МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета

В.А. Небольсин

«30» августа 2017 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Механика жидкости и газа»

Направление подготовки 14.03.01 Ядерная энергетика и теплофизика

Профиль Техника и физика низких температур

Квалификация выпускника бакалавр

Нормативный период обучения <u>4 года</u>

Форма обучения очная

Год начала подготовки 2016

Автор программы

/О.В. Калядин/

Заведующий кафедрой

Физики твердого тела

/Ю.Е. Калинин/

Руководитель ОПОП

/О.В. Калядин/

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

формирование у студентов знаний о законах гидростатики и гидродинамики, гидравлических расчётах трубопроводов, а также способности самостоятельно выполнять инженерные гидравлические расчеты и исследования при осуществлении проектной и производственной деятельности

1.2. Задачи освоения дисциплины

изучение общих законов и уравнений статики и динамики жидкостей и газов, напряжений и сил, действующих в жидкостях, с учетом их основных физических свойств, уравнений сохранения массы, количества движения и энергии;

изучение условий подобия гидравлических процессов; изучение характеристик ламинарного и турбулентного течения; изучение методов гидравлического расчёта трубопроводов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Механика жидкости и газа» относится к дисциплинам вариативной части (дисциплина по выбору) блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Механика жидкости и газа» направлен на формирование следующих компетенций:

- ПК-1 способностью к участию в разработке методов прогнозирования количественных характеристик процессов, протекающих в конкретных технических системах на основе существующих методик
- ПКВ-3 готовностью выполнять расчетно-экспериментальные работы и решать научно-технические задачи в области низкотемпературной техники и систем жизнеобеспечения на основе достижений техники и технологий, классических и технических теорий и методов, теплофизических, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, машинам и аппаратам

ПКВ-7 - готовностью выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и способен привлечь для их решения соответствующий физико-математический аппарат

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-1	Знать способы расчета количественных характе-
	ристик процессов, протекающих в гидравлических
	системах на основе существующих методик
	Уметь выполнять расчеты количественных харак-
	теристик процессов, протекающих в гидравличе-
	ских системах на основе существующих методик
	Владеть навыками расчета количественных харак-

	теристик процессов, протекающих в гидравличе-
	ских системах на основе существующих методик
ПКВ-3	Знать достижения техники и технологий, класси-
	ческих и технических теорий и методов, матема-
	тических и компьютерных моделей в области ме-
	ханики жидкости и газа
	Уметь выполнять расчетно-экспериментальные
	работы и решать научно-технические задачи в об-
	ласти механики жидкости и газа на основе дости-
	жений техники и технологий, классических и тех-
	нических теорий и методов, математических и
	компьютерных моделей, обладающих высокой
	степенью адекватности реальным процессам, про-
	текающим в гидравлических системах
	Владеть навыками выполнения расчет-
	но-экспериментальных работ и решения науч-
	но-технических задач в области механики жидко-
	сти и газа на основе достижений техники и техно-
	логий, классических и технических теорий и ме-
	тодов, математических и компьютерных моделей,
	обладающих высокой степенью адекватности ре-
	альным процессам, протекающим в гидравличе-
	ских системах
ПКВ-7	Знать физико-математический аппарат механики
	жидкости и газа
	Уметь использовать для решения задач связанных с
	течением жидкостей или газов и возникающих в
	ходе профессиональной деятельности физи-
	ко-математический аппарат механики жидкости и
	газа
	Владеть навыками использования физи-
	1
	ко-математического аппарата механики жидкости и
	газа для решения задач возникающих в ходе про-
	фессиональной деятельности и связанных с тече-
	нием жидкостей или газов.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Механика жидкости и газа» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий очная форма обучения

Duran various in notice in	Всего	Семестры
Виды учебной работы		6
Аудиторные занятия (всего)	72	72

В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	36	36
Самостоятельная работа	72	72
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоем-кости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего,
1	Введение. Свойства жидкостей.	Предмет механика жидкости и газа. История развития гидравлики. Силы, действующие на жидкость. Давление в жидкости. Основные свойства капельных жидкостей.	4	4	8	16
2	Гидростатика	Гидростатическое давление и его свойства. Основное уравнение гидростатики. Дифференциальные уравнения равновесия жидкости и их интегрирование для простейшего случая. Пьезометрическая высота. Вакуум. Измерение давления. Сила давления жидкости на плоскую стенку. Сила давления жидкости на криволинейные стенки. Плавание тел. Прямолинейное равноускоренное движение сосуда с жидкостью. Равномерное вращение сосуда с жидкостью.	6	6	12	24
3	Кинематика и динамика жидкости	Основные понятия. Расход. Уравнение расхода. Уравнение Бернулли для элементарной струйки идеальной жидкости. Вывод дифференциальных уравнений движения идеальной жидкости и их интегрирование. Уравнение Бернулли для потока реальной жидкости. Гидравлические потери. Уравнение Бернулли для относительного движения. Примеры использования уравнения Бернулли в технике. Применение уравнения количества движения к жидкости.	6	6	12	24
4	Гидродинамическое подобие и режимы течения жидкости в трубах. Ламинарное течение	Основы гидродинамического подобия режимы течения жидкости в трубах. Кавитация. Теория ламинарного течения в круглых трубах. Начальный участок ламинарного течения. Ламинарное течение в зазоре между двумя стенками и в трубах некруглого сечения. Особые случаи ламинарного течения.	4	4	8	16
5	Турбулентное течение	Основные сведения. Турбулентное течение в гидравлически гладких трубах. Турбулентное течение в шероховатых и некруглых трубах. Применение метода анализа размерностей.	4	4	8	16
6	Местные гидравлические сопротивления	Общие сведения о местных сопротивлениях. Внезапное расширение русла. Постепенное расширение русла. Внезапное сужение русла. Постепенное сужение русла. Поворот русла. Местные сопротивления при ламинарном течении.	4	4	8	16
7	Истечение жидкости через отвер-	Истечение через малые отверстия в тонкой	4	4	8	16

	стия и насадки	стенке при постоянном напоре. Истечение				
		при несовершенном сжатии. Истечение под				
		уровень. Истечение через насадки при по-				
		стоянном напоре. Истечение через отверстия				
		и насадки при переменном напоре (опорож-				
		нение сосудов)				
8	Гидравлический расчет трубо-	Простой трубопровод постоянного сечения.				
8	Гидравлический расчет трубо- проводов	Простой трубопровод постоянного сечения. Соединения простых трубопроводов.				
8	1 13		4	4	8	16
8	1 13	Соединения простых трубопроводов.	4	4	8	16
8	1 13	Соединения простых трубопроводов. Сложные трубопроводы. Трубопроводы с	4	4	8	16

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характери- зующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	Знать способы расчета количе- ственных характеристик про- цессов, протекающих в гидрав- лических системах на основе существующих методик	Активная работа на практических занятиях	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь выполнять расчеты количественных характеристик процессов, протекающих в гидравлических системах на основе существующих методик	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками расчета ко- личественных характеристик процессов, протекающих в гид- равлических системах на основе существующих методик	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПКВ-3	Знать достижения техники и технологий, классических и технических теорий и методов, математических и компьютерных моделей в области механики жидкости и газа	Активная работа на практических занятиях	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь выполнять расчет- но-экспериментальные работы и решать научно-технические за- дачи в области механики жидко- сти и газа на основе достижений	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

	техники и технологий, классических и технических теорий и методов, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, протекающим в гидравлических системах			
	Владеть навыками выполнения расчетно-экспериментальных работ и решения научно-технических задач в области механики жидкости и газа на основе достижений техники и технологий, классических и технических теорий и методов, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, протекающим в гидравлических системах	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПКВ-7	Знать физико-математический аппарат механики жидкости и газа	Активная работа на практических занятиях	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь использовать для решения задач связанных с течением жидкостей или газов и возникающих в ходе профессиональной деятельности физико-математический аппарат механики жидкости и газа	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками использования физико-математического аппарата механики жидкости и газа для решения задач возникающих в ходе профессиональной деятельности и связанных с течением жидкостей или газов.	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 6 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-1	Знать способы расчета количественных характеристик процессов, протекающих в гидравлических системах на основе существующих методик	Тест	Выполнение теста на 85-100%	Выполнение теста на 70-85%	Выполнение теста на 50-70%	В тесте менее 50% правильных ответов
	Уметь выполнять расчеты количественных характеристик процессов, протекающих в гидравлических системах на основе существующих методик	Тест	Выполнение теста на 85-100%	Выполнение теста на 70-85%	Выполнение теста на 50-70%	В тесте менее 50% правильных ответов
	Владеть навыками расчета количественных характери-	Тест	Выполнение теста на	Выполнение теста на	Выполнение теста на	В тесте менее 50%

	стик процессов, протекаю-		85-100%	70-85%	50-70%	правилити
	щих в гидравлических си-		83-100%	70-83%	30-70%	правильных
	стемах на основе суще-					ответов
	ствующих методик		ļ			
ПКВ-3	Знать достижения техники и	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	технологий, классических и		теста на	теста на	теста на	нее 50%
	технических теорий и мето-		85-100%	70-85%	50-70%	правильных
	дов, математических и ком-		05 10070	,005,0	20 7070	ответов
	пьютерных моделей в обла-		ļ.			ответов
	сти механики жидкости и		ļ.			
	газа					
	Уметь выполнять расчет-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	но-экспериментальные ра-		теста на	теста на	теста на	нее 50%
	боты и решать науч-		85-100%	70-85%	50-70%	правильных
	но-технические задачи в		ļ.			ответов
	области механики жидкости		ļ.			
	и газа на основе достижений техники и технологий, клас-		ļ.			
	сических и технических		ļ.			
	теорий и методов, матема-		ļ			
	тических и компьютерных		ļ			
	моделей, обладающих высо-					1
	кой степенью адекватности		ļ			
	реальным процессам, проте-		ļ			
	кающим в гидравлических		ļ			
	системах					
	Владеть навыками выполне-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	ния расчет-		теста на	теста на	теста на	нее 50%
	но-экспериментальных работ		85-100%	70-85%	50-70%	правильных
	и решения науч-		ļ			ответов
	но-технических задач в об-		ļ			
	ласти механики жидкости и газа на основе достижений		ļ			
	техники и технологий, клас-		ļ			
	сических и технических		ļ			
	теорий и методов, матема-		ļ.			
	тических и компьютерных		ļ.			
	моделей, обладающих высо-		ļ			
	кой степенью адекватности		ļ			
	реальным процессам, проте-		ļ			
	кающим в гидравлических		ļ.			
	системах					
ПКВ-7	Знать физи-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	ко-математический аппарат		теста на	теста на	теста на	нее 50%
	механики жидкости и газа		85-100%	70-85%	50-70%	правильных
						ответов
	Уметь использовать для ре-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	шения задач связанных с		теста на	теста на	теста на	нее 50%
	течением жидкостей или		85-100%	70-85%	50-70%	правильных
	газов и возникающих в ходе					ответов
	профессиональной деятель-					1
	ности физи-ко-математический аппарат					
	механики жидкости и газа					
	Владеть навыками исполь-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	зования физи-	1001	теста на	теста на	теста на	нее 50%
	ко-математического аппарата		85-100%	70-85%	50-70%	
	механики жидкости и газа		03-10070	70-8370	30-70%	правильных
	для решения задач возни-					ответов
	кающих в ходе профессио-					1
	нальной деятельности и свя-					
		4			4	1
	занных с течением жидко-			ļ		

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - 7.2.1 Примерный перечень заданий для подготовки к тестированию

(минимум 10 вопросов для тестирования с вариантами ответов)

- **7.2.2** Примерный перечень заданий для решения стандартных задач (минимум 10 вопросов для тестирования с вариантами ответов)
- **7.2.3** Примерный перечень заданий для решения прикладных задач (минимум 10 вопросов для тестирования с вариантами ответов)
- **7.2.4 Примерный перечень вопросов для подготовки к зачету** Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Основные физические свойства жидкостей. Плотность жидкостей и ее зависимость от температуры и давления.
 - 2. Вязкость жидкостей. Закон Ньютона. Аномальный жидкости.
 - 3. Капиллярные явления.
- 4. Растворение газов в жидкостях. Сопротивление растяжению внутри капельных жидкостей. Понятие идеальной жидкости. Силы, действующие в покоящейся или движущейся жидкости.
- 5. Напряженное состояние покоящейся жидкости. Гидростатическое давление.
 - 6. Дифференциальные уравнения равновесия жидкости.
 - 7. Основное уравнение гидростатики. Поверхности равного давления.
- 8. Весовое и абсолютное давление. Избыточное и вакуумметрическое давление. Эпюры давления. Закон Паскаля. Сообщающиеся сосуды.
 - 9. Геометрическая интерпретация основного уравнения гидростатики.
- 10.Относительный покой жидкости в сосуде, движущемся горизонтально и прямолинейно с постоянным ускорением. Форма поверхностей равного давления. Закон распределения давления.
- 11. Относительный покой жидкости в сосуде, движущемся вертикально с постоянным ускорением. Форма поверхностей равного давления. Закон распределения давления.
- 12. Относительный покой жидкости в сосуде, равномерно вращающемся относительно вертикальной оси. Форма поверхностей равного давления. Закон распределения давления.
- 13. Силы давления покоящейся жидкости на горизонтальные и наклонные плоские стенки.
- 14. Силы давления покоящейся жидкости на цилиндрические поверхности с горизонтальной образующей.
- 15. Силы давления покоящейся жидкости на цилиндрические поверхности с вертикальной образующей.
 - 16. Закон Архимеда. Плавание тел.
 - 17. Условия статической остойчивости плавающего тела.
 - 18. Кинематика и динамика жидкости. Основные понятия и определе-

ния. Уравнение расхода.

- 19. Уравнение Бернулли для элементарной струйки идеальной жидкости.
- 20. Дифференциальные уравнения движения идеальной жидкости и вывод на их основе уравнения Бернулли.
 - 21. Уравнение Бернулли для потока реальной жидкости.
- 22. Общие сведения о гидравлических потерях. Уравнения Вейсбаха и Вейсбаха-Дарси.
 - 23. Режимы течения жидкости в трубах. Кавитация.
 - 24. Теория ламинарного течения в круглых трубах.
- 25. Особые случаи ламинарного течения. Начальный участок ламинарного течения.
- 26. Особые случаи ламинарного течения. Течение с теплообменом, течение при больших перепадах давления, течение с облитерацией.
 - 27. Турбулентное течение в гидравлически гладких трубах.
 - 28. Турбулентное течение в шероховатых трубах.
- 29. Местные гидравлические сопротивления. Внезапное расширение русла.
- 30. Местные гидравлические сопротивления. Постепенное расширение русла.
 - 31. Местные гидравлические сопротивления. Внезапное сужение русла.
- 32. Местные гидравлические сопротивления. Постепенное сужение русла.
 - 33. Местные гидравлические сопротивления. Внезапный поворот трубы.
 - 34. Местные гидравлические сопротивления. Плавный поворот трубы.
- 35. Истечение жидкости через малые отверстия в тонкой стенке при постоянном напоре.
 - 36. Истечение жидкости при несовершенном сжатии.
 - 37. Истечение жидкости под уровень.
 - 38. Истечение жидкости через насадки при постоянном напоре.
- 39. Истечение жидкости через отверстия и насадки при переменном напоре (опорожнение сосудов)
- 40. Гидравлический расчет простого трубопровода постоянного сечения. Типовые задачи на расчет простых трубопроводов.
- 41. Гидравлический расчет последовательного соединения простых трубопроводов.
- 42. Гидравлический расчет параллельного соединения простых трубопроводов.
 - 43. Гидравлический расчет разветвленного трубопровода.

44. Трубопроводы с насосной подачей жидкости. Гидравлический расчет.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов, 5 стандартных задач и 5 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, правильно решенная задача оценивается в 2 балла. Максимальное количество набранных баллов — 30.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 15 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 15 до 20 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 21 до 25 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 26 до 30 баллов.

7.2.7 Паспорт оценочных материалов

	· · ·		
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Введение. Свойства жидкостей.	ПК-1, ПКВ-3,	Тест, устный опрос, эк-
		ПКВ -7	замен
2	Гидростатика	ПК-1, ПКВ-3,	Тест, устный опрос, эк-
	<u>-</u>	ПКВ -7	замен
3	Кинематика и динамика жидкости	ПК-1, ПКВ-3,	Тест, устный опрос, эк-
		ПКВ -7	замен
4	Гидродинамическое подобие и ре-	ПК-1, ПКВ-3,	Тест, устный опрос, эк-
	жимы течения жидкости в трубах.	ПКВ -7	замен
	Ламинарное течение		
5	Турбулентное течение	ПК-1, ПКВ-3,	Тест, устный опрос, эк-
		ПКВ -7	замен
6	Местные гидравлические сопротив-	ПК-1, ПКВ-3,	Тест, устный опрос, эк-
	ления	ПКВ -7	замен
7	Истечение жидкости через отверстия	ПК-1, ПКВ-3,	Тест, устный опрос, эк-
	и насадки	ПКВ -7	замен
8	Гидравлический расчет трубопрово-	ПК-1, ПКВ-3,	Тест, устный опрос, эк-
	дов	ПКВ -7	замен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на

бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
 - Бородкин В.В. Гидравлика (механика жидкости и газа), 2009
 - Штеренлихт Д.В. Гидравлика, 2006
- Шейпак А.А. Гидравлика и гидропневмопривод: Ч.1: Основы механики жидкости и газа, 2006.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - Пакет прикладных программ CoolPack 1.46
 - SMath Studio
 - Mathcad
 - Advanced Grapher
 - Microsoft Windows 10
 - Apache OpenOffice
 - https://elibrary.ru
 - <u>https://cchgeu.ru</u>

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой
- Дисплейный класс, оснащенный компьютерными программами для проведения практических занятий

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Механика жидкости и газа» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета гидравлических систем. Занятия проводятся путем решения

конкретных задач в аудитории.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.