов. Специальная литература). ISBN 5-8114-0438-7

- 18. **Крапухин В.В.** Физико-химические основы технологии полупроводниковых материалов: учебник для вузов по спец. «Технология спец. материалов электронной техники» / В.В. Крапухин, И.А. Соколов. М.: Металлургия, 1982. 352 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационнотелекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Программное обеспечение компьютеров для самостоятельной и аудиторной работы:

- Операционные системы семейства MSWindows;
- Пакет офисных программ LibreOffice;
- Программа просмотра файлов WinDjview;
- Программа просмотра файлов формата pdf Adobe Acrobat Reader;
- Интернет-браузеры Mozilla Firefox, Google Chrome;
- Математический пакет MathCad Express, Smath Studio;
- Среда разработки Python;
- Система управления курсами Moodle;

Используемые электронные библиотечные системы:

- Модуль книгообеспеченности АИБС «MAPK SQL»: http://bibl.cchgeu.ru/provision/struct/;
- Университетская библиотека онлайн: http://biblioclub.ru/;
- ЭБС Издательства «ЛАНЬ», в том числе к коллекциям «Инженерно-технические науки», «Физика»: http://e.lanbook.com/;
- ЭБС IPRbooks: http://www.iprbookshop.ru;
- научная электронная библиотека eLIBRARY.RU: http://elibrary.ru/.

Информационные справочные системы:

- портал федеральных государственных образовательных стандартов высшего образования: http://fgosvo.ru;
- единое окно доступа к образовательным ресурсам: http://window.edu.ru/;
- открытый образовательный ресурс НИЯУ МИФИ: http://online.mephi.ru/;
- открытое образование: https://openedu.ru/;
- физический информационный портал: http://phys-portal.ru/index.html
- Профессиональные справочные системы «Техэксперт»: https://cntd.ru
- Электронная информационная образовательная среда ВГТУ: https://old.education.cchgeu.ru

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

1. Лекционная аудитория 311/4, укомплектованная специализированной мебелью и оснащенная оборудованием для лекционных демонстраций: мультимедиа-проектором, стационарным экраном, наборами демонстрационного оборудования (учебный корпус № 4, расположенный по адресу: Московский пр., 179):

комплект учебной мебели: рабочее место преподавателя (стол, стул); рабочие места обучающихся (столы, стулья) на 22 человека. проектор BenQ MP515 DLP;

экран ScreenMedia настенный. огнетушитель.

2. Дисплейный класс для проведения практических занятий и самостоятельной работы студентов, укомплектованный специализированной мебелью и оснащенный персональными компьютерами с лицензионным программным обеспечением с возможностью подключения к сети «Интернет» и доступом в электронную информационно-образовательную среду университета, ауд. 209/4 (учебный корпус № 4, расположенный по адресу: Московский пр., 179), оснащенный необходимым оборудованием:

```
комплект учебной мебели: рабочее место преподавателя (стол, стул);
рабочие места обучающихся (столы, стулья) на 20 человек.
компьютер-сборка каф.9;
компьютер в составе: (H61/IntelCorei3/Кв/M/20" LCD);
компьютер-сборка каф.7;
компьютер-сборка каф.3;
компьютер в составе: (H61/IntelCorei3/Кв/M/23" LCD);
компьютер-сборка каф.5;
компьютер-сборка каф.4;
компьютер-сборка каф.8;
компьютер-сборка каф.2;
компьютер-сборка каф.6;
компьютер-сборка каф.10;
комп. в сост: Сист.блок RAMEC GALE, монитор 17" LCD;
компьютер-сборка каф.1;
экран Projecta ProScreen настенный рулонный;
проектор BenQ MP515 DLP;
огнетушитель.
```

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Технология материалов электронной техники» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение навыков проведения расчетов типичных процессов технологии материалов электронной техники. Занятия проводятся путем решения стандартных и прикладных задач в аудитории.

Контроль усвоения материала дисциплины осуществляется тестированием. Освоение дисциплины оценивается на зачете с оценкой.

Вид учебных занятий	Деятельность студента	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины.	
	Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удает-	

	ся разобраться в материале, необходимо сформулировать вопрос и			
	задать преподавателю на лекции или на практическом занятии.			
Практические	Конспектирование рекомендуемых источников. Работа с конспектом			
занятия	лекций, подготовка ответов к контрольным вопросам, просмотр ј			
	комендуемой литературы. Прослушивание аудио- и видеозаписей по			
	заданной теме, решение задач по алгоритму.			
Самостоятельная Самостоятельная работа студентов способствует глубоком				
работа	нию учебного материала и развитию навыков самообразования. С			
	мостоятельная работа предполагает следующие составляющие:			
	- работа с текстами: учебниками, справочниками, дополнительной			
	литературой, а также проработка конспектов лекций;			
	- работа над темами для самостоятельного изучения;			
	- участие в работе студенческих научных конференций, олимпиад;			
	- подготовка к промежуточной аттестации.			
Подготовка	Подготовка Готовиться к промежуточной аттестации следует систематически			
к промежуточной течение всего семестра. Интенсивная подготовка должна				
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Дан-			
	ные перед зачетом три дня эффективнее всего использовать для по-			
	вторения и систематизации материала.			

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1	Актуализирован раздел 8.2: при осуществлении образовательного процесса по дисциплине используется образовательный портал ВГТУ – https://old.education.cchgeu.ru	31.08.2021	Bup
2			
		1	
3			
4			