МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан факультета К.А.Скляров «30» августа 2019 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Механика и технологии»

Направление подготовки 27.03.05 ИННОВАТИКА

Профиль

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2017

Автор программы

/ С.С.Глазков /

Заведующий кафедрой Строительной техники и инженерной механики

Руководитель ОПОП

Воронеж 2019

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Механика и технологии – является одной из фундаментальных общенаучных дисциплин физико-математического и технического циклов. Изучение данной дисциплины призвано дать студентам представление о роли механики в создании новых промышленных технологий, в том числе в строительстве. Должно способствовать приобретению теоретических знаний, необходимых выполнения функций менеджера ДЛЯ технико-экономическому сопровождению процессов создания новых промышленных технологий, начиная с научно-исследовательских разработок, и кончая промышленным освоением.

1.2. Задачи освоения дисциплины

- Дать студенту первоначальные представления о постановке инженерных и технических задач, их формализации, выборе модели изучаемого механического явления в технологии.
- Привить навыки использования математического аппарата для решения инженерных задач в области механики.
- Освоить методы статического расчета различных конструкций и их элементов.
- Изучить основные прикладные направления механики, используемые при создании новых технологий.
- получить знания о современных промышленных технологиях и инновационных направлениях развития.
- Развитие логического мышления и творческого подхода к решению профессиональных задач.

В итоге изучения курса механики и технологии студент должен знать ос-новные понятия и законы механики, вытекающие из этих законов методы изучения равновесия материальной точки, твердого тела, механической системы и освоить принципы блочной оптимизации технологических схем производства материального, энергетического и интеллектуального продукта.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Механика и технологии» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Механика и технологии» направлен на формирование следующих компетенций:

ОПК-4 - способностью обосновывать принятие технического решения при разработке проекта, выбирать технические средства и технологии, в том числе с учетом экологических последствий их применения

Компетенция	Результаты обучения, характеризующие
Кишнетенция	сформированность компетенции

ОПК-4	знать:				
	общие принципы инженерных расчетов; основные				
	понятия и законы механики; принципы и методы				
	расчетов на прочность, жесткость и устойчивость;				
	физико-химические основы промышленных				
	технологий				
	уметь:				
	в рамках статического рассмотрения провести расчет на				
	устойчивость механических систем, выбрать				
	необходимые блоки для реализации технологии нового				
	материального, энергетического и интеллектуального				
	продукта; выполнить анализ потенциала инноваций;				
	провести сравнительную оценку вариантов реализации				
	инноваций				
	владеть:				
	навыками использования методов теоретической				
	механики при решении практических задач; методами				
	теоретического и экспериментального исследования в				
	механике и технологии, инструментальными				
	средствами анализа (моделирования) проекта и				
	решения типовых задач анализа и оптимизации;				
	методами анализа привлекательности и экономической				
	эффективности инновационных проектов				

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Механика и технологии» составляет 5 з.е.

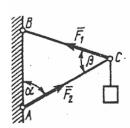
Распределение трудоемкости дисциплины по видам занятий очная форма обучения

Day ya ya ƙaray na ƙaray	Всего	Семестры
Виды учебной работы	часов	3
Аудиторные занятия (всего)	108	108
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	36	36
Курсовая работа	+	+
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) Содержание разделов дисциплины и распределение **5.1** трудоемкости по видам занятий

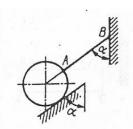
очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего,
1	Основные понятия, определения статики. Способы сложения сил.	Предмет механики. Статика, кинематика, динамика – разделы механики. Механика как одна из фундаментальных физико-математических наук и научная база большинства областей современной техники. Предмет статики. Основные понятия статики. Аксиомы статики. Виды связей, их реакции.	4	2	4	2	12
2	Основные понятия, определения статики. Способы сложения сил.	Проекция силы на ось. Геометрический и аналитический способы сложения сил. Сходящиеся силы, их равнодействующая. Геометрическое условие равновесия системы сходящихся сил, аналитические условия равновесия.	4	2	4	2	12
3	Теоремы и леммы статики. Понятие о статически определимых и неопределимых системах.	Произвольная плоская система сил. Алгебраическое значение момента силы и пары сил. Распределенная нагрузка. Аналитические условия равновесия параллельной и произвольной плоской системы сил. Статически определимые и статически неопределимые системы.		2	4	2	12
4	Теоремы и леммы статики. Понятие о статически определимых и неопределимых системах.	Понятие о ферме. Леммы о нулевых стержнях. Определение усилий в стержнях плоской фермы способом вырезания узлов и способом сечений (Риттера).		2	4	2	12
5	Система сил, расположенных в одной плоскости. Трение и центр тяжести.	Равновесие при наличии сил трения. Трение скольжения при покое (сцепление) и при движении. Коэффициент трения. Равновесие гибкой нити, формула Эйлера.	4	2	4	2	12
6	Система сил, расположенных в одной плоскости. Трение и центр тяжести.	Центр тяжести твердого тела; центр тяжести объема, площади, линии. Способы определения положений центров тяжести тел.	4	2	4	2	12
7	Введение в технологию производства инновационной продукции.	Предмет технологии. Задачи технологии. Типы технологических схем. Принципы блочного проектирования технологических схем.	2	4	2	4	12
8	Введение в технологию	Основные блоки производства материального, энергетического и	2	4	2	4	12


	производства	интеллектуального продукта.					
	инновационной	Материальный и энергетический					
	продукции.	балансы в технологических схемах.					
		Понятия о безотходных					
		технологиях: технология					
		рекуперации вторичных материалов					
9	Технологии	промышленности.					
,		Композитные материалы. Механика					
	производства	и технология. Определения и					
	материальной,	классификация. Ингредиенты. Виды	2	4	2	4	12
	энергетической и	матриц. Жесткость и прочность					
	интеллектуальной	композитов.					
10	продукции.	10					
10	Технологии	Композитные материалы. Механика					
	производства	и технология. Определения и					
	материальной,	классификация. Ингредиенты. Виды	2	4	2	4	12
	энергетической и	матриц. Жесткость и прочность					
	интеллектуальной	композитов.					
1.	продукции.						
11	Принципы решения	Методология создания гибких					
	оптимизационных задач	химических производств.					
	при выборе	Теоретические основы					
	технологического	моделирования гибких					
	оформления	автоматизированных химических	2	4	2	4	12
	производства	производств. Виды математических					
		моделей. Иерархическая структура					
		моделей гибкой технологической					
		системы (ГТС).					
12	Принципы решения	Методология создания гибких					
	оптимизационных задач	химических производств.					
	при выборе	Теоретические основы					
	технологического	моделирования гибких					
	оформления	автоматизированных химических	2	4	2	4	12
	производства	производств. Виды математических					
		моделей. Иерархическая структура					
		моделей гибкой технологической					
		системы (ГТС).					
	-	Итого	36	36	36	36	144

5.2 Перечень лабораторных работ

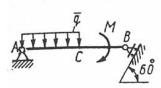
6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ


Примерная тематика и содержание РГР

1. Равновесие системы сходящихся сил

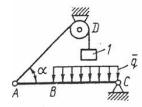
1.2.5

Шарнирный трехзвенник ABC удерживает в равновесии груз, подвешенный к шарнирному болту C. Под действием груза стержень AC сжат силой $F_2=25$ Н. Заданы углы $\alpha=60^\circ$ и $\beta=45^\circ$. Считая стержни AC и BC невесомыми, определить усилие в стержне BC.

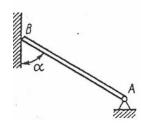


1.2.15

Однородный шар весом 12 Н удерживается в равновесии на гладкой наклонной плоскости с помощью веревки AB. Определить давление шара на плоскость, если угол $a = 60^{\circ}$.

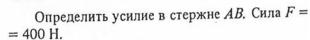

2. Равновесие произвольной плоской системы сил

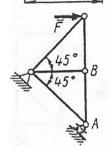
2.4.4


Определить момент M пары сил, при котором реакция опоры B равна 250 H, если интенсивность распределенной нагрузки q=150 H/м, размеры AC=CB=2 м.

2.4.10

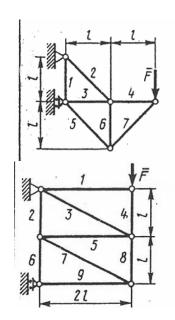
Балка AC закреплена в шарнире C и поддерживается в горизонтальном положении веревкой AD, перекинутой через блок. Определить интенсивность распределенной нагрузки q, если длины BC=5 м, AC=8 м, угол $\alpha=45^\circ$, а вес груза l равен 20 H.


2.4.15


Конец B однородного бруса весом 100 кH, закрепленного в шарнире A, опирается на гладкую стену. Определить в кH давление бруса на стену, если угол $\alpha = 60^{\circ}$.

3. Расчет плоских ферм (метод вырезания узлов)

4.2.10



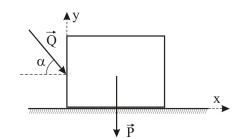
4.2.19

Определить усилие в стержне AB. Сила F = 400 H.

4. Расчет плоских ферм (метод сквозных сечений)

4.3.4

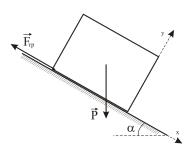
Определить усилие в стержне 3. Сила F = 460 H.


4.3.10

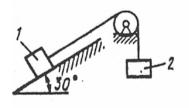
Определить усилие в стержне 8. Сила $F=260~\mathrm{H}$.

5. Трение скольжения

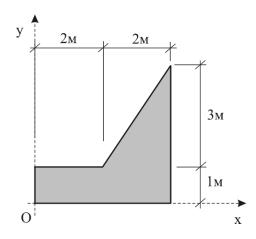
Дано: P = 10 кH; Q = 2 кH; $\alpha = 30^{\circ}$; коэффициент трения f = 0.2.


Будет ли тело находиться в равновесии?

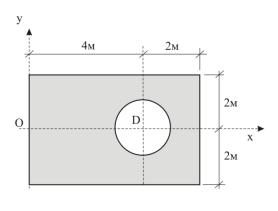
Сила трения равна...


Дано: P = 10 кH; $\alpha = 30^{\circ}$; коэффициент трения f = 0.4.

Будет ли тело находиться в равновесии?



Сила трения равна...

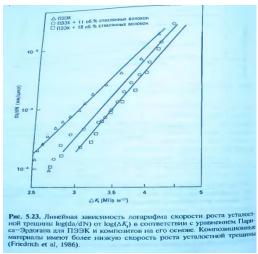

Каким должен быть наибольший вес груза 2, для того, чтобы груз I весом $100~\rm{H}$ оставался в покое на наклонной плоскости, если коэффициент трения скольжения f=0,3.

6. Центр тяжести плоских фигур

Координата y_c центра тяжести однородной пластины равна...

Радиус круглого выреза равен r=1 м.

Координата x_c центра тяжести однородной пластины равна...


- 7. Основные понятия технологии производства материальной, энергетической и интеллектуальной продукции
 - 7.1. Понятия и термин, применение термина, история.
- 7.2. Классификация технологий: металлургия, машиностроительные транспорт, технологии, электричество, акустика, электроника, биотехнология, нанотехнология, космические технологии, военные технологии. информационные технологии, телекоммуникационные технологии, инновационные технологии.
 - 7.3. Жизненный шикл технологии
 - 7.4. Типы потребителей технологии
- 7.1. Назовите виды продукта от возможности использования потребителем
 - 7.2. Перечислите характерные признаки сложных систем
 - 7.3. Охарактеризуйте среду описания технологий
 - 7.4. Роль инновационного менеджмента в производственных технологиях
 - 7.5. Особенности технологии производства энергетических продуктов
- 7.6. Почему возникает двойственность толкования природы процесса познания
 - 7.7. Раскройте содержание цикличности в технологии исследования
- 7.8. В чем сущность эндогенных и экзогенных факторов технологических изменений
- 7.9. Назовите различия и сходства понятий аксиометрической и профессиональной технологии.
 - 8. Материальный баланс технологического процесса
- 8.1. В отделочном цехе строительного предприятия при производстве тротуарной плитки получено 96 кг основ плиток. Для их покрытия водоустойчивыми оболочками взято 5 кг вспомогательных веществ. После формирования оболочки масса готового продукта составила 100 кг. Составьте уравнение материального баланса на стадии покрытия плиток

водоотталкивающими оболочками. Рассчитайте выход, трату и расходный коэффициент.

- 8.2. В цехе строительного предприятия при производстве сухой смести для приклеивания керамической плитки израсходовано 10 кг метилцеллюлозы, 10 кг цинка оксида и 80 кг цемента. Получено 95 кг готового продукта. Составьте уравнение материального баланса. Рассчитайте выход, трату, расходный коэффициент и расходные нормы для получения 1 т клея.
- 8.3. В цехе фармацевтического предприятия при производстве препарата «Гальманин» (Galmaninum) израсходовано кислоты салициловой 2 кг, цинка оксида 10 кг, талька 44 кг, крахмала 44 кг. Получено 97 кг готового продукта. Составьте уравнение материального баланса. Рассчитайте выход, трату, расходный коэффициент и расходные нормы для получения 1 000 кг препарата.
- 8.4. В цехе предприятия по производству отделочных материалов при производстве фасадной вододисперсионной краски израсходовано синтетического акрилового латекса и очищенного мела по 20 кг, титановых и цинковых белил— по 10 кг, воды 40 кг. Получено 98 кг готового продукта. Составьте уравнение материального баланса. Рассчитайте выход, трату, расходный коэффициент и расходные нормы для получения 1 т краски.
- 8.5. При изготовлении 10 кг малярного скотча сложного получено 8 кг готового продукта. Составьте материальный баланс, рассчитайте выход, трату, расходный коэффициент и расходные нормы на получение 100 кг скотча.
 - 9. Проектирование композиционных материалов
- 9.1. Модуль сдвига какого композита выше медь-окись кремния (волокно), никель-окись кремния (волокно)? Доля волокна одинакова (0,2).
- 9.2. Какой материал вы применили бы для работы при 1750°C в агрессивной окислительной среде? Какие тип материала и характер армирования вы выберите? Обоснуйте ответ.
- 9.3. Как повысить вязкость разрушения волокнистого композита? При каких условиях граничная энергия равна внутренней энергии системы?
- 9.4. Какие типы связей характерны для элементов и соединений? Расположите их по возрастанию энергии связи. Какие типы связей характерны для керамик?
- 9.5. На подложку никеля наносят тонкую защитную аморфную пленку SiC>2. Напишите в порядке возрастания межфазной энергии системы SiO2/(100)Ni, SiO2/(110)Ni, SiO2/(110)Ni. Обоснуйте ответ.
- 9.6. При каких условиях имеет место адгезионный характер разрушения, а при каких когезионный?
- 9.7. Как путем легирования матрицы увеличить термическую стабильность и изменить межфазное взаимодействие для композита титан-молибден (волокно)?
 - 9.8. Чем отличаются друг от друга ультра- и инфракерметы? В каких

условиях лучше использовать ультра -, а в каких инфракерметы?

- 9.9. Какими способами можно повысить ударную прочность волоконного композита, работающего при температуре 100-200°C.
- 9.10. Определите соотношения между модулями упругости вдоль и поперек волокон для композитов A1-S1O2 (волокно), Ni-SiO2 (волокно). Доля волокна 0.2.
- 9.11. От чего зависит пропитка пористых материалов? Какой жидкий металл, с какими характеристиками лучше выбрать для пропитки пористого вольфрама?
- 9.12. Как повысить стабильность перспективного композита алюминий (матрица) бор (волокна), полученного методом жидкофазной пропитки, если известно, что они активно взаимодействуют друг с другом и прочность соединения на границе ухудшается?

- 9.13. Изделие должно быть сделано из пластика. По предварительным данным, в качестве матрицы нужно использовать эпоксидную смолу или ПЭЭК. Изделие вероятно, будет эксплуатироваться в сырых условиях при температуре 100 °C. Какую матрицу Вы выбрали бы? Объясните свой выбор.
- 9.14. Деталь сделана из ПЭЭК, армированного 18 об. % коротких стекловолокон. В детали обнаружена трещина длиной 2 мм. Вычисления показали, что катастрофическое разрушение произойдет, когда трещина вырастет до 14 мм. В процессе эксплуатации деталь испытывает циклические нагрузки с частотой 5 Гц и амплитудой изменения коэффициента интенсивности напряжения в кончике трещины 3,5 Мпа/м² независимо от ее длины. Оцените, выдержит ли она эксплуатации. В течении 20 дней. Используйте данные рис. 5.23.
- 9.15. Сфера имеет диаметр 250 мм и толщину 10 мм. Она изготовлена из изотропного материала с модулем упругости 70 Гпа и коэффициентом Пуассона 0,33. Вычислите изменение диметра сферы под влиянием давления 0,75 Мпа.
- 9.16. Предел текучести тонкого полимерного листа при одноосном растяжении равен 56 Мпа. После приложения к полимеру напряжений σ_x =40, σ_y =20 и τ_{xy} =25 МПа он разрушился. Модуль упругости Е-3Гпа и μ =0,35.

Определите критерий разрушения полимера (критического главного напряжения или фон Мизеса).

- 10. Элементы моделирования и оптимизации технологических схем
- 10.1. Гибкие автоматизированные производственные системы в технологии. Необходимость и целесообразность создания ГП, этапы разработки и технико-экономическое обоснование.
- 10.2. Основные понятия и определения. Понятие технологической операции, технологической стадии, технологического процесса, модуля, блока, технологической системы (ТС). Многоассортиментные технологические системы: индивидуальные, совмещенные, гибкие. Понятие гибкости и ее виды.
- 10.3. Классификация производств. Критерии оценки работы схем. Способы организации гибких производств: периодические, полунепрерывные. Специфика периодических процессов, их отличия от непрерывных.
- 10.4. Типовая структура ГАПС в технологии. Подсистемы: технологическая, транспортная, складская, информационно-управляющая. Иерархичность построения основных подсистем. Модульный принцип организации. Аппаратурное оформление и организационная структура функционирования гибких производств.
- 10.5. Современные подходы к синтезу гибких многоассортиментных производственных систем в промышленности: структурный, структурно-параметрический синтез. Обобщенный подход к синтезу многоассортиментных химико-технологических систем: основные этапы, задачи и результаты.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-4	знать:	Сдача экзамена на оценку	Выполнение работ в	Невыполнение
	общие принципы	«отлично»	срок,	работ в срок,
	инженерных расчетов;		предусмотренный в	предусмотренный
	основные понятия и		рабочих	в рабочих

законы	Meyalliki.		программах	программау
	механики;		программах	программах
_	ы и методы			
	на прочность,			
жесткост				
устойчив	*			
1	имические			
основы				
промыш				
технолог	ии	C	D	TT
уметь:		Сдача экзамена на оценку	Выполнение работ в	Невыполнение
	статического	«хорошо»	срок,	работ в срок,
	ения провести		предусмотренный в	предусмотренный
	устойчивость		рабочих	в рабочих
	еских систем,		программах	программах
_	необходимые			
	я реализации			
	ии нового			
материал	•			
	неского и			
	гуального			
	; выполнить			
	тенциала			
	ій; провести			
	льную оценку			
_	в реализации			
инноваци	ІЙ			
владеть:		Сдача экзамена на оценку	Выполнение работ в	Невыполнение
навыкам		«удовлетворительно»	срок,	работ в срок,
	вания методов		предусмотренный в	предусмотренный
теоретич			рабочих	в рабочих
	при решении		программах	программах
•	ских задач;			
методами				
теоретич				
•	ентального			
исследов				
механико				
технолог	*			
	нтальными			
-	ми анализа			
(моделир				
_	п решения			
	задач анализа			
и оптими				
методами				
1	тельности и			
		•		
экономич				
эффектин	вности			
	вности юнных			

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

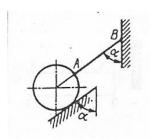
«удовлетворительно»;

«неудовлетворительно».

	J' 1					
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.

OTTIC 4		T	Ъ	D	D	D
ОПК-4	знать:	Тест	Выполнение	Выполнение	Выполнение	В тесте
	общие принципы		теста на 90-	теста на 80-	теста на 70-	менее 70%
	инженерных		100%	90%	80%	правильных
	расчетов; основные					ответов
	понятия и законы					
	механики;					
	принципы и методы					
	расчетов на					
	прочность,					
	жесткость и					
	устойчивость;					
	физико-химические					
	*					
	основы					
	промышленных					
	технологий	_		_		-
	уметь:	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	в рамках	стандартных	решены в	ирован	ирован верный	решены
	статического	практических	полном	верный ход	ход решения в	
	рассмотрения	задач	объеме и	решения всех,	большинстве	
	провести расчет на		получены	но не получен	задач	
	устойчивость		верные	верный ответ		
	механических		ответы	во всех		
	систем, выбрать			задачах		
	необходимые блоки			,		
	для реализации					
	технологии нового					
	материального,					
	энергетического и					
	_					
	интеллектуального					
	продукта;					
	выполнить анализ					
	потенциала					
	инноваций;					
	провести					
	сравнительную					
	оценку вариантов					
	реализации					
	инноваций					
	владеть:	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	навыками	прикладных	решены в	ирован	ирован верный	решены
	использования	задач в	полном	верный ход	ход решения в	
	методов	конкретной	объеме и	решения всех,	большинстве	
	теоретической	предметной	получены	но не получен	задач	
	механики при	области	верные	верный ответ		
	решении		ответы	во всех		
	практических задач;			задачах		
	методами			,,		
	теоретического и					
	экспериментального					
	исследования в					
	механике и					
	технологии,					
	· ·					
	инструментальными					
	средствами анализа					
	(моделирования)					
	проекта и решения					
	типовых задач					
	анализа и					
	оптимизации;					
	методами анализа					
	привлекательности					
	и экономической					
	эффективности					

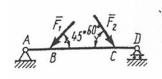
инновационных			
проектов			


7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

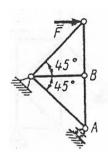
Текущий контроль успеваемости осуществляется на практических занятиях: в виде опроса теоретического материла и умения применять его к решению задач, в виде проверки домашних заданий, в виде тестирования по отдельным темам.

Промежуточный контроль осуществляется проведением тестирования по разделам (статика, кинематика, динамика) дисциплины, изученным студентом в период между аттестациями, выполнением расчетно-графических работ. Тестирование проводится на практических занятиях в рамках самостоятельной работы под контролем преподавателя. Варианты расчетно-графических работ выдаются каждому студенту индивидуально.

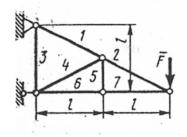
7.2.1 Примерный перечень заданий для подготовки к тестированию Не предусмотрено учебным планом.



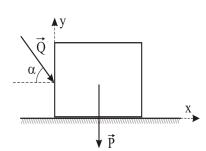
1.2.15


Однородный шар весом 12 Н удерживается в равновесии на гладкой наклонной плоскости с помощью веревки AB. Определить давление шара на плоскость, если угол $a = 60^{\circ}$.

№2


Определить реакцию опоры D, если силы $F_1=84,6$ H, $F_2=208$ H, размеры AB=1 м, BC=3 м, CD=2 м.

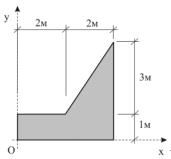
№3



4.2.19

Определить усилие в стержне AB. Сила F = 400 H.

Определить усилие в стержне 6. Сила F = 360 H.


№5

Дано: $P = 10 \, \mathrm{kH};$ $Q = 2 \, \mathrm{kH};$ $\alpha = 30^{\circ};$ коэффициент трения f = 0.2.

Будет ли тело находиться в равновесии? Сила

трения равна...

№6

^х Координата у центра тяжести однородной пластины

равна...

No7

В цехе фармацевтического предприятия при производстве препарата «Гальманин» (Galmaninum) израсходовано кислоты салициловой – 2 кг, цинка оксида – 10 кг, талька 44 кг, крахмала – 44 кг. Получено 97 кг готового продукта. Составьте уравнение материального баланса. Рассчитайте выход, трату, расходный коэффициент и расходные нормы для получения 1 000 кг препарата.

7.2.3 Примерный перечень заданий для решения прикладных задач N_{2} 1

В цехе предприятия по производству отделочных материалов при производстве фасадной вододисперсионной краски — израсходовано синтетического акрилового латекса и очищенного мела — по 20 кг, титановых и цинковых белил— по 10 кг, воды — 40 кг. Получено 98 кг

готового продукта. Составьте уравнение материального баланса. Рассчитайте выход, трату, расходный коэффициент и расходные нормы для получения 1 т краски.

Nº2

Аккумуляторную кислоту, содержащую 92.5% H2SO4, нужно разбавить водой до содержания в ней 28.5% H2SO4. Сколько нужно взять воды на 100кг разбавляемой кислоты?

№3

Определить расходные коэффициенты в производстве карбида кальция (технического), имеющего по анализу следующий состав: CaC2 - 78%, С -3%, прочие примеси -4%. Расчет следует вести на 1 т технического продукта. Карбид кальция получается согласно уравнения: CaO + 3C = CaC2 + CO Известь содержит 96.5% CaO. Содержание в коксе: золы -4%, летучих -4%, влаги -3%.

No4

Составьте расходные нормы на получение 50 кровоостанавливающих карандашей, если масса карандаша – 10,0 г и расходный коэффициент равен 1,008.

№5

Модуль сдвига какого композита выше медь-окись кремния (волокно), никель-окись кремния (волокно)? Доля волокна одинакова (0,2). $N_{\underline{0}}6$

При каких условиях имеет место адгезионный характер разрушения, а при каких когезионный?

№7

От чего зависит пропитка пористых материалов? Какой жидкий металл, с какими характеристиками лучше выбрать для пропитки пористого вольфрама?

№8

Сфера имеет диаметр 250 мм и толщину 10 мм. Она изготовлена из изотропного материала с модулем упругости 70 Гпа и коэффициентом Пуассона 0,33. Вычислите изменение диметра сферы под влиянием давления 0,75 Мпа.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Аксиомы статики.
- 2. Связи и их реакции. Принцип освобождаемости от связей.
- 3. Проекция силы на ось. Сложение сил.
- 4. Равновесие системы сходящихся сил.
- 5. Плоская система сил. Алгебраические моменты силы и пары. Распределённая нагрузка.
- 6. Введение в технологию производства инновационной продукции. Предмет технологии. Задачи технологии. Типы технологических схем.
- 7. Принципы блочного проектирования технологических схем. Основные блоки производства материального, энергетического и интеллектуального продукта.
- 8. Материальный и энергетический балансы в технологических схемах.
- 9. Понятия о безотходных технологиях: технология рекуперации вторичных материалов промышленности.
- 10. Исследования по производству композитных материалов
- 11. Актуальные вопросы производства композитных материалов
- 12. Практика производства композитных материалов

7.2.5 Примерный перечень заданий для решения прикладных задач

- 1. Уравнения равновесия плоской системы сил (3 формы).
- 2. Трение скольжения. Трение нити о цилиндрическую поверхность (формула Эйлера).
- 3. Плоские фермы. Леммы о нулевых стержнях. Расчёт плоских ферм (метод вырезания узлов и метод сечений).
- 4. Центр тяжести твёрдого тела. Координаты центра тяжести плоской фигуры. Центр тяжести треугольника, сектора круга.
- 5. Методы нахождения центра тяжести твёрдых тел. Статический момент площади плоской фигуры.
- 6. Технологии производства материальной, энергетической и интеллектуальной продукции. Композитные материалы.
- 7. Механика и технология композитов. Определения и классификация. Ингредиенты. Виды матриц.
- 8. Жесткость и прочность композитов.
- 9. Механика разрушения. Влияние окружающей среды и усталость.
- 10. Методы неразрушающего контроля.
- 11. Принципы решения оптимизационных задач при выборе технологического оформления производства.
- 12. Методология создания гибких технологий производства материального продукта.
- 13. Теоретические основы моделирования гибких технологий производств.

Виды математических моделей.

- 14. Иерархическая структура моделей гибкой технологической системы (ГТС).
- 15. Элементы моделирования и оптимизации технологических операций; типовых периодических одностадийных и многостадийных процессов; индивидуальных, совмещенных и ГТС.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет может проводиться по итогам текущей успеваемости, выполнения тестовых заданий и сдачи РГР и (или) путем организации специального опроса, проводимого в устной и (или) письменной форме.

При проведении экзамена обучающемуся предоставляется 90 минут на выполнение заданий в экзаменационном тестовом билете. Критерии оценки: менее 50% верно выполненных тестовых заданий (менее 8 из 15) — «неуд.»; от 50% до 70% верно выполненных заданий (8-10 из 20) — «удовл.»; от 70% до 90% верно выполненных заданий (11-13 из 15) — «хор.»; более 90% верно выполненных заданий (14-15 из 15) — «отл.». Во время проведения зачета и экзамена обучающиеся могут пользоваться инженерными микрокалькуляторами.

7.2.7 Паспорт оценочных материалов

	<u> </u>		
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Основные понятия, определения статики. Способы сложения сил.	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
2	Основные понятия, определения статики. Способы сложения сил.	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
3	Теоремы и леммы статики. Понятие о статически определимых и неопределимых системах.	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
4	Теоремы и леммы статики. Понятие о статически определимых и неопределимых системах.	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
5	Система сил, расположенных в одной плоскости. Трение и центр тяжести.	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
6	Система сил, расположенных в	ОПК-4	Тест, контрольная работа,

7	одной плоскости. Трение и центр тяжести. Введение в технологию производства инновационной продукции.	ОПК-4	защита лабораторных работ, защита реферата, требования к курсовому проекту Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
8	Введение в технологию производства инновационной продукции.	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
9	Технологии производства материальной, энергетической и интеллектуальной продукции.	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
10	Технологии производства материальной, энергетической и интеллектуальной продукции.	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
11	Принципы решения оптимизационных задач при выборе технологического оформления производства	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
12	Принципы решения оптимизационных задач при выборе технологического оформления производства	ОПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Зачет может проводиться по итогам текущей успеваемости, выполнения тестовых заданий и сдачи РГР и (или) путем организации специального опроса, проводимого в устной и (или) письменной форме.

При проведении экзамена обучающемуся предоставляется 90 минут на выполнение заданий в экзаменационном тестовом билете. Критерии оценки: менее 50% верно выполненных тестовых заданий (менее 8 из 15) — «неуд.»; от 50% до 70% верно выполненных заданий (8-10 из 20) — «удовл.»; от 70% до 90% верно выполненных заданий (11-13 из 15) — «хор.»; более 90% верно выполненных заданий (14-15 из 15) — «отл.». Во время проведения зачета и экзамена обучающиеся могут пользоваться инженерными микрокалькуляторами.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ

ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Черных А.В.Биджиев Р.Х. Алирзаев И.Ш. Произвольная плоская система сил: задания и метод. указания по теоретической механике для самостоятельной работы студ. 1 курса строит. спец. : Методические указания № 870, 2007.
- 2. Черных А.В., Черных В.В. Статический расчёт плоских ферм: метод. указания и контрол. задания для студ. дневной формы обучения инженерно-строит. спец.: Методические указания № 408, 2010.
- 3. Коробкин В.Д., Горячев В.Н. Кинематика: метод. указания для самостоятельной работы студ. 1 курса строит. спец.: Методические указания № 498, 2007.
- 4. Козлов В.А., Коробкин В.Д. Статика: метод. указания и контр. задания по теоретической механике для студ. з/о инженерно-строит. спец.: Методические указания № 152, 2005.
- 5. Козлов В.А., Коробкин В.Д., Ордян М.Г. Кинематика: метод. указания и контр. задания по курсу теоретической механики: Методические указания № 713, 2012.
- 6. Козлов В.А., Коробкин В.Д.,Горячев В.Н.Динамика: метод. указания и контр. задания по теоретической механике для студ. з/о инженерно-строит. спец. Методические указания № 647, 2010.
- 7. Теория механизмов и механика машин: Учебник / Под ред. Фролова К.В. – М.: Высшая шк., 2001-495 с.
- 8. Иосилевич Г.Б., Строганов Г.Б., Маслов Г.С. Прикладная механика: Учеб. для вузов / Под ред. Г.Б. Иосилевича. М.: Высш. шк., 1989. 351 с.
- 9. Строительная механика и металлические конструкции: метод. указания к выполнению курсовой работы для студ. спец. 190205 "Подъемно-транспортные, строит. и дорож. машины", 270113 "Механизация и автоматизация стр-ва" и бакалавров техники и технологии направления 190100 "Наземные транспортные системы". Воронеж: [б. и.], 2011 -1 электрон. опт. диск (CD-R)
- 10. Теория механизмов и машин: практикум для студентов немашиностроительных специальностей [Текст] : учеб. пособие / Воронеж, ВГАСУ, 2005 110 с.
- 11. Теория механизмов и механика машин: Учебник для втузов /Под ред. Фролова К.В. М.: Высшая шк., 1998-495 с.
- 12. Дунаев. П.Ф. Конструирование узлов и деталей машин: Учеб. пособие. М.: Academia, 2003. 496 с.
- 13.Иванов М.Н. Детали машин: Учеб. для втузов/ Под ред. Финогенова М.А.-М. Высш. шк., 2000.- 383 с.
- 14. Жулай, В.А. Детали машин. Курс лекций: учеб. пособие. Доп. УМО вузов РФ /В.А. Жулай; Воронеж. гос. арх.-строит. ун-т. Воронеж, 2006. 232 с.
- 15. Строительная механика и металлические конструкции:метод. указания

к выполнению лаб. работ для студентов специальности 190205 - "Подъемно-транспортные, строит., дорож. машины и оборудование", 190109 - "Наземные транспортно-технологические средства" и направления 190100 - "Наземные транспортно-технологические комплексы". - Воронеж: [б. и.], 2012 - 1 электрон. опт. диск

- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
- 1. Использование презентаций при проведении лекционных занятий.
- 2. Консультирование посредством электронной почты. Для работы в сети рекомендуется использовать сайты:
 - 1) http://elibrary.ru
 - 2) http://www.knigafund.ru
 - 3) http://www.fepo.ru
 - 4) http://encycl.yandex.ru (энциклопедии и словари).

Для работы с электронными учебниками требуется наличие таких программных средств, как Adobe Reader для Windows и DjVuBrowserPlugin.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения ряда лекционных занятий по дисциплине необходимы аудитории, оснащенные презентационным оборудованием (компьютер с ОС Windows и программой PowerPoint или Adobe Reader, мультимедийный проектор и экран).

Для обеспечения практических занятий требуется компьютерный класс с комплектом лицензионного программного обеспечения (при использовании электронных изданий – компьютерный класс с выходом в Интернет).

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

В качестве основной используется традиционная технология изучения материала, предполагающая живое общение преподавателя и студента. Все виды деятельности студента должны быть обеспечены доступом к учебно-методическим материалам (учебникам, учебным пособиям, методическими указаниями к выполнению расчетно-графических работ). Учебные материала должны быть доступны в печатном виде и, кроме того,

могут быть представлены в электронном варианте и представляться на CD и (или) размещаться на сайте учебного заведения.

Курс разделен на два раздела – механика, которая представлена в основном статикой и технологии, где основные разделы посвящены общим понятиям технологии: типы, принципы построения, расчеты основных параметров материального баланса, технологии композитов с элементами моделирования и оптимизации. По каждому модулю в аудитории проводится самостоятельная работа по индивидуальным вариантам тестовых заданий. Изучение статики сопровождается выполнением соответствующей расчетно-графической работы (РГР). При защите выполненной РГР студент должен продемонстрировать как знание теоретических вопросов данного блока, так и навыки решения соответствующих задач. Выполнение самостоятельных работ и защита РГР являются формой промежуточного контроля знаний по данному разделу.

В процессе самостоятельной работы студент закрепляет полученные знания и навыки, выполняя домашние задания по каждой теме модуля. В качестве итогового контроля предусмотрен экзамен в третьем семестре по тестам, содержащим задания по всем разделам курса механика и технологии.

Программа составлена в соответствии с требованиями ФГОС ВО с учетом рекомендаций и ПрООП ВО по направлению подготовки 27.03.05-«Инноватика», квалификация (степень) «бакалавр».

Руководитель основной образовательной программы

(занимаемая должность, ученая степень и звание) (инициалы, фамилия)				(подпись)	
Рабочая программа с	одобрена уч	ебно-ме	етодической	комиссией	і́ института
«»	20	Γ.,	протокол	No	
(инициалы, фамилия) Эксперт	(ученая	степень, зв	вание, подпись)	/	Председатель /
/ (место работы) (инициалы, фамилия)	/	(занимае	емая должность)		(подпись)
		M	П		

(организации)