МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета

В.А. Небольсин

«29» июня 2018 голектроник

РАБОЧАЯ ПРОГРАММА

дисциплины

«ФИЗИКА»

Направление подготовки 16.03.01 «Техническая физика»

Профиль (специализация) «Физическая электроника»

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2018 г.

Автор(ы) программы

Е. В. Шведов

Е. П. Татьянина

Заведующий кафедрой

физики

Т. Л. Тураева

Руководитель ОПОП

_Ю. Е. Калинин

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цель изучения дисциплины — обеспечение фундаментальной физической подготовки, позволяющей будущим специалистам ориентироваться в научно-технической информации, использовать физические принципы и законы, а также результаты физических открытий в тех областях техники, в которых они будут работать.

Изучение дисциплины должно способствовать формированию у студентов основ научного мышления, в том числе: пониманию границ применимости физических понятий и теорий; умению оценивать степень достоверности результатов теоретических и экспериментальных исследований; умению планировать физический и технический эксперимент и обрабатывать его результаты с использованием современных методов.

1.2. Задачи освоения дисциплины — изучение законов окружающего мира в их взаимосвязи; освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных профессиональных задач; ознакомление студентов с историей и логикой развития физики и основных ее открытий; изучение назначения и принципов действия основных физических приборов, приобретение навыков работы с измерительными приборами и инструментами и постановки физических экспериментов; приобретение навыков моделирования физических процессов и явлений.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Физика (общая)» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Физика» направлен на формирование следующих компетенций:

ОПК-1 - способностью использовать фундаментальные законы природы и основные законы естественнонаучных дисциплин в профессиональной деятельности

ОПК-8 - способностью самостоятельно осваивать современную физическую, аналитическую и технологическую аппаратуру различного назначения и работать на ней

Компе-	Результаты обучения, характеризующие
тенция	сформированность компетенции
ОПК-1	знать физические законы классической и релятивистской механики; молекулярную физику и термодинамику; основные физические величины и законы электричества и магнетизма, электромагнитную теорию Максвелла; основные законы колебаний и волн, волновой оптики; основные законы квантовой оптики и квантовой механики; элементы атомной физики, физики ядра и элементарных частиц, современную физическую картину мира уметь анализировать и описывать физические явления и процессы владеть методами теоретического исследования физических явлений и процессов
ОПК-8	знать технику безопасности при проведении эксперимента, теорию оценки погрешности измерений; основные элементы экспериментальных физических исследований уметь проводить экспериментальные исследования и обрабатывать полученные результаты; уметь использовать вычислительную технику при обработке результатов владеть основными приемами обработки и представления полученных данных

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Физика» составляет 13 з.е.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего		Семестр	
	часов	1	2	3
Аудиторные занятия (всего)	180	54	54	72
В том числе:				
Лекции	108	36	36	36
Лабораторные занятия (ЛР)	72	18	18	36
Самостоятельная работа	225	90	108	27
Контроль	63	36	-	27
Вид промежуточной аттестации		экзамен	зачет с	экзамен
(зачет, зачет с оценкой, экзамен)			оценкой	
Общая трудоемкость час	468	180	162	126
зач.ед.	13	5	4.5	3.5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий очная форма обучения

№	Наименование	Содержание раздела	ЛК	П3	ЛР	CPC	Bce
Π/Π	темы						го час
		1 семестр	<u> </u>		<u> </u>		iuc
1	Физические	Кинематика материальной точки и абсолютно	4		2	6	12
	основы	твердого тела					
	механики	Координатная и векторная формы описания дви-					
		жения материальной точки. Перемещение, ско-					
		рость, ускорение. Тангенциальное и нормальное					
		ускорения. Вычисление пути.					
		Поступательное и вращательное движение твердо-					
		го тела. Угловая скорость и угловое ускорение, и					
		их связь с линейными характеристиками движения.					
		Самостоятельно: Плоское движение тела					
		Динамика материальной точки и поступательного	2		2	6	10
		движения твердого тела					
		Центр масс механической системы, закон движе-					
		ния центра масс. Закон сохранения импульса.					
		Связь закона сохранения импульса с однородно-					
		стью пространства. Движение тел с переменной					
		массой. Уравнение Мещерского. Формула Циол-					
		ковского. Самостоятельно: неинерциальные си-					
		стемы отсчета, силы инерции					
		Механическая работа и энергия	2		2	6	10
		Работа переменной силы. Мощность. Работа и ки-					
		нетическая энергия. Консервативные и неконсерва-					
		тивные силы. Работа и потенциальная энергия.					
		Связь между потенциальной энергией и силой по-					
		ля. Градиент скалярной функции. Закон сохране-					
		ния полной механической энергии в поле потенци-					
		альных сил. Самостоятельно: графическое пред-					
		ставление энергии.					
		Динамика вращательного движения твердого тела	4		2	6	12
		Момент импульса материальной точки и механиче-					

			1			
		ской системы. Момент силы. Уравнение моментов.				
		Закон сохранения момента импульса механиче-				
		ской системы.				
		Момент инерции твердых тел. Теорема Штейнера.				
		Уравнение динамики вращательного движения				
		твердого тела с закрепленной осью вращения. Ки-				
		нетическая энергия и работа при вращательном				
		движении. Гироскоп, прецессия и нутация гиро-				
		скопа.				
		Самостоятельно: Применение гироскопов в тех-				
		нике. Расчет момента инерции симметричного тела				
		Механика жидкостей и газов	2	2	6	10
		Стационарное течение идеальной жидкости. Линии				
		и трубки тока. Неразрывность струи. Уравнение				
		Бернулли. Вязкость. Силы внутреннего трения.				
		Ламинарное и турбулентное течения. Движение тел				
		в жидкостях и газах. Лобовое сопротивление при				
		обтекании тел. Число Рейнольдса.				
		Самостоятельно: экспериментальные методы				
		определения коэффициента динамической вязкости				
		(меод Стокса и Пуазейля)				
		Механика упругих тел	2		6	8
		Упругие деформации и напряжения. Растяжение и				
		сжатие. Сдвиг. Закон Гука. Модуль Юнга и модуль				
		сдвига. Энергия упруго деформированного тела.				
		Самостоятельно: Деформация кручения, модуль				
		кручения.				
		Специальная теория относительности	2		6	8
		Принцип относительности Галилея и преобразова-				
		ния Галилея. Постулаты Эйнштейна. Относитель-				
		ность одновременности и преобразования Лоренца.				
		Сокращение длины и замедление времени в дви-				
		жущихся системах отсчета. Релятивистский им-				
		пульс и релятивистское уравнение динамики. Реля-				
		тивистское выражение кинетической и полной				
		энергии. Взаимосвязь массы и энергии в СТО. Че-				
		тырехмерное пространство-время в СТО.				
2	Механические	Идеальный гармонический осциллятор	2	2	8	12
	колебания и	Дифференциальное уравнение осциллятора и				
	волны.	его решение. Амплитуда, частота и фаза коле-				
		баний. Пружинный, физический и математиче-				
		ский маятники. Энергия гармонического ос-				
		циллятора. Сложение гармонических колеба-				
		ний одинакового направления. Сложение вза-				
		имно-перпендикулярных колебаний.				
		Самостоятельно: Биения. Фигуры Лиссажу.				
		Разложение и синтез колебаний.				
		Затухающие и вынужденные колебания Диф-	2	2	8	12
		ференциальное уравнение затухающих коле-				
		баний и его решение. Характеристики затуха-				
		ющих колебаний. Дифференциальное уравне-				
		ние вынужденных колебаний и его решение.				
		Резонанс. Резонансные кривые.				
		•	2		6	8
		Волны в упругих средах			O	٥
		Продольные и поперечные волны. Плоская и				
		сферическая волны. Уравнение волны. Волно-				
		вое уравнение. Скорость упругих волн. Энер-				
	·			 		

		гия упругой волны. Поток и плотность потока				
		энергии. Вектор Умова. Стоячие волны. Эф-				
		фект Доплера для звуковых волн.				
3	Молекулярная	Основные представления молекулярно-	2		4	6
3	физика и	кинетической теории	2		7	
	термодинамика	Идеальный газ. Основное уравнение молеку-				
	F 37, 3	лярно-кинетической теории идеального газа.				
		Уравнение Менделеева-Клапейрона. Распреде-				
		ление Максвелла и ее экспериментальное				
		обоснование. Наиболее вероятная, средняя и				
		среднеквадратичная скорости. Распределение				
		Больцмана и барометрическая формула.				
		Самостоятельно: Опыт Перрена				
		Явления переноса	2	2	6	10
		Число столкновений и средняя длина свобод-	_			10
		ного пробега молекул идеального газа. Явле-				
		ния переноса: диффузия, теплопроводность и				
		внутреннее трение. Эмпирические уравнения				
		переноса: Фика, Фурье и Ньютона.				
		Основы термодинамики	2	2	6	10
		Внутренняя энергия идеального газа. Работа	_			10
		термодинамической системы. Количество теп-				
		лоты. Теплоемкость. Связь теплоемкости с				
		числом степеней свободы молекул. Первое				
		начало термодинамики. Изохорический, изо-				
		барический, изотермический и адиабатический				
		процессы в идеальных газах.				
		Обратимые и необратимые процессы	2		4	6
		Циклические процессы. Цикл Карно. Коэффи-			-	
		циент полезного действия тепловых машин.				
		Второй закон термодинамики. Энтропия и ее				
		статистическая интерпретация. Возрастание				
		энтропии при неравновесных процессах. Гра-				
		ницы применимости второго закона термоди-				
		намики.				
		Реальные газы, жидкости и кристаллы	4		6	10
		Силы межмолекулярного взаимодействия.				
		Уравнение Ван-дер-Ваальса. Изотермы Ван-				
		дер-Ваальса. Переход из газообразного состоя-				
		ния в жидкое. Критические параметры. Эф-				
		фект Джоуля-Томсона. Сжижение газов. Фазы				
		и фазовые превращения. Тройная точка. Диа-				
		грамма состояния.				
		Жидкости и кристаллы.				
		Самостоятельно: Открытые диссипативные				
		системы. Самоорганизация в открытых				
		системах, роль нелинейности. Флуктуации.				
		Бифуркации и катастрофы. Идеи синергетики.				
		Примеры самоорганизации в живой и неживой				
		природе. Динамический хаос.				
					2.5	2 -
		Контроль	26	10	36	36
		Итого за 1 семестр	36	18	126	180

		2 семестр				
1	Электростатика	Электромагнитные взаимодействия и электри-	2	2	6	10
	и постоянный	ческие заряды				
	ток	Квантованность заряда. Аддитивность и закон				
		сохранения электрического заряда. Закон Ку-				
		лона. Электростатическое поле. Напряжен-				
		ность поля точечного заряда. Расчет электри-				
		ческого поля. Принцип суперпозиции полей.				
		Теорема Гаусса для эл.поля в вакууме	2		6	8
		Поток вектора напряженности электростатиче-				
		ского поля. Теорема Гаусса – Остроградского в				
		интегральной и дифференциальной формах и				
		ее применение к расчету полей. Применение				
		теоремы Гаусса к расчету электростатических				
		полей. Самостоятельное изучение. Примене-				
		ние теоремы Гаусса к расчету тех электроста-				
		тических полей, которые не были рассмотрены				
		на лекционном занятии.				
		Электростатическая индукция	4		12	16
		Поле внутри и на поверхности проводника.				
		Распределение заряда и сил по поверхности				
		проводника. Электростатическая защита.				
		Поляризация диэлектриков				
		Дипольный и электрический момент системы				
		зарядов. Механизмы поляризации. Вектор по-				
		ляризации (поляризованность) диэлектрика и				
		его связь с поверхностной плотностью зарядов				
		связанных зарядов. Диэлектрическая проница-				
		емость и восприимчивость. Вектор электриче-				
		ского смещения. Граничные условия на по-				
		верхности раздела двух сред. Самостоятель-				
		ное изучение. Диэлектрики с особыми свой-				
		ствами: пироэлектрики, пьезоэлектрики, сегне-				
		тоэлектрики, электреты.	2	2	6	10
		Электроемкость Электроемкость уединённого проводника,	2		0	10
		Электроемкость уединённого проводника, конденсатора. Плоский, сферический и ци-				
		, 11				
		линдрический конденсаторы.				
		Энергия заряженного проводника. Энергия си-				
		стемы проводников. Объёмная плотность элек-				
		трического поля.	2	2	6	10
		Законы постоянного тока	2	2	0	10
		Сила и плотность электрического тока. Урав-				
		нение непрерывности. Сторонние силы. ЭДС.				
		Напряжение. Закон Ома для однородного про-				
		водника. Сопротивление проводников. Закон				
		Ома в локальной форме. Закон Ома для неод-				
		нородного участка цепи. Обобщенный закон				
		Ома. Разветвленные цепи. Правила Кирхгофа.				
		<u>Самостоятельное изучение.</u> Классическая				
		теория электропроводности металлов.	_			-
2	Электромаг-	Магнитное поле в вакууме	2	2	6	10
	нетизм	Магнитная индукция. Действие магнитное по-				
		ля на движущийся электрический заряд. Сила				

		Лоренца. Движение заряженных частиц в маг-				
		нитном поле. Действие магнитного поля на				
		проводник с током. Сила ампера. Взаимодей-				
		ствие элементов тока. Рамка с током в магнит-				
		ном поле. Самостоятельно: Принцип работы				
		ускорителей. Эффект Холла.				
		Закон Био-Савара-Лапласа	2		6	8
		Закон Био-Савара-Лапласа и его применение к				
		расчету магнитных полей прямого и кругового				
		тока. Принцип суперпозиции. Теорема Гаусса				
		для магнитного поля в вакууме. Теорема о				
		циркуляции вектора магнитной индукции и ее				
		применение к расчету полей. Самостоятель-				
		но: Магнитное поле соленоида и торроида.				
		Магнитное поле в веществе	2	2	6	10
		Магнитная индукция в веществе. Намагничен-				
		ность. Напряжённость магнитного поля. Зако-				
		ны магнитного поля в магнетиках. Магнитная				
		восприимчивость и магнитная проницаемость.				
		Условия на границе раздела. Диа-, пара- и				
		ферромагнетики. Кривая намагничивания. Ги-				
		стерезис. Остаточная намагниченность. Точка				
		Кюри. Магнитная модель атома. Орбитальное				
		гиромагнитное отношение электрона. Лармо-				
		рова прецессия. Диамагнетики. Магнитомеха-				
		нические явления. Спин электрона и парамаг-				
		нетизм.				
		Электромагнитная индукция	2	2	6	10
		Индукционный ток. Закон электромагнитной				
		индукции. Правило Ленца. Токи Фуко. Явле-				
		ние самоиндукции и взаимной индукции. ЭДС				
		самоиндукции. Индуктивность соленоида.				
		Вихревое электрическое поле. Токи Фуко.				
		Магнитная энергия проводника с током и				
		энергия магнитного поля. Энергия системы				
		проводников. Самостоятельно: Практические				
		приложения электромагнитной индукции.				
3	Электромаг-	Электромагнитные колебания	2	2	6	10
	нитные колеба-	Свободные колебания в контуре без активного	_			
	ния и волны.	сопротивления. Затухающие и вынужденные				
	Волновая	колебания. Резонансные колебания. Электро-				
	оптика	механические аналогии.				
		<u>Самостоятельно:</u> Усилители и автогенерато-				
		ры электромагнитных колебаний. Переменный				
		ток. Мощность переменного тока.				
		Электромагнитные волны	4		12	16
		Уравнения Максвелла в интегральной и диф-	•			
		ференциальной формах как обобщение основ-				
		ных опытных фактов. Полная система уравне-				
		ных опытных фактов. Полная система уравнений поля. Материальные уравнения среды.				
		Уравнения поля в вакууме. Плотность энергии				
		электромагнитного поля. Вектор Умова –				
		электромагнитного поля. Бектор умова – Пойнтинга.				
		тюннин а.				

Вывод волновых уравнений для полей E и H				
из уравнений Максвелла. Поперечность элек-				
тромагнитных волн. Гармоническая электро-				
магнитная волна и её фазовая скорость в ваку-				
уме и в веществе. Интенсивность волны.				
Самостоятельно: Шкала электромагнитных				
волн и оптический диапазон.				
Волновая оптика	2		6	8
Электромагнитная природа света. Когерент-				
ность и монохроматичность световых волн.				
Временная (продольная) и пространственная				
(поперечная) когерентность. Интерференция				
когерентных источников. Оптическая разность				
хода. Условия интерференционных максиму-				
мов и минимумов.				
Самостоятельно: Расчет интерфер. картины				
от 2-х источников.				
Интерференция света	2	2	6	10
Интерференция в тонких пленках. Полосы				
равной толщины и равного наклона. Кольца				
Ньютона.				
Самостоятельно: просветление оптики и мно-				
гослойные диэлектрические зеркала. Интерфе-				
рометр Майкельсона. Многолучевая интерфе-				
ренция. Интерферометр Фабри-Перо.				
<u>Дифракция света</u>	2	2	6	10
Принцип Гюйгенса-Френеля. Метод зон Фре-	_		O	10
неля. Дифракция Френеля на простейших пре-				
градах. Дифракция Фраунгофера на щели и				
решетке. Дисперсия и разрешающая способ-				
ность решетки. Дифракция рентгеновских лу-				
чей. Формула Брегга-Вульфа. Рентгенострук-				
турный анализ.				
Самостоятельно: Понятие о голографическом				
методе получения и восстановления изображе-				
ний. Голограммы Лейта-Упатниекса, Денисю-				
ка.				0
Поляризация света	2		6	8
Форма и степень поляризации монохроматиче-				
ского света. Получение и анализ линейно-				
поляризованного света. Отражение и прелом-				
ление света на границе раздела двух диэлек-				
триков. Формулы Френеля. Волноводы и све-				
товоды. Двойное лучепреломление.				
Самостоятельно: Искусственная оптическая				
анизотропия. Фотоупругость. Электрооптиче-				
ские и магнитооптические эффекты.				
Дисперсия света	2		6	8
Электронная теория дисперсии. Отражение и				
преломление света на границе раздела диэлек-				
триков. Поглощение света. Закон Бугера. Рас-				
сеяние света. Закон Рэлея.				
Итого за 2 семестр	36	18	108	162

		3 семестр				
1	Квантовая	<u>Тепловое излучение</u>	2	 4	2	8
	физика и физи-	Излучение нагретых тел. Спектральные харак-				
	ка атома	теристики теплового излучения. Абсолютно				
		черное тело. Законы Кирхгофа, Стефана-				
		Больцмана и Вина. Формула Релея-Джинса и				
		«ультрафиолетовая катастрофа». Гипотеза				
		Планка. Квантовое объяснение законов тепло-				
		вого излучения.				
		Самостоятельно: Оптическая пирометрия.				
		Фотоны. Масса и импульс фотона. Давление	2	4	2	8
		света. Внешний фотоэффект. Уравнение Эйн-				
		штейна для фотоэффекта. Эффект Комптона.				
		Корпускулярно-волновой дуализм света.				
		Самостоятельно: Опыт Боте.				
		Волновые свойства частиц	2		2	4
		Гипотеза де Бройля. Опыты Девиссона и				
		Джермера. Дифракция микрочастиц. Принцип				
		неопределенности Гейзенберга. Оценка основ-				
		ного состояния атома водорода.				
		Элементы квантовой механики	4	8	2	14
		Уравнение Шредингера. Волновая функция, ее				
		статистический смысл и условия, которым она				
		должна удовлетворять. Движение свободной				
		частицы. Частица в одномерной потенциаль-				
		ной яме. Квантование энергии. Принцип соот-				
		ветствия Бора. Одномерный потенциальный				
		порог и барьер. Гармонический осциллятор.				
		Боровская теория атома водорода	2	4	2	8
		Модель атома Томсона. Опыты Резерфорда по				
		рассеянию альфа-частиц. Ядерная модель				
		атома. Боровская теория атома водорода. По-				
		стулаты Бора. Эмпирические закономерности в				
		атомных спектрах. Формула Бальмера. Само-				
		стятельно: Опыт Франка-Герца.				
		Квмеханическая модель атома водорода	2		2	4
		Стационарное уравнение Шредингера для ато-				
		ма водорода. Волновые функции и квантовые				
		числа электрона в атоме водорода. Вырожде-				
		ние энергетических уровней. Правила отбора				
		для квантовых переходов. Схема энергетиче-				
		ских уровней. Спектр атома водорода. Магнит-				
		ный момент атома. Атом в магнитном поле.				
		Опыт Штерна и Герлаха. Спин электрона.				
		Тонкая структура спектральных линий. Спин-				
		орбитальное взаимодействие. Самостоятель-				
		но: Эффект Зеемана.	2		2	4
		<u>Многоэлектронные атомы</u>	2		2	4
		Принцип Паули. Порядок заполнения элек-				
		тронных оболочек. Периодическая система				
		химических элементов Д.И.Менделеева. Век-				
		торная модель многоэлектронного атома. Типы				
		связей. Рентгеновские лучи. Сплошной спектр				

	и характеристическое излучение. Закон Мозли. Самостоятельно: Эффект Оже.				
	Пазеры Спонтанное и индуцированное излучение. Инверсное заселение уровней активной среды. Основные компоненты лазера. Условия усиления и генерации света. Особенности лазерного излучения. Основные типы лазеров и их применение. Самостоятельно: Нелинейнооптические явления.	2		2	4
2 Элементы квантовой статистики и физики твердого тела	Квантовые статистики Общие сведения о квантовых статистиках. Фазовое пространство. Число состояний. Вырожденные и невырожденные системы частиц. Функции распределения Ферми-Дирака и Бозе Эйнштейна.	2		2	4
	Нормальные колебания решетки. Понятия о фононах. Температура Дебая. Теплоемкость электронного газа. Понятие о квантовой теории электропроводности металлов	2		2	4
	Элементы зонной теории кристаллов Энергетические зоны в кристаллах. Зонные модели металлов, диэлектриков и полупроводников. Собственная и примесная проводимость полупроводников. Зависимости концентрации, сопротивления полупроводников от температуры. Самостоятельно: Термосопротивления. Фотопроводимость полупроводников. Эффект Холла.	2	8	2	12
	Контактные явления в полупроводниках. <i>p-n</i> переход и его выпрямляющие свойства. <u>Самостоятельно:</u> Полупроводниковые диоды и триоды.	2	4	2	8
3 Элементы физики атомного ядра и элементарных частиц	Состав и характеристики ядра Опыты Резерфорда по рассеянию альфачастиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства и обменный характер ядерных сил. Энергия связи. Дефект масс. Капельная, оболочечная и обобщенная модель ядра.	2		2	4
	Радиоактивность Естественная и искусственная радиоактивность. Закон радиоактивного распада. Активность. Виды радиоактивного излучения: α, β, γ - излучения. Поглощение радиоактивного излучения веществом. Самостоятельно: методы регистрации радиоактивного излучения, радиоизотопный анализ, понятия о дозиметрии и защите.	2	4	1	7
	Ядерные реакции Законы сохранения в ядерных реакциях. Деле-	2			2

ние ядер. Синтез ядер.				
Общие свойства и характеристики элементар-	2			2
ных частиц. Фундаментальны взаимодействия.				
Классификация элементарных частиц. Кварко-				
вая структура адронов.				
Физическая картина мира. Основные	2			2
достижения и проблемы субъядерной физики.				
Современные космологические представления.				
Достижения наблюдательной астрономии.				
Теоретические космологические модели.				
Контроль			27	27
Итого за 3 семестр	36	36	54	126
ВСЕГО	108	72	288	468

5.2 ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ РАБОТ

Студенты выполняют лабораторные работы по индивидуальному графику. Время выполнения одной работы 3-4 ч. (подготовка, выполнение, расчеты, оформление, отчет) Физические основы механики

- №1.0 «Расчет погрешностей при измерении объема цилиндра»
- № 1.1. «Определение ускорения свободного падения на машине Атвуда»
- № 1.2 «Определение модуля сдвига стальной проволоки методом кругильных колебаний»
- № 1.3 «Определение момента инерции методом трифилярного подвеса»
- №1.4. «Измерение момента инерции металлических колец при помощи маятника Максвелла»
- № 1.5 «Определение момента инерции крестообразного маятника»
- № 1.6 «Определение скорости полета пули с помощью баллистического маятника»
- №1.8 «Определение угловой скорости прецессии и момента инерции гироскопа»
- №1.10 «Определение динамической вязкости жидкости методом Стокса»

«Механические колебания и волны»

- № 1.11 «Исследование законов колебательного движения физического маятника и определение ускорения свободного падения»
- № 1.12 «Определение ускорения свободного падения с помощью оборотного и математического маятников»
- № 1.13 «Определение приведенной длины физического маятника и ускорения свободного падения»
- № 1.14 «Изучение резонансных явлений при колебаниях плоской пружины»
- № 1.15 «Определение скорости звука в воздухе методом стоячей волны»

«Молекулярная физика и термодинамика»

- № 1.16 «Определение скорости звука методом сдвига фаз»
- № 1.17 «Определение коэффициента внутреннего трения воздуха при различных температурах»
- № 1.18 «Определение отношение теплоемкостей воздуха при постоянном давлении и постоянном объеме»
- № 1.19 «Определение удельной теплоты кристаллизации и изменения энтропии при охлаждении олова»
- № 1.20 «Изучение реального газа (эффект Джоуля—Томсона)»

«Электростатика и постоянный ток»

- № 2.1. «Моделирование электростатических полей»
- № 2.2 «Определение ёмкости конденсаторов посредством измерения тока разряда»
- № 2.3 «Определение ёмкости конденсаторов мостиком Соти»
- № 2.4 «Определение ЭДС источника методом компенсации»
- № 2.5 «Измерение сопротивления проводников мостиком Уитстона»
- № 2.6 «Изучение обобщённого закона Ома и измерение электродвижущей силы методом компенсании»

«Электромагнетизм»

№ 2.8 «Определение отношения заряда электрона к его массе с помощью магнетрона»

- № 2.9 «Изучение магнитных полей, создаваемых вдоль оси длинной и короткой катушек»
- № 2.10 «Изучение явления взаимной индукции»
- № 2.11 «Снятие кривой намагничивания и петли гистерезиса с помощью осциллографа»
- № 2.12 «Определение точки Кюри ферромагнетика»
- № 2.14 «Исследование затухающих электромагнитных колебаний»
- № 2.15 «Изучение вынужденных электромагнитных колебаний»

«Волновая оптика»

- № 2.20 «Изучение явления интерференции методом колец Ньютона»
- № 2.21 «Изучение явления дифракции на решетке»
- № 2.22 «Изучение поляризованного света. Проверка закона Малюса»

«Квантовая физика»

- №3.1 «Определение температуры оптическим пирометром»
- №3.2 «Исследование внешнего фотоэффекта»
- №3.3 «Исследование фотоэлемента»
- №3.4 «Изучение спектра атома водорода»
- №3.5 «Опыт Франка и Герца»
- №4.5 «Дифракция микрочастиц на щели»
- №4.6 «Прохождение микрочастиц через потенциальный барьер»
- №3.4 «Изучение спектра атома водорода»
- №3.5 «Опыт Франка и Герца»

«Ядерная физика»

- №3.16 «Исследование поглощения β- частиц в различных материалах»
- №3.17 «Определение длины пробега α- частиц в воздухе»
- №3.18 «Определение интенсивности потока частиц радиоактивного излучения»

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	Знать: физические законы классической и релятивистской механики; молекулярную физику и термодинамику; основные физические величины и законы электричества и магнетизма, электромагнитную теорию Максвелла; основные законы колебаний и волн, волновой оптики; основные законы квантовой оптики и квантовой механики; элементы атомной физики, физики ядра и элементарных частиц, современную физическую картину мира;	Тест Контрольные задания для защиты лабораторных работ	Выполнение теста на 40-100% Ответ на 3-5 заданий варианта из 5	В тесте менее 40% правильных ответов Решено менее 3 заданий из 5
	Уметь: анализировать и описывать физические явления и процессы; применять физические законы для решения практических задач;	Тест Контрольные за- дания для защиты лабораторных ра- бот	Выполнение теста на 40-100% Ответ на 3-5 заданий варианта из 5	В тесте менее 40% правильных ответов Решено менее 3 заданий из 5

	Владеть: основными методами решения физических задач, основными приемами обработки и представления полученных данных	Тест Контрольные за- дания для защиты лабораторных ра- бот	Выполнение теста на 40-100% Ответ на 3-5 заданий варианта из 5	В тесте менее 40% правильных ответов Решено менее 3 заданий из 5
ОПК-8	Знать: технику безопасности при проведении эксперимента, теорию оценки погрешности измерений	вил техники без- опасности при вы- полнении лабора-	Выполнение работ в срок, предусмотренной рабочей программой дисциплины	Невыполнение работ в срок, предусмотренной рабочей программой дисциплины
	Уметь: проводить экспериментальные ис- следования и обрабатывать полученные ре- зультаты	раторных работ согласно индиви-	Выполнение работ в срок, предусмотренной рабочей программой дисциплины	Невыполнение работ в срок, предусмотрен- ной рабочей програм- мой дисциплины
	Владеть основными приемами обработки и представления полученных данных	Обработка результатов измерений, анализ полученных данных	срок, предусмот-	Невыполнение работ в срок, предусмотренной рабочей программой дисциплины

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 1, 2, 3 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризую-	Критерии	Отлично	Хорошо	Удовл.	Неудовл.
тенция	сформированность компетенции	оценивания	O 13III IIIO	жорошо	з довл.	псудовл.
ОПК-1	Знать: физические законы классической и релятивистской механики; мо-	Тест	10-12	7-9	4-6	Менее 4
	лекулярную физику и термодинами- ку; основные физические величины и законы электричества и магнетиз- ма, электромагнитную теорию Макс- велла; основные законы колебаний и волн, волновой оптики; основные законы квантовой оптики и кванто- вой механики; элементы атомной фи-	12 заданий				
	зики, физики ядра и элементарных частиц, современную физическую картину мира; Уметь: анализировать и описывать физические явления и процессы	Тест 12 заданий	10-12	7-9	4-6	Менее 4
	Владеть: основными методами решения физических задач	Тест 12 заданий	10-12	7-9	4-6	Менее 4
ОПК-8	Знать: технику безопасности при проведении эксперимента, теорию оценки погрешности измерений	Тест 12 заданий	10-12	7-9	4-6	Менее 4
	Уметь: проводить экспериментальные исследования и обрабатывать полученные результаты	Тест 12 заданий	10-12	7-9	4-6	Менее 4
	Владеть основными приемами обработки и представления полученных данных	Тест 12 заданий	10-12	7-9	4-6	Менее 4

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. Укажите характер движения материальной точки, если известно, что нормальное ускорение a_n =const, а тангенциальное ускорение a_τ =0.

Ответ: равномерное движение по окружности.

- 2. Движение тела на плоскости xOy описывается уравнениям x=t-3 и $y=10-2t^2$. По какой траектории движется тело? Чему равен модуль скорости в начальный момент времени? Ответ: по параболе; 5 m/c
- 3. Мяч массой m, двигаясь со скоростью υ_0 , абсолютно упруго ударяется о стенку под углом α к ее поверхности. Определите, какой импульс получит стенка в результате соударения?

<u>Otbet</u>: $2m v_0 \sin \alpha$

4. Рассчитайте момент инерции однородного стержня массой 10 кг и длиной 1 м относительно оси, проходящей на расстоянии 25 см от одного его конца.

<u>Ответ:</u> 1,46 кг·м².

5. Колебания материальной точки описываются уравнением $x=0,02\cos(2\pi t+0,25\pi)$, м. Запишите уравнение проекции ускорения на ось Ox для этой точки.

Other: $a_x = -0.08 \cdot \pi^2 \cos(2\pi t + 0.25\pi)$, M/c^2 .

6. Сравните работу идеального газа при расширении из одного состояния в изотермическом и адиабатном процессах?

Ответ: В изотермическом процессе газ совершит бОльшую работу.

7. Является ли эквипотенциальной плоскость симметрии S в поле точечных зарядов: a) $q_1=q_2=q$; б) $q_1=+q$; $q_2=-q$?

Ответ: а) нет; б) да.

 $\begin{bmatrix} \bullet \\ q_1 \end{bmatrix} \begin{bmatrix} S & \bullet \\ q_2 \end{bmatrix}$

8. Два бесконечно длинных прямолинейных проводника с противоположными токами (I_2 =2 I_I) лежат в плоскости, перпендикулярной плоскости рисунка. На каком участке находятся точки, в которых магнитная индукция равна нулю?

$$-10^{1} \quad -10^{1} \quad -10^$$

Ответ: 1.

9. Как изменится мощность излучения абсолютно черного тела, если длина волны, на которую приходится максимум его испускательной способности, увеличится в 2 раза?

Ответ: уменьшится в 16 раз.

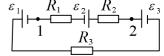
10. Активность A некоторого изотопа за 10 суток уменьшилась на 20%. Определить период полураспада этого изотопа. <u>Ответ</u>: 31 сут.

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Тело бросили под углом 60^0 к горизонту, сообщив ему скорость 20 m/c. Определите радиус траектории через одну секунду после броска. Ответ округлите до целого.

Ответ: 18 м.

2. Пуля массой $10 \ \varepsilon$ летящая горизонтально со скоростью $200 \ m/c$ попадает в середину однородного стержня, подвешенного шарнирно за один конец. Определите их общую угловую скорость после соударения. Масса стержня $240 \ \varepsilon$, длина $40 \ cm$.


<u>Ответ</u>: 100 *рад/с*.

3. Смесь газов состоит из 20 г водорода и 120 г неона. Определите удельную теплоемкость смеси газов при постоянном объеме.

4. Определить модуль работы изотермического сжатия газа совершающего цикл Карно, КПД которого η =0,3, если работа изотермического расширения равна 10 Дж. ε_{1} , R_{1} , ε_{2} , R_{2} , R_{3}

Ответ: 7Дж.

5. В трех вершинах квадрата со стороной 2 см находят-

ся одинаковые точечные заряды по 10нКл каждый. Определите модуль напряженности и потенциал поля в четвертой вершине.

Ответ: 42,3 кВ/м; 1,2кВ.

- 6. Определить разность потенциалов между точками 1 и 2 представленной цепи: ϵ_1 = 2,0 B, ϵ_2 = 5,0 B, ϵ_3 = 2,0 B, R_1 = 1,0 Om, R_2 = 2,0 Om, R_3 = 2,0 Om. Ответ: -4,4 B.
- 7. В однородном магнитном поле с индукцией 0,35 T_{n} равномерно с частотой n=480 об/мин вращается рамка, содержащая N=1500 витков площадью S=50 см². Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Определить максимальную ЭДС индукции, возникающую в рамке.

Ответ: 132 В.

- 8. Если интенсивность естественного света, проходящего через поляризатор и анализатор, уменьшается в 4 раза, то угол между их главными плоскостями равен Ответ: 45° .
- 9. При исследовании фотоэффекта с поверхности цинка (A_B =4эB) установлено, что при изменении частоты падающего света в 1,2 раза для прекращения фотоэффекта необходимо увеличить задерживающее напряжение в 1,6 раза. Определите частоту излучения в первом эксперименте.

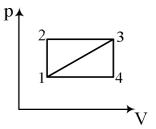
Ответ: 1,45·10¹⁵Гц.

10. Электрон выбит из атома водорода, находящегося в основном состоянии, фотоном с энергией ε =17,7эB. Определите скорость электрона за пределами атома.

Ответ: 1,2 м/с.

7.2.3 Примерный перечень заданий для решения прикладных задач

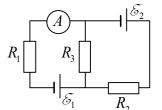
1. Во сколько раз модуль нормального ускорения точки, лежащей на ободе колеса, больше тангенциального ускорения в момент времени, когда полное ускорение составляет угол 30° с направлением линейной скорости.


Ответ: 0,58

2. Пуля массой $10 \ \varepsilon$ летящая горизонтально со скоростью $200 \ m/c$ попадает в середину однородного стержня, подвешенного шарнирно за один конец. На какой угол отклонится в результате соударения стержень? Масса стержня $240 \ \varepsilon$, длина $40 \ cm$.

<u>Otbet</u>: α =0,93 $pa\partial$ = 53⁰.

3. КПД тепловой машины, работающей по циклу 1-2-3-1 равен η_{θ} (см. рисунок). Найти КПД η тепловой машины, работающей по циклу 1-3-4-1.


$$\underline{\text{OTBET:}} \ \eta = \frac{\eta_0}{1 - \eta_0}.$$

4. Электрическое поле создается бесконечно длинной заряженной нитью с линейной плотностью τ =-2 nKn/cm. Какую скорость приобретет электрон, удалившись под действием поля вдоль линии напряженности с расстояния $r_1 = 1$ cm до $r_2 = 2$ cm?

Ответ: 3 Мм/с.

 $\overline{5}$. Батареи имеют ЭДС 110В и 220В, сопротивления $R_1=R_2=100~Om,~R_3=500~Om$ (см. рис.). Найти показание амперметра. <u>Ответ:</u> 0,4А.

6. По проводнику, изогнутому как показано на рисунке течет ток I . Запишите в1ыражение для модуля магнитной индукции в точке O.

Ответ:
$$\frac{\mu_0 I}{8R}$$

7. Ток в колебательном контуре зависит от времени как $I=I_m\sin\omega_0 t$, где $I_m=90$ мA, $\omega_o=4,5\cdot 10^{-3}c^{-1}$. Емкость конденсатора C=0,50м $\kappa\Phi$. Найти индуктивность контура и напряжение на конденсаторе в момент t=0.

Ответ: L=1м Γ н, $U_m=0,4B$.

8. Монохроматическое излучение с длиной волны, равной $500 \, нм$, падает нормально на плоскую зеркальную поверхность и давит на нее с силой $10 \, нH$. Определите число фотонов, ежесекундно падающих на эту поверхность.

<u>Ответ:</u> 3,8·10¹⁸.

9. Определить скорость электронов, бомбардирующих антикатод рентгеновской трубки, если коротковолновая граница сплошного рентгеновского спектра равна 1 *нм*.

Ответ: 20 Мм/с.

10. Электрон находится в одномерном потенциальном ящике шириной 1 нм в основном состоянии. Определите вероятность обнаружить электрон в крайней четверти ящика.

Ответ: 9%.

7.2.4 Примерный перечень вопросов для подготовки к зачету **2** семестр

- 1. Электростатическое поле в вакууме и его характеристики (напряженность и потенциал). Принцип суперпозиции полей.
- 2. Теорема Гаусса для электростатического поля в вакууме.
- 3. Работа электростатического поля. Теорема о циркуляции вектора напряженности электростатического поля.

- 4. Проводники в электростатическом поле. Электроемкость уединенного проводника. Электроемкость конденсатора. Энергия конденсатора.
- 5. Электрическое поле в диэлектрике. Поляризация диэлектрика. Теорема Гаусса для электрического поля в диэлектрике.
- 6. Постоянный электрический ток и его характеристики. Законы постоянного тока.
- 7. Магнитное поле в вакууме. Магнитная индукция. Принцип суперпозиции полей.
- 8. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля прямого и кругового токов.
- 9. Теорема Гаусса и теорема о циркуляции вектора магнитной индукции. Поле солено-ида и поле тороида.
- 10. Действие магнитного поля на движущийся заряд, проводник с током и рамку с током.
- 11. Магнитное поле в веществе. Магнитные моменты атомов. Намагниченность. Теорема о циркуляции для магнитного поля в веществе. Напряженность магнитного поля. Магнитная проницаемость.
- 12. Диа- и парамагнетики. Ферромагнетики. Кривая намагничивания. Магнитный гистерезис. Точка Кюри
- 13. Закон электромагнитной индукции. Самоиндукция, индуктивность. Взаимная индукция. Энергия магнитного поля.
- 14. Уравнения Максвелла в интегральной форме.
- 15. Продольные и поперченные волны в упругой среде. Характеристики волн. Уравнение плоской волны. Волновое уравнение. Интерференция света. Расчет интерференционной картины от двух источников.
- 16. Интерференция в тонких пленках. Полосы равного наклона и равной толщины. Кольца Ньютона.
- 17. Дифракция Френеля на круглом отверстии и на круглом непрозрачном диске.
- 18. Дифракция Фраунгофера на щели.
- 19. Дифракционная решетка и ее характеристики.
- 20. Поляризация света. Закон Малюса. Степень поляризации. Закон Брюстера.

7.2.5 Примерный перечень вопросов для подготовки к экзамену 1 семестр

- 1. Кинематика материальной точки и поступательного движения твердого тела.
- 2. Инерциальные системы отсчета. Законы Ньютона.
- 3. Импульс тела. Законы изменения и сохранения импульса тела.
- 4. Механическая работа. Кинетическая энергия и ее связь с работой внешних и внутренних сил.
- 5. Потенциальная энергия. Связь силы и потенциальной энергии
- 6. Закон сохранения и превращения механической энергии
- 7. Момент импульса частицы. Законы изменения и сохранения момента импульса частицы.
- 8. Момент инерции твердого тела. Расчет момент инерции тел правильной формы. Теорема Штейнера.
- 9. Момент силы. Основной закон динамики вращательного движения твердого тела.
- 10. Момент импульса твердого тела. Закон изменения и сохранения момента импульса.
- 11. Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний и его решение.
- 12. Дифференциальное уравнение затухающих колебаний и его решение. Характеристики затухающих колебаний.
- 13. Дифференциальное уравнение вынужденных колебаний и его решение. Резонансные кривые.
- 14. Физический маятник.

- 15. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа. Газовые законы.
- 16. Распределение Максвелла и распределение Больцмана. Барометрическая формула.
- 17. Явления переноса.
- 18. Основы термодинамики. Внутренняя энергия идеального газа. Работа термодинамической системы. Количество теплоты. Теплоемкость. Первый закон термодинамики и его применение к изопроцессам.
- 19. Обратимые и необратимые процессы. Циклические процессы. Цикл Карно. Коэффициент полезного действия тепловых машин. Второй закон термодинамики
- 20. Энтропия и ее статистическая интерпретация. Возрастание энтропии при неравновесных процессах. Границы применимости второго закона термодинамики.

3 семестр

- 1. Тепловое излучение. Основные характеристики теплового излучения.
- 2. Закон Кирхгофа. Спектр и законы излучения абсолютно черного тела.
- 3. Квантовая гипотеза. Формула Планка. Оптические пирометры
- 4. Фотоны. Масса и импульс фотона. Давление света.
- 5. Внешний фотоэффект. Законы Столетова. Уравнение Эйнштейна.
- 6. Эффект Комптона.
- 7. Волновые свойства частиц. Гипотеза де Бройля. Плоская волна де Бройля. Экспериментальные подтверждения волновых свойств частиц.
- 8. Соотношения неопределенностей Гейзенберга.
- 9. Волновая функция и ее статистическое толкование.
- 10. Уравнение Шредингера. Собственные значения энергии. Собственные функции.
- 11. Движение свободной частицы.
- 12. Частица в одномерной потенциальной яме. Квантование энергии. Принцип соответствия Бора.
- 13. Гармонический осциллятор.
- 14. Прохождение частицы через одномерный потенциальный барьер, туннельный эффект.
- 15. Квантово-механическая модель атома водорода. Квантовые числа электрона в атоме водорода. Схема энергетических уровней атома водорода. Правила отбора.
- 16. Рентгеновские лучи. Сплошной спектр и характеристическое излучение. Закон Мозли.
- 17. Состав и характеристики атомного ядра. Ядерные силы. Дефект масс. Энергия связи. Удельная энергия связи.
- 18. Радиоактивность. Закон радиоактивного распада.
- 19. Виды и законы радиоактивных процессов.
- 20. Ядерные реакции. Законы сохранения в ядерных реакциях. Деление ядер. Синтез ядер.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 12 заданий, как базового уровня сложности, так и повышенного. Время выполнения 60 минут. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 4 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 4 до 6 баллов
 - 3. Оценка «Хорошо» ставится в случае, если студент набрал от 7 до 9 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 10 до 12 баллов.

7.2.7 Паспорт оценочных материалов

/.2./ Паспорт оценочных материалов				
№ п/п	ны	Код контролируемой компе- тенции	Наименование оценочного средства	
1	Механика	ОПК-1 ОПК-8	Тест Контрольные задания для защиты лабораторных работ Устный опрос	
2	Механические колебания и волны	ОПК-1 ОПК-8	Тест Контрольные задания для защиты лабораторных работ Устный опрос	
3	Молекулярная физика и термодинамика	ОПК-1 ОПК-8	Тест Контрольные задания для защиты лабораторных работ Устный опрос	
4	Электростатика и по- стоянный ток	ОПК-1 ОПК-8	Тест Контрольные задания для защиты лабораторных работ Устный опрос	
5	Электромагнетизм	ОПК-1 ОПК-8	Тест Контрольные задания для за- щиты лабораторных работ Устный опрос	
6	Геометрическая и волновая оптика	ОПК-1 ОПК-8	Тест Контрольные задания для защиты лабораторных работ Устный опрос	
7	Квантовая физика	ОПК-1 ОПК-8	Тест Контрольные задания для защиты лабораторных работ Устный опрос	
8	Ядерная физика	ОПК-1 ОПК-8	Тест Контрольные задания для защиты лабораторных работ Устный опрос	

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование (по теме или итоговое) осуществляется, либо при помощи компьютерной системы тестирования (в семестре), либо с использованием тест-заданий на бумажном носителе. Время тестирования 60 минут. Затем осуществляется проверка теста (автоматически программой) или экзаменатором и выставляется оценка согласно критериям. Тесты содержат задачи, как базового уровня сложности, так и повышенного.

К каждой лабораторной работе предложены пять вариантов по пять заданий, содержащих один теоретический вопрос и несколько качественных задач по теме лабораторной работы. Задания выполняются студентом дома. На занятии ведется устный опрос по решенным вариантам.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Перечень учебной литературы, необходимой для освоения дисциплины

Основная литература				
	Трофимова Т. И.			
8.1.1	Курс физики: Учеб. пособие 15-е изд., стереотип М.: Академия, 2007 560 с.			
0.1.2	ISBN 978-5-7695-4565-8 : 495-00.			
8.1.2	Савельев И.В. Курс общей физики: В 5 кн.: https://e.lanbook.com/books/918			
8.1.3	Савельев И.В.			
8.1.3	Курс общей физики : В 5 кн.: Учеб. пособие. Кн.1 : Механика М. : Астрель: АСТ, 2005 336 с. : ил ISBN 5-17-002963-2 : 131-00.			
0.1.4	Савельев И.В.			
8.1.4	Курс общей физики : В 5 кн.: Учеб. пособие. Кн.2 : Электричество и магнетизм М. : Астрель: АСТ, 2005 336 с. : ил ISBN 5-17-003760-0 : 131-00.			
8.1.5	Савельев И.В.			
0.1.3	Курс общей физики: В 5 кн.: Учеб. пособие. Кн. 3: Молекулярная физика и термодинамика М.: Астрель: АСТ, 2005 208 с.: ил ISBN 5-17-004585-9: 131-00.			
016	Савельев И.В.			
8.1.6	Курс общей физики: В 5 кн.: Учеб. пособие. Кн.4: Волны. Оптика М.: Астрель:			
	ACT, 2005 256 с. : ил ISBN 5-17-004586-7 : 131-00.			
	Савельев И.В.			
8.1.9	Курс общей физики: В 5 кн.: Учеб. пособие. Кн. 5: Квантовая оптика. Атомная фи-			
	зика. Физика твердого тела. Физика атомного ядра и элементарных частиц М. :			
	Астрель: ACT, 2005 368 с ISBN 5-17-004587-5 : 131-00.			
Допол	нительная литература			
	Москаленко А.Г.			
8.1.10	, , , , , , , , , , , , , , , , , , , ,			
	А.А. Щетинин. Воронеж: ГОУВПО "Воронежский государственный техниче-			
	ский университет", 2010. 190 с.			
	Дубовицкая Т.В.			
8.1.11	Молекулярная физика и термодинамика [Текст]: учебное пособие / Дубовицкая Т.			
	В., Москаленко А.Г., Татьянина Е.П., Тураева Т.Л. / ФГБОУ ВО "Воронеж. гос. техн.			
	ун-т" Воронеж: Воронежский государственный технический университет, 2018			
	90 с Библиогр.: с. 87 (12 назв.) ISBN 978-5-7731-0696-8 : 350 экз.			
	Москаленко А.Г.			
8.1.12	Общий курс физики. Квантовая физика. Квантовая механика. Основы квантовой статистики и физики твердого тела: Учеб. пособие 3-е изд., перераб. и доп Воронеж			
	: ГОУВПО "Воронежский государственный технический университет", 2008 207 с.			
	- 39-00.			
	Москаленко А. Г.			
8.1.13	Колебания и волны: / А. Г. Москаленко, Е. П. Татьянина, И. М. Трегубов, Т.			
0.1.13	Л. Тураева - Воронеж: ФГБОУ ВО «Воронежский государственный технический			
	университет», 2018 ISBN 978-5-7731-0670-8			
	Москаленко А. Г.			
0114	Основы квантовой статистики и физики твердого тела :/ А.Г. Москаленко, М.Н.			
8.1.14	Гаршина, Е.П. Татьянина и др. ФГБОУ ВО "Воронеж. гос. техн. ун-т", каф. физики			
	Воронеж: Воронежский государственный технический университет, 2017 109 с. :			
	ил Библиогр.: с. 154-174 (221 назв.).			
0 1 15	243-2010 Механика. Методические указания к выполнению лабораторных работ по			
8.1.15	дисциплине "Общая физика" для студентов всех специальностей очной формы обу-			
	чения / Учебно-лабораторный центр кафедр общей физики; Сост.: А. Г. Москаленко,			
	* * * * * * * * * * * * * * * * * * *			

	W L C L W D W D TOWNER TO THE		
	И. А. Сафонов, Н. В. Матовых Воронеж: ГОУВПО "Воронежский государственный технический университет", 2010 45 с 00-00.		
	31-2014 Методические указания к выполнению лабораторных работ по разделу "Мо-		
	лекулярная физика и термодинамика" для студентов всех технических направлений и		
8.1.16	специальностей очной формы обучения / Каф. физики; Сост.: А. Г. Москаленко, М.		
	Н. Гаршина, Н. В. Матовых, Т. Л. Тураева, Б. Г. Суходолов Воронеж : ФГБОУ		
	ВПО "Воронежский государственный технический университет", 2014 44 с 00-		
	00; 154 экз.		
	153-2016 Методические указания к выполнению лабораторных работ по теме «Меха-		
	нические колебания и волны» дисциплины «Физика» для студентов всех техниче-		
8.1.17	ских направлений и специальностей очной формы обучения / Каф. физики; Сост.:		
	А.Г. Москаленко, Н.В. Матовых, М.Н. Гаршина, Е.П. Татьянина Электрон. тексто-		
	вые, граф. дан. (515 Кб) Воронеж : ФГБОУ ВО "Воронежский государственный		
	технический университет", 2016 1 файл 00-00.		
	389-2010 Контрольные задания для зачета по лабораторным работам по дисциплине		
8.1.18	"Физика", "Механика. Молекулярная физика и термодинамика" для студентов всех		
	специальностей очной формы обучения / Каф. общей физики; Сост.: А. Г. Москален-		
	ко, М. Н. Гаршина, Е. П. Татьянина, С. В. Бурова Воронеж : ГОУВПО "Воронежский государственный технический университет", 2010 61 с 50 экз., 00-00.		
	45-2014 Фонд оценочных средств по физике. Механика, молекулярная физика и тер-		
0.1.1.	модинамика / Каф. физики; Сост.: А. Г. Москаленко, Т. Л. Тураева, Е. П. Татьянина,		
8.1.19	Е. Н. Понамаренко Электрон. текстовые, граф. дан. (5, 27 Мб) Воронеж : ФГБОУ		
	ВПО "Воронежский государственный технический университет", 2014 1 файл 00-		
	00.		
	139-2013 Методические указания к лабораторным работам по разделу "Электриче-		
8.1.20	ство" дисциплины "Физика" / Каф. физики; Сост.: А. Г. Москаленко, Т. Л. Тураева,		
0.1.20	Н. В. Матовых, А. Ф. Татаренков, И. А. Сафонов Электрон. текстовые, граф. дан. (
	1 Мб) Воронеж: ФГБОУ ВПО "Воронежский государственный технический уни-		
	верситет", 2013 1 файл 00-00.		
0.1.01	128-2014 Методические указания к выполнению лабораторных работ по теме "Элек-		
8.1.21	тромагнетизм" / Каф. физики; Сост.А. Г. Москаленко, Т. Л. Тураева, Н. В. Матовых,		
	М. Н. Гаршина, А. Ф. Татаренков, О. И. Ремизова Воронеж : ФГБОУ ВПО "Воро-		
	нежский государственный технический университет", 2014 55 с 00-00; 154 экз.		
8.1.22	123-2014 Методические указания к лабораторным работам по волновой оптике по дисциплине "Физика" / Каф. физики; Сост.А. Г. Москаленко, Т. Л. Тураева, Е. П. Та-		
0.1.22	тьянина, Н. В. Матовых, А. Ф. Татаренков Воронеж: ФГБОУ ВПО "Воронежский		
	государственный технический университет", 2014 31 с 00-00; 154 экз.		
	235-2011 Электричество. Магнетизм. Волновая оптика: Контрольные задания для		
0.1.22	зачета по лабораторным работам по дисциплине "Физика" / Каф. общей физики;		
8.1.23	Сост.: А. Г. Москаленко, М. Н. Гаршина, Е. П. Татьянина, С. В. Бурова Электрон.		
	текстовые, граф. дан. (3,7 Мб) Воронеж : ФГБОУ ВПО "Воронежский государ-		
	ственный технический университет", 2011 1 файл 00-00.		
8.1.24	38-2015 Электростатика. Постоянный ток. Электромагнетизм: Контрольные задания		
0.1.27	по лабораторным работам по дисциплине "Физика" / ФГБОУ ВПО "Воронежский		
	государственный технический университет", 2015 1 файл 00-00.		
	210-2010 Методические указания к лабораторным работам по квантовой физике по		
8.1.25	дисциплине "Физика" / Учебно-лабораторный центр кафедр общей физики; Сост.: А.		
	Г. Москаленко, А. Д. Груздев, О. С. Хабарова, Е. П. Татьянина Воронеж : ГОУВПО		
	"Воронежский государственный технический университет", 2010 44 с 00-00.		
0 1 26	43-2014 Методические указания к лабораторным работам по физике атома и ядра для		
8.1.26	студентов всех технических направлений очной формы обучения / Каф. физики;		
	Сост.: А. Г. Москаленко, Т. Л. Тураева, О. С. Хабарова, Е. П. Татьянина, М. Н. Гар-		
	шина, А. А. Долгачев, Н. В. Матовых Воронеж: ФГБОУ ВПО "Воронежский госу-		

	дарственный технический университет", 2014 34 с 00-00; 154 экз.
	63-2013 Ядерная физика и элементарные частицы : Методические указания для само-
8.1.27	стоятельной работы и тестирования знаний по дисциплине "Физика" / Каф. физики;
	Сост.: А. Г. Москаленко, Е. П. Татьянина, М. Н. Гаршина. / Воронеж : ФГБОУ ВПО
	"Воронежский государственный технический университет", 2013 1 файл 00-00.
	48-2015 Квантовая оптика, физика атомов и ядер. Физика полупроводников: Кон-
	трольные задания для зачета по лабораторным работам по дисциплине "Физика" /
8.1.28	Каф. физики; Сост.: А. Г. Москаленко, М. Н. Гаршина, Е. П. Татьянина, Т. Л. Турае-
	ва, О. И. Ремизова Электрон. текстовые, граф. дан. (704 Кб) Воронеж : ФГБОУ
	ВПО "Воронежский государственный технический университет", 2015 1 файл 00-
	00.
	49-2015 Итоговые тесты по физике: Контрольные задания для всех технических
8.1.29	направлений и специальностей очной формы обучения / Каф. физики; Сост.: А. Г.
	Москаленко, М. Н. Гаршина, Е. П. Татьянина, Т. Л. Тураева, Е. Н. Пономаренко
	Электрон. текстовые, граф. дан. (4,6 Мб) Воронеж : ФГБОУ ВПО "Воронежский
	государственный технический университет", 2015 1 файл 00-00.

8.2. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационного-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Электронная информационная образовательная среда ВГТУ, код доступа: http://eios.vorstu.ru/ Программное обеспечение компьютеров для самостоятельной и аудиторной работы:

- Операционные системы семейства MSWindows;
- Пакет программ семейства MS Office;
- Пакет офисных программ OpenOffice;
- Программа просмотра файлов Djview;
- Программа просмотра файлов формата pdf AcrobatReader;
- Интернет-браузеры Mozilla Firefox, Google Chrome.

Используемые электронные библиотечные системы:

- Модуль книгообеспеченности АИБС «МАРК SQL», код доступа: http://bibl.cchgeu.ru/provision/struct/;
- Университетская библиотека онлайн, код доступа: http://biblioclub.ru/;
- ЭБС Издательства «ЛАНЬ», код доступа http://e.lanbook.com/;
- ЭБС IPRbooks, код доступа: http://www.iprbookshop.ru;
- научная электронная библиотека eLIBRARY.RU, код доступа: http://elibrary.ru/.

Информационные справочные системы:

- портал федеральных государственных образовательных стандартов высшего образования, код доступа http://fgosvo.ru;
- единое окно доступа к образовательным ресурсам, код доступа http://window.edu.ru/;
- открытый образовательный ресурс НИЯУ МИФИ, код доступа http://online.mephi.ru/;
- открытое образование, код доступа: https://openedu.ru/;
- физический информационный портал, код доступа: http://phys-portal.ru/index.html

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Специализированные лекционные аудитории 327 и 322, оснащенные оборудованием для лекционных демонстраций и проектором, стационарным экраном (учебный корпус, расположенный по адресу: Московский пр., 14)

Учебные лаборатории, оснащенные необходимым оборудованием:

- **Лаборатория "Механики и молекулярной физики"**, ауд. 320 (учебный корпус, расположенный по адресу: Московский пр., 14):
- баллистический маятник с набором пуль;
- машина Атвуда;
- установка для определения упругих характеристик материалов;
- установка для исследование движения тел в жидкостях;
- трифилярный подвес с набором дисков;
- маятник Максвелла;
- гироскоп;
- физический и упругий маятники;
- звуковые генераторы;
- стенды для выполнения лабораторного практикума по молекулярной физике и термодинамике;
- специализированная мебель, классная доска
 - **Лаборатория "Электромагнетизма и волновой оптики"**, ауд. 326 (учебный корпус, расположенный по адресу: Московский пр., 14):
- стенд для измерения тока зарядки/разрядки конденсатора;
- мостик Соти;
- стенды для исследования параметров простейших электрических цепей;
- магнетрон;
- соленоид;
- набор катушек индуктивности;
- осциллограф;
- стенды для исследования электромагнитных колебаний;
- установка для наблюдения колец Ньютона;
- источники света, набор дифракционных решеток, оптическая скамья, поляризаторы;
- специализированная мебель, классная доска
 - **Лаборатория "Электромагнетизма и волновой оптики"**, ауд. 319 (учебный корпус, расположенный по адресу: Московский пр., 14):
- Оптический пирометр ОППИР-09 для экспериментальной проверки закона Стефана-Больцмана.
- Универсальный монохроматор для изучения спектра водорода
- Установка для изучения опыта Франка-Герца.
- Установка для изучения эффекта Холла.
- Установка для изучения выпрямляющих свойств полупроводниковых диодов.
- Установка для изучения фотопроводимости в полупроводниках.
- Установка для изучения явления испускания света в полупроводниках.
- Установка для изучения радиоактивности.
- Установка для измерения поглощения бета-частиц. 10.
- Осциллограф одноканальный 25000

Дисплейный класс, оснащенный компьютерами с необходимым программным обеспечением ауд. 324, 322 (учебный корпус, расположенный по адресу: Московский пр., 14)

Аудитории для проведения практических занятий, оборудованные проекторами, стационарными экранами и интерактивными досками, ауд. 320а, 322 (учебный корпус, расположенный по адресу: Московский пр., 14) и другие учебные аудитории 317, 318, 323 и др. (учебный корпус, расположенный по адресу: Московский пр., 14)

Помещения для самостоятельной работы студентов:

- ауд. 324 (учебный корпус, расположенный по адресу: Московский пр., 14);

- библиотечный зал (учебный корпус, расположенный по адресу: Московский пр., 14, 1 этаж);
- читальный зал (учебный корпус, расположенный по адресу: Московский пр., 14, ауд 203)

Помещения для хранения и обслуживания оборудования: ауд. 316 (учебный корпус, расположенный по адресу: Московский пр., 14)

Оборудование для натурных лекционных демонстраций:

- Закон сохранения импульса
- Скамья Жуковского
- Маятник Максвелла
- Гироскоп
- Модель момента силы относительно точки и оси
- Прибор для демонстрации газовых законов
- Электрофорная машина
- Модель стоячей волны
- Набор опытов по интерференции света
- Набор опытов по дифракции света
- Набор опытов по поляризации света
- Модель поляризованного света
- Набор по флюоресценции
- Камера Вильсона

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

По дисциплине «Физике» читаются лекции, проводятся практические и лабораторные занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков решения задач. Занятия проводятся путем решения конкретных примеров задач в аудитории. Рассматриваются основные типы задач и методики их решений.

Лабораторные работы направлены на приобретение навыков проведения физического эксперимента, обработки результатов, оценки погрешности измерений. На занятиях лабораторного практикума идет практически индивидуальная работа с каждым студентом. Студенты получают экспериментальные подтверждения изучаемых физических законов. Обсуждаются и анализируются полученные результаты. В ряде случаев проводятся исследования физических явлений с использованием компьютерного моделирования. Перед выполнением работы проверяется готовность студента к ее выполнению, а после оформления работы проводится ее защита.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины осуществляется с помощью тестов, контрольных работ, устной беседы и итогового теста на экзамене.

Освоение дисциплины оценивается на зачете или экзамене.

Виды деятельности студента на различных этапах деятельности представлены в таблице

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последова-
	тельно фиксировать основные положения, выводы, формулиров-
	ки, обобщения; помечать важные мысли, выделять ключевые сло-
	ва, термины. Проверка терминов, понятий с помощью энциклопе-
	дий, словарей, справочников с выписыванием толкований в тет-
	радь. Обозначение вопросов, терминов, материала, которые вы-
	зывают трудности, поиск ответов в рекомендуемой литературе.
	Если самостоятельно не удается разобраться в материале, необхо-
	димо сформулировать вопрос и задать преподавателю на лекции,
	на практическом, лабораторном занятии или на консультации.
Лабораторная работа	Лабораторные работы позволяют научиться применять теорети-
	ческие знания, полученные на лекции и(или) при решении кон-
	кретных задач. Чтобы наиболее рационально и полно использо-
	вать все возможности лабораторных для подготовки к ним необ-
	ходимо: следует разобрать лекцию по соответствующей теме,
	ознакомиться с соответствующим разделом учебника, прорабо-
	тать дополнительную литературу и источники, подготовить кон-
	спект и подготовиться к получения допуска к выполнению рабо-
	ты по графику. Четко соблюдать график выполнения лаборатор-
	ных работ.
Самостоятельная	Самостоятельная работа студентов способствует глубокому усво-
работа	ения учебного материала и развитию навыков самообразования.
	Самостоятельная работа предполагает следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также изучение конспектов лекций;
	- выполнение домашних заданий;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпи-
	ад;
Поживания	- подготовка к промежуточной аттестации.
Подготовка к промежу-	Готовиться к промежуточной аттестации следует систематически,
точной аттестации	в течение всего семестра. Интенсивная подготовка должна
	начаться не позднее, чем за месяц-полтора до промежуточной ат-
	тестации. Во время сессии максимально эффективно использо-
	вать время для повторения и систематизации материала.

Лист регистрации изменений

№ п/п	Перечень вносимых изменений	Дата вне- сения из- менений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1	Актуализирован раздел 8.2 в ча-	31.08.2019	
	сти состава используемого лицен-		
	зионного программного обеспече-		\mathcal{A}
	ния, современных профессио-		- 12y 1.
	нальных баз данных и справочных		/ / '
	информационных систем		
2	Актуализирован раздел 8.2 в ча-	31.08.2020	
	сти состава используемого лицен-		10
	зионного программного обеспече-		rath.
	ния, современных профессио-		- 1/2/ /
	нальных баз данных и справочных		
	информационных систем		