МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
Декан факультета ИСиС
Драпалюк Н.А.
«29» июня 2018 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Гидравлика систем водоснабжения и водоотведения»

Направление подготовки 08.04.01 Строительство

Программа «Инженерные системы водоснабжения и водоотведения»

Квалификация выпускника магистр

Нормативный период обучения 2 года / 2 года и 4 м.

Форма обучения очная / заочная

Год начала подготовки 2018

Автор программы /Дроздов Е.В./

Заведующий кафедрой Гидравлики, водоснабжения и водоотведения /Бабкин В.Ф./

Руководитель ОПОП /Бабкин В.Ф./

Воронеж 2018

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины формирование у студентов методов применения основных закономерностей равновесия и движения жидкостей для решения практических задач в области проектирования, строительства и эксплуатации систем водоснабжения и водоотведения.

1.2. Задачи освоения дисциплины

- усвоить теоретические основы механики жидкости и газа,
- знать основные расчетные формулы и методы их применения к решению задач инженерной практики,
- уметь самостоятельно построить расчетную схему и найти правильное решение поставленной задачи.
- овладеть методикой и выработать навыки применения теории к решению конкретных задач, и

следовательно, освоить методику гидравлических расчетов различных систем и сооружений водоснабжения и водоотведения.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Гидравлика систем водоснабжения и водоотведения» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Гидравлика систем водоснабжения и водоотведения» направлен на формирование следующих компетенций:

- ПК-1 Способен организовывать проведение работ по выполнению научно-исследовательских и опытно-конструкторских работ
- ПК-2 Способен проводить научно-исследовательские и опытно-конструкторские разработки при исследовании самостоятельных тем.
- ПК-3 Способен подготавливать проектную документацию по сооружениям водоподготовки и водозаборным сооружениям
- ПК-5 Способен выполнять компоновочные решения и специальные расчеты насосных станций систем водоснабжения и водоотведения.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-1	Знать: отечественную и международную нормативную базу гидравлики систем ВВ, а также методы, средства и практику внедрения научных достижений и опытно- конструкторских разработок
	Уметь: применять нормативную документацию, использовать и внедрять научные достижения по гидравлике в CBB

	Владеть: навыками анализа новых направлений исследований
	в области гидравлики и возможных областей их применения в CBB
ПК-2	Знать: международные и отечественные достижения в области гидравлики систем ВВ
	Уметь: формировать планы и программы для проектирования и проведения научно- исследовательских работ
	Владеть: навыками проведения гидравлических исследований и внедрения их в СВВ, а также подготовки отзывов и заключений на объекты проектирования СВВ
ПК-3	Знать: принципы гидравлического расчета и проектирования сетей, станций и сооружений СВВ
	Уметь: подготавливать технические задания на разработку проектных решений, проверять соответствие
	техдокументации нормативным документам, осуществлять технический анализ проектных работ в области СВВ
	Владеть: навыком организации и координации работы при подготовки заданий и проведении гидравлических расчетов при проектировании СВВ
ПК-5	Знать: нормативную документацию в области гидравлики, связанную с проектированием и строительством насосных станций СВВ
	Уметь: проверять соответствие гидравлических расчетов и технической документации нормативным требованиям
	Владеть: навыками контроля качества гидравлических расчетов на различных этапах проектирования насосных станций СВВ

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Гидравлика систем водоснабжения и водоотведения» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Day y y y y y y y y y y y y y y y y y y	Всего	Семестры
Виды учебной работы	часов	2
Аудиторные занятия (всего)	38	38
В том числе:		
Лекции	12	12
Практические занятия (ПЗ)	26	26
Самостоятельная работа	115	115
Курсовая работа	+	+
Часы на контроль	27	27
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

заочная форма обучения

Daywa yarafaray nafaray	Всего	Семестры
Виды учебной работы	часов	2
Аудиторные занятия (всего)	12	12
В том числе:		
Лекции	6	6
Практические занятия (ПЗ)	6	6
Самостоятельная работа	159	159
Курсовая работа	+	+
Часы на контроль	9	9
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	о расчета трубопроводов систем	открытых каналах. Формула Шези.		6	16	26
2	Безнапорное равномерное движение жидкости в трубах и каналах систем водоотведения.	Равномерное движение жидкости в открытых каналах. Формула Шези. Допускаемые скорости движения воды В каналах. Наиболее выгодное сечение канала. Основные задачи по расчету каналов. Скоростные задачи по расчету каналов. Особенности гидравлического расчета безнапорных труб и канализационных коллекторов. Основы гидравлического расчета дождеприемников. Гидравлический расчет водостоков зданий и канализационных стояков.	2	6	18	26
3	Неравномерное безнапорное движение жидкости в водоотводящих трубах и каналах.	Неравномерное безнапорное движение жидкости. Удельная энергия сечения. Критическая глубина. Способы нахождения критической глубины. Критический уклон. Бурное и спокойное состояния потоков. Дифференциальное уравнение неравномерного движения жидкости в открытом канале. Исследование форм кривой свободной поверхности неравномерного потока. Построение кривой свободной поверхности неравномерного потока.	2	4	20	26

		Истечение жидкости через водосливы.				
4	прыжок и сопряжение бьефов	Гидравлический прыжок. Основное уравнение гидравлического прыжка. Прыжковая функция и ее график. Потери энергии в прыжке. Длина прыжка. Особенности и виды сопряжения бьефов. Критерий положения прыжка в нижнем бьефе. Гашение энергии потока. Расчет водобойного колодца и водобойной стенки. Многоступенчатые перепады.	1	2	23	26
5	Движение грунтовых вод.	Основной закон фильтрации. Коэффициент фильтрации. Равномерное и неравномерное движение грунтового потока. Формы кривых депрессии. Построение свободной поверхности грунтового потока.	2	6	20	28
6	0	Геометрическое, кинематическое и динамическое подобия потоков. Метод анализа размерности. Критерии гидродинамического подобия потоков. Основные правила гидравлического моделирования потоков.	1	2	18	21
		Итого	12	26	115	153

заочная форма обучения

1	Основы	Расчет самотечно-напорных				
	гидравлического	трубопроводов. Дюкеры и сифоны.				
	расчета	Всасывающие трубопроводы.				
	<u> </u>	Гидравлический расчет			32	
	трубопроводов систем	перфорпрованных грусопроводов.				
	водоснабжения и	Расчет потерь напорав сети с				
	водоотведения	распределенным по ее длине	1	1 1		34
		расходом. Гидравлическое				
		сопротивление				
		движению структурных жидкостей.				
		Гидравлический удар в				
		водопроводных трубах и методы				
		борьбы с ним.				
2		Равномерное движение жидкости в				
	Безнапорное	открытых каналах. Формула Шези.				
	равномерное	Допускаемые скорости движения				
	l	воды В каналах. Наиболее выгодное				
	движение	сечение канала. Основные задачи по			24	
	жидкости в трубах и	расчету каналов. Скоростные задачи				
	каналах систем	по расчету каналов. Особенности	1	1	31	33
		гидравлического расчета безнапорных				
	водоотведения.	труб и канализационных коллекторов.				
		Основы гидравлического расчета				
		дождеприемников. Гидравлический				
		расчет водостоков зданий и				
		канализационных стояков.				
3	Неравномерное	Неравномерное безнапорное				
	безнапорное	движение жидкости. Удельная				
	<u> </u>	энергия сечения. Критическая				
	движение	глубина. Способы нахождения				
	жидкости в	критической глубины. Критический				
	водоотводящих	уклон. Бурное и спокойное состояния				
	трубах и	потоков. Дифференциальное				
	1 "	уравнение неравномерного движения	1	1	28	30
	каналах.	жидкости в открытом канале.				
		Исследование форм кривой				
		свободной поверхности				
		неравномерного потока. Построение				
		кривой свободной поверхности				
		неравномерного потока. Истечение				
		жидкости через водосливы.				
4	Гидравлический	Гидравлический прыжок. Основное				
	прыжок и	уравнение гидравлического прыжка.	1	1	22	24
	сопряжение бьефов	Прыжковая функция и ее график.				2-τ
<u></u>	соприжение овефов	Потери энергии в прыжке. Длина				

		прыжка. Особенности и виды сопряжения бьефов. Критерий положения прыжка в нижнем бьефе. Гашение энергии потока. Расчет водобойного колодца и водобойной стенки. Многоступенчатые перепады.				
5	Движение грунтовых вод.	Основной закон фильтрации. Коэффициент фильтрации. Равномерное и неравномерное движение грунтового потока. Формы кривых депрессии. Построение свободной поверхности грунтового потока.	1	1	30	32
6	Основы гидравлического моделирования потоков.	Геометрическое, кинематическое и динамическое подобия потоков. Метод анализа размерности. Критерии гидродинамического подобия потоков. Основные правила гидравлического моделирования потоков.	1	1	16	18
		Итого	6	6	159	171

5.2 Перечень лабораторных работ

Порведение лабораторных работ не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы во 2 семестре для очной формы обучения и во 2 семестре для заочной формы обучения

Примерная тематика курсовой работы: «Гидравлический расчет водоотводящих каналов»

Задачи, решаемые при выполнении курсовой работы

- произвести расчет канала, отводящий очищенную воду от очистных сооружений в открытый водоток;
- установить характер сопряжения бьефов в канале;
- выполнить гидравлический расчет гасителя энергии потока.

Курсовая работа включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	Знать: отечественную и международную нормативную базу гидравлики систем ВВ, а также методы, средства и практику внедрения научных достижений и опытно- конструкторских разработок	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: применять нормативную документацию, использовать и внедрять научные достижения по гидравлике в СВВ	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: навыками анализа новых направлений исследований в области гидравлики и возможных областей их применения в СВВ	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-2	Знать: международные и отечественные достижения в области гидравлики систем ВВ	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: формировать планы и программы для проектирования и проведения научно- исследовательских работ	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: навыками проведения гидравлических исследований и внедрения их в СВВ, а также подготовки отзывов и заключений на объекты проектирования СВВ	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-3	Знать: принципы гидравлического расчета и проектирования сетей, станций и сооружений СВВ	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: подготавливать технические задания на разработку проектных решений, проверять соответствие техдокументации нормативным документам, осуществлять технический анализ проектных работ в области СВВ	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: навыком организации и координации работы при подготовки заданий и проведении гидравлических расчетов при проектировании СВВ	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-5	Знать: нормативную документацию в области гидравлики, связанную с проектированием и строительством насосных станций СВВ	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: проверять соответствие гидравлических расчетов и технической документации нормативным требованиям	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих

			программах
Владеть: навыками контроля	Решение	Выполнение работ в	Невыполнение
качества гидравлических расчетов на	прикладных задач в	срок,	работ в срок,
различных этапах проектирования	конкретной	предусмотренный в	предусмотренный в
насосных станций СВВ	предметной области	рабочих программах	рабочих
			программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются во 2 семестре для очной формы обучения и во2 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-1	Знать: отечественную и международную нормативную базу гидравлики систем ВВ, а также методы, средства и практику внедрения научных достижений и опытноконструкторских разработок	Тест	Выполнение теста на 90-100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	Уметь: применять нормативную документацию, использовать и внедрять научные достижения по гидравлике в СВВ	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	Владеть: навыками анализа новых направлений исследований в области гидравлики и возможных областей их применения в СВВ	предметной	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
ПК-2	Знать: международные и отечественные достижения в области гидравлики систем ВВ	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	Уметь: формировать планы и программы для проектирования и проведения научно-исследовательских работ	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

ПК-3	Владеть: навыками проведения гидравлических исследований и внедрения их в СВВ, а также подготовки отзывов и заключений на объекты проектирования СВВ Знать: принципы гидравлического	Решение прикладных задач в конкретной предметной области Тест	Задачи решены в полном объеме и получены верные ответы Выполнение теста на 90-	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах Выполнение теста на 80-	Продемонстр ирован верный ход решения в большинстве задач Выполнение теста на 70-	Задачи не решены В тесте менее 70%
	расчета и проектирования сетей, станций и сооружений СВВ Уметь: подготавливать	Решение	100%	90%	80%	правильных ответов
	технические задания на разработку проектных решений, проверять соответствие техдокументации нормативным документам, осуществлять технический анализ проектных работ в области СВВ	стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	Владеть: навыком организации и координации работы при подготовки заданий и проведении гидравлических расчетов при проектировании СВВ	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
ПК-5	Знать: нормативную документацию в области гидравлики, связанную с проектированием и строительством насосных станций СВВ	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	Уметь: проверять соответствие гидравлических расчетов и технической документации нормативным требованиям	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	задач	Задачи не решены
	Владеть: навыками контроля качества гидравлических расчетов на различных этапах проектирования насосных станций СВВ	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1. Примерный перечень заданий для подготовки к тестированию

- 1. Как называется величина, характеризующая количество жидкости, проходящее через живое сечение в единицу времени?
 - 1) Скорость; 2) Гидравлический радиус; 2) Коэффициент расхода;
 - 4) Расход; 5) Расходная характеристика.
- 2. Как изменится энергия на участке подъема трубопровода постоянного диаметра?
 - 1) Полная энергия увеличится; 2) Кинетическая энергия уменьшится;
 - 3) Потенциальная энергия давления уменьшится;
 - 4) Потенциальная энергия давления увеличится;
 - 5) Кинетическая энергия увеличится.
- 3. Какое движение считается равномерным?
 - 1) Движение, параметры которого постоянны во времени;
 - 2) Движение, при котором расход постоянный;
 - 3) Если форма поперечного сечения постоянна по длине потока;
 - 4) Движение с постоянной скоростью по длине потока;
 - 5) Движение в одном направлении.
- 4. Какая глубина считается нормальной глубиной в открытом русле h_0 ?
 - 1) Глубина равная напору;
 - 2) Глубина на пороге водослива;
 - 3) Глубина, которая формируется при равномерном движении;
 - 4) Глубина, которая формируется в верхнем бьефе;
 - 5) Глубина, которая соответствует минимальному значению удельной энергии сечения.
- 5. Какая глубина считается критической h_k в открытом русле?
 - 1) Глубина, которая соответствует минимальному значению удельной энергии сечения;
 - 2) Глубина, которая формируется при равномерном движении;
 - 3) Глубина, которая формируется в верхнем бьефе;
 - 4) Глубина равной нормальной глубине;
 - 5) Глубина, которая меньше нормальной глубины;
- 6. Какое из приведённых условий указывает на то, что в русле формируется кривая спада?

1)
$$i_0 > i_k$$
; 2) $\frac{dh}{dl} = 0$; 3) $h_0 = h_k$; 4) $h_0 > h_k$; 5) $\frac{dh}{dl} < 0$

7. Что происходит с потоком жидкости, если уклон увеличивается?

- 1) Поток становится спокойным; 2) Глубина потока уменьшается;
- 3) Глубина потока становится критической;
- 4) Глубина потока возрастает;
- 5) Глубина потока не изменяется.
- 8. Какое из перечисленных сооружений относится к водосливам?
 - 1) Струенаправляющая дамба; 2) Быстроток; 3) Водопропускная труба;
 - 4) Подводящий канал; 5) Отводящий канал.
- 9. При каком условии возникает гидравлический прыжок?
 - 1) При увеличении уклона;
 - 2) При уменьшении уклона;
 - 3) При переходе потока из спокойного состояния в бурное;
 - 4) При переходе потока из бурного состояния в спокойное;
 - 5) Перед водосливом с широким порогом.
- 10. Какое из приведённых условий указывает на то, что в русле формируется кривая подпора?

1)
$$i_0 > i_k$$
; 2) $\frac{dh}{dl} = 0$; 3) $h_0 = h_k$; 4) $h_0 > h_k$; 5) $\frac{dh}{dl} < 0$.

- 11. Какой поток считается напорным?
 - 1) Поток со всех сторон ограниченный твёрдыми стенками.
 - 2) Поток со свободной поверхностью.
 - 3) Поток жидкости, движущейся с постоянной скоростью.
 - 4) Поток, проходящий через водопропускную трубу.
 - 5) Поток ограниченной длины.
- 12. Как изменится скорость в трубе постоянного диаметра, если трубопровод по длине то поднимается вверх, то опускается вниз?
- 1) Скорость уменьшится. 2) Скорость не изменится. 3) Скорость увеличится.
 - 4) Сначала скорость уменьшится, а затем увеличится.
 - 5) Сначала скорость увеличится, а затем уменьшится.
- 13. От каких величин определяется нормальная глубина методом подбора (графоаналитическим методом)?

1)
$$K = \omega \times C \times \sqrt{R}$$
; 2) $v = S/t$; 3) $Q = \omega \cdot v$; 4) $C = \frac{1}{n} \times R^{0.2}$; 5) $K_0 = \frac{Q}{\sqrt{i_0}}$.

- 14. Что происходит с удельной энергией сечения при бурном состоянии потока, если глубина уменьшается?
 - 1) Энергия уменьшается. 2) Энергия возрастает.

- 4) Энергия то увеличивается, то уменьшается.
- 5) Энергия равна нулю.
- 15. Как формируется кривая свободной поверхности потока относительно линии нормальных глубин N N?
 - 1) Формируется параллельно N N 2) Приближается резко к N N.
- 3) Приближается под углом 30° к N N. 4) Приближается асимптотически к N N. 5) Никогда не приближается к N N.
- 16. При каком условии рекомендуется сооружать гаситель энергии (водобойный колодец)?
 - 1) Если удельная энергия сечения возрастает.
- 2) Если при сопряжении бьефов возникает отогнанный гидравлический прыжок.
- 3) Если при сопряжении бьефов возникает затопленный гидравлический прыжок.
 - 4) Если в нижнем бъефе устанавливается критическая глубина.
 - 5) Если удельная энергия сечения уменьшается.
- 17. Как уменьшить потери напора по длине трубопровода?
 - 1) Увеличить расход. 2) Увеличить скорость. 3) Увеличить диаметр.
 - 4) Увеличить напор. 5)Уменьшить площадь живого сечения.
- 18. Как изменится нормальная глубина, если уклон увеличится в 2 раза?
 - 1) не изменится. 2) увеличится. 3) уменьшится
- 4) увеличится в 2 раза 5) уменьшится в 2 раза
 - 19. Какое движение считается равномерным?
 - 1) Движение, при котором расход постоянный;
 - 2) Если форма поперечного сечения постоянна по длине потока;
 - 3) Движение с постоянной скоростью по длине потока;
 - 4) Движение в одном направлении;
 - 5) Движение, параметры которого постоянны во времени;
- 20. Что происходит с потоком жидкости, если уклон увеличивается?
 - 1) Глубина потока уменьшается.
 - 2) Глубина потока становится критической.
 - 3) Глубина потока возрастает.
 - 4) Глубина потока не изменяется.
 - 5) Поток становится спокойным.
- 21. Какое из перечисленных сооружений относится к водосливам?
 - 1) Быстроток. 2) Водопропускная труба. 3) Подводящий канал.
 - 4)Отводящий канал. 5) Струенаправляющая дамба. .

- 22. Гаситель энергии (водобойный колодец) рекомендуется сооружать при условии
 - 1) Если при сопряжении бьефов возникает отогнанный гидравлический прыжок.
 - 2) Если при сопряжении бьефов возникает затопленный гидравлический прыжок.
 - 3) Если в нижнем бъефе устанавливается критическая глубина.
 - 4) Если удельная энергия сечения уменьшается.
 - 5) Если удельная энергия сечения возрастает.

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Как изменится нормальная глубина, если уклон увеличится в 2 раза?

Варианты ответа: 1) не изменится ; 2) увеличится; 3) увеличится в два раза; 4) уменьшится; 5) уменьшится в два раза.

2. Что происходит с потоком жидкости, если уклон увеличивается?

Варианты ответа: 1) глубина потока уменьшается; 2) глубина потока становится критической; 3) глубина потока возрастает; 4) глубина потока не изменяется; 5)поток становится спокойным.

3. По лотку прямоугольного сечения шириной b=40см при равномерном движении протекает расход воды $Q=40\pi/c$ со средней скоростью 1m/c. Определить уклон лотка, если напряжение трения на его стенках τ =1,2 Π a.

Варианты ответа: 1) 0,0015; 2) 0,0016; 3) 0,0017; 4) 0,0018; 5) 0,0018.

- 4. Определить напор, необходимый для пропуска расхода воды Q=50 л/с через стальной трубопровод диаметром d=200 мм и длиной l=1200м. Варианты ответа: 1) 4м; 2) 6м; 3) 8м; 4) 10м; 5) 12м.
- 5. Определить ударное повышение давления в стальной трубе диаметром d=200мм и толщиной стенок равной 5мм, если расход воды Q=60л/с, модули упругости стенок трубы $E=2x10^{11}$ Па и воды $E_{o}=2x10^{9}$ Па.

Варианты ответа: 1) 1 МПа; 2) 2 МПа; 3) 3 МПа; 4) 4 МПа; 5) 5 МПа.

6. Определить глубину потока воды в стальной трубе круглого сечения диаметром d=500 мм при прохождении через нее расхода воды Q=350 л/ с, и

уклоне заложения трубы, равным 0,008.

Варианты ответа: 1) 0,2м; 2) 0,25м; 3) 0,3м; 4) 0,35м; 5) 0,4м.

7.Определить глубину воды в земляном канале трапецеидального сечения, с шириной по дну b=5м, заложением откосов m=1,5, коэффициентом шероховатости стенок n=0,02, уклоном дна канала i=0,0004, пропускающим расход воды Q=16 м $^3/$ с.

Варианты ответа: 1) 1м; 2) 2м; 3) 3м; 4) 4м; 5) 5м.

8, Определить критическую глубину в трапецеидальном канале шириной по дну b=5м, заложением откосов m=1,5, коэффициентом шероховатости стенок n=0,02, пропускающим расход воды Q=16 м³/с.

Варианты ответа: 1) 0,5м; 2) 1м; 3) 2м; 4) 3м; 5) 5м.

- 9. Определить расход воды, вытекающей из-под плоского вертикального щита, установленного в канале прямоугольной формы шириной b= 3м. Глубина воды перед щитом H=3м, высота поднятия щита a=0,3м, глубина воды в нижнем бъефе канала h=1,8м.
- 10.Определить скорость движения грунтовых вод в песчаном грунте с коэффициентом фильтрации K=0.04 мм/с, если уклон подстилающего водонепроницаемого слоя i=0.02.

Варианты ответа: 1) 0.008м/с; 2) 0.08м/с; 3) 0.8м/с; 4) 8м/с; 5) 80м/с.

11.Стальной новый трубопровод диаметром d=200мм, по которому будет транспортироваться вода, для определения сопротивлений продувается воздухом в аэродинамической лаборатории. Определить необходимую скорость воздуха при продувке, если скорость воды v=1м/c; темпера t=20°C.

Варианты ответа: 1) 10 м/с; 2) 14 м/с; 3)16 м/с; 4) 18м/с; 5) 20м/с.

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Определить расход воды в горизонтальной, стальной водопроводной трубе диаметром d=200мм, длиной l = 1000м при располагаемом напоре H=10м.

Варианты ответа: 1) $13\pi/c$; 2) $23\pi/c$; 3) $33\pi/c$; 4) $43\pi/c$; 5) $53\pi/c$.

2. Определить диаметр стального трубопровода при следующих данных: расход Q=100 л/c, напор H=15м, длина 1=1500м.

Варианты ответа: 1) 200мм; 2)250мм; 3) 300мм; 4) 350мм; 5) 400мм.

3. Определить расход воды в круглой, стальной, водоотводящей трубе, если ее диаметр d=200мм, степень наполнения h/ d=0,75, уклон i=0,0036.

Варианты ответа: 1) $10\pi/c$; 2) $20\pi/c$; 3) $30\pi/c$; 4) $40\pi/c$; 5) $50\pi/c$.

4. Для круглой стальной трубы диаметром d=400мм, определить уклон i, если расход воды Q=80 л/ c, а степень наполнения h/ d=0.8.

Варианты ответа: 1) 0,000003; 2) 0,00003; 3) 0,0003; 4)0,003; 5) 0,03

5. Подобрать диаметр круглой стальной трубы, если расход воды Q=30 л/c; уклон i=0,0064, степень наполнения h/d=0,8.

Варианты ответа: 1) 100мм; 2)200мм; 3) 300мм; 4) 400мм; 5) 500мм.

6. Определить степень наполнения круглой стальной трубы диаметром d=200мм, расходом Q=20 л/с при уклоне i=0,0016.

Варианты ответа: 1) 0,1; 2) 0,2; 3) 0,3; 4) 0 4; 5) 0,5.

7.Определить диаметр железобетонной трубы при расходе воды Q=0.5м³/ с, степени наполнения h/d=0.75, уклоне заложения трубы i=0.002.

Варианты ответа: 1) 500мм; 2)600мм; 3) 700мм; 4) 800мм; 5) 900мм

8. На подводящем прямоугольном канале канализационной станции шириной b= 2м установлен водослив с тонкой стенкой высотой P=1м. Определить расход воды в канале, если напор на водосливе H= 0,65м, а глубина воды в нижнем бъефе h= 1,2м.

Варианты ответа: 1) 1 м^3 / c.; 2) 2 м^3 / c.; 3) 3 м^3 / c.; 4) 4 м^3 / c.; 5) 5 м^3 / c.

9. Колодец диаметром d= 0,5м доведен до водоупорного грунта . Мощность водоносного пласта H=20м, а коэффициент фильтрации K= 0,015мм/с. Радиус влияния R=200 м, а понижение уровня в колодце S= 8м. Определить дебит колодца.

Варианты ответа: 1) $1\pi/c$; 2) $2\pi/c$; 3) $3\pi/c$; 4) $4\pi/c$; 5) $5\pi/c$.

10. Артезианская скважина диаметром d= 0,4м доведена до водоупорного

нижнего пласта. Напорный водоносный пласт имеет мощность H=10м, радиус влияния R=340 м, коэффициент фильтрации K=0.03мм/с, а глубина воды в скважине h=12м. Определить дебит скважины.

Варианты ответа: 1) $1\pi/c$; 2) $2\pi/c$; 3) $3\pi/c$; 4) $4\pi/c$; 5) $5\pi/c$.

7.2.4 Примерный перечень вопросов для подготовки к зачету

Зачет не предусмотрен учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Гидравлический расчет простого трубопровода.
- 2. Гидравлический расчет последовательного и параллельного соединения трубопроводов.
- 3. Гидравлический расчет трубопроводов с непрерывной и равномерной раздачей расхода вдоль пути.
- 4. Гидравлический расчет кольцевой сети.
- 5. Гидравлический расчет тупиковой сети.
- 6. Гидравлический расчет дюкеров и сифонов.
- 7. Гидравлический расчет трубопроводов пневмотранспорта.
- 8. Гидравлический расчет илопроводов.
- 9. Гидравлический удар в водопроводных трубах.
- 10. Равномерное движение жидкости в открытых каналах. Формула Шези.
- 11. Допускаемые скорости движения воды в каналах. Выгодное сечение канала.
- 12. Основные задачи по расчету каналов.
- 13. Скоростные задачи по расчету каналов.
- 14. Особенности гидравлического расчета безнапорных труб и канализационных коллекторов.
- 15. Гидравлический расчет дождеприемников, водостоков и канализационных стояков.
- 16. Неравномерное безнапорное движение жидкости. Удельная энергия сечения. Критическая глубина.
- 17. Способы нахождения критической глубины.
- 18. Критический уклон. Бурное и спокойное состояния потоков.
- 19. Дифференциальное уравнение неравномерного движения жидкости в канале.
- 20. Исследование форм кривой свободной поверхности в открытом канале.
- 21. Построение кривой свободной поверхности в открытом канале.
- 22. Истечение жидкости через водосливы.
- 23. Гидравлический прыжок. Прыжковая функция.
- 24. Сопряжение бьефов. Критерий положения прыжка в нижнем бьефе.
- 25. Гашение энергии прыжка. Расчет водобойного колодца и водобойной стенки.
- 26. Основной закон фильтрации. Формула Дарси.
- 27. Дифференциальные уравнения неравномерного движения грунтового потока.
- 28. Исследование форм кривой свободной поверхности грунтового потока.
- 29. Построение кривой свободной поверхности грунтового потока.

- 30. Приток грунтовой воды к колодцам и водосборным галереям.
- 31. Виды подобия потоков. Метод анализа размерности.
- 32. Критерии гидромеханического подобия потоков.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тестам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов -20.

- 1. Оценка «не удовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
 - 3. Оценка «хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
 - 4. Оценка «отлично» ставится, если студент набрал от 16 до 20 баллов.

7.2.7 Паспорт оценочных материалов

№	Контролируемые разделы (темы)	Код контролируемой	Наименование оценочного
Π/Π	дисциплины	компетенции	средства
1	Основы гидравлического расчета трубопроводов систем водоснабжения и водоотведения.	ПК-1, ПК-2, ПК-3, ПК-5	Тест, контрольная работа, защита реферата, требования к курсовой работе.
2	Безнапорное равномерное движение жидкости в трубах и каналах систем водоотведения.	ПК-1, ПК-2, ПК-3, ПК-5	Тест, контрольная работа, защита реферата, требования к курсовой работе.
3	Неравномерное безнапорное движение жидкости в водоотводящих трубах и каналах.	ПК-1, ПК-2, ПК-3, ПК-5	Тест, контрольная работа, защита реферата, требования к курсовой работе.
4	Гидравлический прыжок и сопряжение бьефов	ПК-1, ПК-2, ПК-3, ПК-5	Тест, контрольная работа, защита реферата, требования к курсовой работе.
5	Движение грунтовых вод.	ПК-1, ПК-2, ПК-3, ПК-5	Тест, контрольная работа, защита реферата, требования к курсовой работе.
6	Основы гидравлического моделирования потоков.	ПК-1, ПК-2, ПК-3, ПК-5	Тест, контрольная работа, защита реферата, требования к курсовой работе.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется с использованием выданных тестовых заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8. УЧЕБНО - МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Перечень учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Гиргидов А.Д. Техническая механика жидкости и газа. М.: НИЦ ИНФРА, 2014. 704 с.
- 2. Чугаев Р.Р. Гидравлика (Техническая механика жидкости). Учебник для вузов. М.: ООО «ИД БАСТЕТ», 2013.- 672с.
- 3. Калицун В.И., Дроздов Е.В. Основы гидравлики и аэродинамики. Учебник. М.: Стройиздат, 2002.- 247с.
- 4.Бабкин В.Ф., Дроздов Е.В., Журавлева И.В. Техническая механика жидкости. Методические указания.- Воронеж: ВГАСУ, 2012.-32с.
- 5. Бабкин В.Ф., Дроздов Е.В., Завалина Е.А., Яценко В.Н. Гидравлика открытых потоков. . Методические указания.- Воронеж: ВГАСУ, 2012.-34с.
- 6. Бабаев М. А. Гидравлика: Учебное пособие / Бабаев М. А. Саратов: Научная книга, 2012. 191 с. URL: http://www.iprbookshop.ru/8192.html
- 7. Иваненко И. И. Гидравлика: Учебное пособие / Иваненко И. И. Санкт-Петербург: Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2012. 150 с. ISBN 978-5-9227-0412-6. URL: http://www.iprbookshop.ru/18992.html

8. Крестин Е. А. Гидравлика: Учебное пособие / Крестин Е. А. - Самара: Самарский государственный архитектурно-строительный университет, ЭБС АСВ, 2010. - 230 с. - ISBN 978-9585-0389-6.

URL: http://www.iprbookshop.ru/20458.html

дополнительная литература:

- 1. Метревели В.Н. Сборник задач по курсу гидравлики с решениями. М.: НИЦ ИНФРА, 2008. -192с.
- 2. Романков П. Г., Фролов В.Ф., Флисюк О.М. Методы расчета процессов и аппаратов химической технологии (примеры и задачи). Учебное пособие.- СПб.: Химиздат, 2010.- 544с.
- 3. Шевелев Ф.А., Шевелев А.Ф. Таблицы для гидравлического расчета водопроводных труб / Справочное пособие. – М.: НИЦ ИНФРА, 2008.- 350с.
- 4. Курганов А.М., Федоров Н.Ф. Гидравлические расчеты систем водоснабжения и водоотведения / Справочник. – Л.: Стройиздат, 1986. - 440c.
 - 8.2. Перечень информационных технологий, используемых осуществлении образовательного при процесса дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», профессиональных современных баз данных информационных справочных систем

Лицензионное программное обеспечение

OppenOffice

AutoCAD

Свободное ПО

LibreOffice

Ресурсы информационно- телекоммуникационной сети «Интернет» http://www.edu.ru/ Образовательный портал ВГТУ Skype

Moodle

Информационные справочные системы http://docs.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для осуществления образовательного процесса по всем видам занятий дисциплины «Гидравлика систем водоснабжения водоотведения» необходимы и используются в учебном процессе лабораторные установки с контрольно- измерительными приборами,

размещенные в аудиториях 6042 и 2118, а также слайды «История развития гидравлики» (14 шт.) и плакаты (15 шт.), размещенные в ауд. 6042и 2118.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Гидравлика систем водоснабжения и водоотведения» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета равновесия и движения жидкости и газа в системах и сооружениях водоснабжения и водоотведения. Занятия проводятся путем решения конкретных задач в аудитории.

Вид	Деятельность студента		
учебных занятий			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.		
Практи- ческое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.		
Самостоя- тельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад;		
Подготов- ка к промежу- точной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные, необходимые для зачета с оценкой, рекомендуется повторить и систематизировать за три дня до проведения зачета.		

Лист регистрации изменений

			Подпись
No		Дата	заведующего
	Перечень вносимых изменений	внесения	кафедрой,
п/п		изменений	ответственной за
			реализацию ОПОП
1	Актуализирован раздел 8.2 в	30.08.2018	
	части состава используемого		Bharl
	лицензионного программного		,
	обеспечения, современных		Бабкин В.Ф
	профессиональных баз данных и		
	справочных информационных		
	систем		
2	Актуализирован раздел 8.3 в	31.08.2019	
	части состава используемого		Bharl
	лицензионного программного		,
	обеспечения, современных		Бабкин В.Ф
	профессиональных баз данных и		
	справочных информационных		
	систем		
3	Актуализированы разделы:	31.08.2020	
	8.1 в части состава учебной		
	литературы, необходимой для		-gar-
	освоения дисциплины		Гармонов К.В.
	8.2 в части состава		-
	используемого лицензионного		
	программного обеспечения,		
	современных профессиональных		
	баз данных и справочных		
	информационных систем		