МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ
Декан факультета информационных
технологий и комньютерной безопасности
/ П.Ю. Гусев /

«31» августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Математическая логика и теория алгоритмов»

Направление подготовки 09.03.01 Информатика и вычислительная техника

Профиль Системы автоматизированного проектирования

Квалификация выпускцика бакалавр

Нормативный период обучения 4 года / 4 года и 11 м.

Форма обучения очная / заочная

Год начала подготовки 2019

Автор программы / Акинина Ю.С./

Заведующий кафедрой Автоматизированных и вычислительных систем / Подвальный С.Л./

Руководитель ОПОП / Гусев П. Ю./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

формирование профессиональных знаний и навыков применения методов математической логики и теории алгоритмов при формализации и решении прикладных задач на ЭВМ.

1.2. Задачи освоения дисциплины

- к теоретическим задачам относятся ознакомление с формально-логическими аспектами формулировки теорем и методов их доказательств; освоение методов логического вывода в теории высказываний и в логике предикатов первого порядка; освоение методов логического программирования; ознакомление с формализованным понятием алгоритма и способами оценки его эффективности.
- прикладные задачи состоят в приобретении навыков построения и использования логических моделей при решении практических задач; в практическом освоении систем логического программирования для решения инженерных задач; в умении оценивать эффективность алгоритмов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Математическая логика и теория алгоритмов» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Математическая логика и теория алгоритмов» направлен на формирование следующих компетенций:

ОПК-1 - Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-1	знать - основы математической логики; - основы теории алгоритмов; - основы логического программирования с использова-
	нием языка Пролог; уметь - решать стандартные профессиональные задачи с применением средств исчисления высказываний, исчисления предикатов, средствами языка Пролог;
	- оценивать эффективность разрабатываемых алгоритмов; владеть

- навыками проектирования экспертных систем с использованием языка Пролог;
 - технологиями оценки эффективности алгоритмов.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Математическая логика и теория алгоритмов» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Виды учебной работы		Семестры
Виды учеоной расоты	часов	2
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	36	36
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	72	72
Курсовой проект	+	+
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

заочная форма обучения

Виды учебной работы		Семестры
Виды учеоной работы	часов	3
Аудиторные занятия (всего)	20	20
В том числе:		
Лекции	8	8
Лабораторные работы (ЛР)	12	12
Самостоятельная работа	151	151
Курсовой проект	+	+
Часы на контроль	9	9
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

$N_{\underline{0}}$	Наименование темы	Содержание раздела	Лекц	Лаб.	CDC	Всего,
Π/Π	Паименование темы	содержание раздела	лскц	зан.	CIC	час

1	Основные понятия математической логики. Исчисление высказываний	Основные понятия, термины и определения. Язык логики высказываний. Алфавит, синтаксис и семантика языка. Логические связки. Таблицы истинности. Формулы логики высказываний. Равносильность и общезначимость. Основные равно-	4	4	10	18
2	Іогический вывод в исчис-	сильности логики высказываний. СДНФ, СКНФ, ДНФ, КНФ. Логическое следствие. Аксиоматическая система				
	лении высказываний	вывода. Система аксиом исчисления высказываний. Доказательство правильности логического вывода с помощью эквивалентных преобразований, таблиц истинности, семантических таблиц, метода резолюций.	6	4	10	20
3	Исчисление предикатов. Логика предикатов	Логика предикатов. Одноместные и п- местные предикаты. Логические операции над предикатами. Кванторные операции. Понятие формулы логики предикатов. Нормальные формы в логике предикатов. ПНФ, СНФ.	2	4	10	16
4	Функционально-полные системы элементарных логических функций.	Понятие функционально-полных систем элементарных логических функций, базиса, виды элементных базисов. Теорема Поста.	4	10	16	
5	Упрощение и минимиза- ция логических функций	Метод Квайна, метод испытания импликант, метод импликантных матриц, метод карт Карно	6	6	0	12
6	Практические аспекты использования исчисления высказываний и исчисления предикатов.	Релейно-контактные схемы. Элементы логического программирования (обзор). ПРОЛОГ и логическое программирование. Структура программы. Элементы. Факты. Правила. Запросы. Синтаксис данных. Объекты. Алфавит. Переменные. Константы. Предикаты. Деревья. Аппарат вычислений	8	6	10	24
7	Теория алгоритмов	Интуитивное и строгое определение алгоритма. Формализованное понятие алгоритма. Элементарные вычислимые функции. Основные операции: суперпозиция, схема примитивной рекурсии, операция минимизации. Частично рекурсивные и общерекурсивные функции. Тезис Черча.	4	4	10	18
8	Машинная математика	Простейшая вычислительная модель. Машина Тьюринга. Состав машины Тьюринга. Функциональная схема машины Тьюринга. Нормальные алгоритмы Маркова. Методы оценки эффективности алгоритмов (обзор). Алгоритмически неразрешимые проблемы.	4	4	12	20
		Итого	36	36	72	144

заочная форма обучения

	suo mun dopina ooy remin							
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час		
1	Основные понятия математической логики. Исчисление высказываний	Основные понятия, термины и определения. Язык логики высказываний. Алфавит, синтаксис и семантика языка. Логические связки. Таблицы истинности. Формулы логики высказываний. Равносильность и общезначимость. Основные равносильности логики высказываний. СДНФ, СКНФ, ДНФ, КНФ.	2	2	18	22		
2	Тогический вывод в исчис- лении высказываний			2	18	22		
3	Исчисление предикатов. Логика предикатов	Логика предикатов. Одноместные и n- местные предикаты. Логические операции над предикатами. Кванторные операции. Понятие формулы	2	2	18	22		

		логики предикатов. Нормальные формы в логике предикатов. ПНФ, СНФ.				
4	Функционально-полные системы элементарных логических функций.	Понятие функционально-полных систем элементарных логических функций, базиса, виды элементных базисов. Теорема Поста.	1	2	18	21
5	Упрощение и минимиза- ция логических функций	Метод Квайна, метод испытания импликант, метод импликантных матриц, метод карт Карно	1	2	18	21
6	Практические аспекты использования исчисления высказываний и исчисления предикатов.	Релейно-контактные схемы. Элементы логического программирования (обзор). ПРОЛОГ и логическое программирование. Структура программы. Элементы. Факты. Правила. Запросы. Синтаксис данных. Объекты. Алфавит. Переменные. Константы. Предикаты. Деревья. Аппарат вычислений		2	20	22
7	Теория алгоритмов	Интуитивное и строгое определение алгоритма. Формализованное понятие алгоритма. Элементар- ные вычислимые функции. Основные операции: суперпозиция, схема примитивной рекурсии, опе- рация минимизации. Частично рекурсивные и об- щерекурсивные функции. Тезис Черча.	ı	-	20	20
8	Машинная математика Простейшая вычислительная модель. Машина Тьюринга. Состав машины Тьюринга. Функциональная схема машины Тьюринга. Нормальные алгоритмы Маркова. Методы оценки эффективности алгоритмов (обзор). Алгоритмически неразрешимые проблемы.		-	-	21	21
		Итого	8	12	151	171

5.2 Перечень лабораторных работ

Лабораторная работа № 1. Алгебра исчисления высказываний. Перевод высказываний естественного языка на язык исчисления высказываний.

Лабораторная работа № 2. Математические основы алгебры логики. Знакомство с EWB. Получение СДНФ, СКНФ по ТИ логической формулы.

Лабораторная работа № 3. Формирование СДНФ, СКНФ с помощью аналитических преобразований. Верификация СДНФ, СКНФ в EWB.

Лабораторная работа № 4. Логическое следствие в исчислении высказываний (метод прямых преобразований).

Лабораторная работа № 5. Логическое следствие в исчислении высказываний (метод семантических таблиц, метод резолюций).

Лабораторная работа № 6. Исчисление предикатов. Логика предикатов Лабораторная работа № 7. Функционально-полные системы элементарных логических функций.

Лабораторная работа № 8. Упрощение и минимизация логических функций. Лабораторная работа № 9. Элементы логического программирования. Язык Пролог.

Лабораторная работа № 10. Алгоритмы. Машинная математика.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта во 2 семестре для очной формы обучения, в 3 семестре для заочной формы обучения.

Тема курсового проекта: «<u>Практические задачи математической логики и теории алгоритмов</u>» (задания по вариантам)

Задачи, решаемые при выполнении курсового проекта (пример для 1 варианта):

1. Используя основные эквивалентности исчисления высказываний проверить следующие равносильности:

$$\overrightarrow{AB} \lor \overrightarrow{ABC} \lor \overrightarrow{ACD} \lor \overrightarrow{ABD} \lor \overrightarrow{AD} \overrightarrow{C} = A \lor \overrightarrow{C}$$

- 2. Привести следующую формулу к виду СДНФ: $(B \lor C \to \overline{A}) \to [(C \to B) \to AC]$
 - 3. Перевести на язык исчисления высказываний:

Обсуждая приход в класс новичка, школьники высказывали ряд предположений:

- 1.1. Для того, чтобы новичок был добрым, достаточно, чтобы он был умным и сильным.
 - 1.2. Если новичок силач, то он либо глупый, либо злой.
- 1.3. Если новичок умный, то для того чтобы он был добрым, необходимо, чтобы он был сильным.

Учитель предложил свести эти высказывания к двум простейшим условиям, а из двух условий, как сказал учитель, выполнено только одно. Кроме того, учитель сказал: "Необходимое условие доброты – это ум. Значит, новичок умный, но слабый". Каким был новичок?

4. Проверить правильность логического вывода методом прямого преобразования, методом семантических таблиц и методом резолюций:

Если шесть - составное число, то 12 - составное число; если 12 - составное число, то существует простое число, большее, чем 12. Если существует простое число, большее 12, то существует составное число, большее 12. Если 6 делится на 2, то 6 составное число. Число 12 составное. Вывод: 6 составное число.

- 5. Составить релейно-контактную схему для следующей формулы (не упрощая ее, преобразовав только операции импликации и эквиваленции): $[A \lor B \lor C \ (\overline{A} \lor BC) \lor B \] (A \lor C\overline{A} \lor ABC) B$.
- 6. Привести формулу к предваренной нормальной форме (ПНФ) и сколемовской нормальной форме (СНФ):

 $\forall x \forall y [\exists z P(x, y, z) \& [\exists u Q(x, u) \to \exists u Q(y, u)]].$

7. Дана база данных "Родители и дети": родитель(полина, борис), родитель(анатолий, борис), родитель(анатолий, лиза), родитель(борис, катя), родитель(борис, валентина), родитель(полина, евгений). Сформулировать вопросы на Прологе: Кто является родителем Кати? Есть ли у Лизы ребенок? Кто дети Бориса? Кто чей родитель?

Курсовой проект включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность ком- петенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	знать - основы математической логики; - основы теории алгоритмов; - основы логического программирования с использованием языка Пролог; уметь - решать стандартные профессиональ-	Результаты проведения коллоквиума Ответы на теоретические вопросы при защите лабораторных работ Эффективность использования изученного теоретического материала при выполнении лабораторных работ, курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах Невыполнение работ в срок, предусмотренный в рабочих программах

владеть	Владение механизмом син-	Выполнение работ в	Невыполнение работ в
- навыками проекти-	теза и анализа систем искус-	срок, предусмотрен-	срок, предусмотренный
рования экспертных	ственного интеллекта с ис-	ный в рабочих про-	в рабочих программах
систем с использова-	пользованием программных	граммах	
нием языка Пролог;	пакетов логического про-		
- технологиями	граммирования при выполне-		
оценки эффективно-	нии лабораторных работ, кур-		
сти алгоритмов.	сового проекта		
	Владение способами сравни-		
	тельного анализа эффектив-		
	ности алгоритмов при выпол-		
	нении лабораторных работ,		
	курсового проекта		

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются во 2 семестре для очной формы обучения, 3 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-1	знать - основы математической логики; - основы теории алгоритмов; - основы логического программирования с использованием языка Пролог;	Тест	Выполнение теста на 90-100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	уметь	•	Задачи ре- шены в пол- ном объеме и получены верные от- веты	Продемонстр ирован вер- ный ход ре- шения всех, но не получен верный ответ во всех зада- чах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	владеть - навыками про-	в конкретной	Задачи ре- шены в пол- ном объеме и получены верные от- веты	Продемонстр ирован вер- ный ход ре- шения всех, но не получен верный ответ	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

Ī	- технологиями		во всех зада-	
	оценки эффектив-		чах	
	ности алгоритмов.			

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Объединение двух высказываний в одно с помощью союза «и» называется:
 - а) инверсия;
 - б) конъюнкцией; +
 - в) дизъюнкция;
 - г) импликация.
- 2. Что такое высказывание?
 - а) утверждение, которое может быть только истинно
 - б) утверждение, которое может быть истинно и ложно
 - в) утверждение, которое может быть только ложно.
 - г)повествовательное предложение, которое может быть классифицировано либо как истинное, либо как ложное, но не как, то и другое одновременно. +
- 3. Выберите правильное обозначение эквиваленции высказываний А и В:
 - a) $A \rightarrow B$;
 - δ) $A \leftrightarrow B$; +
 - B) $A \leftarrow B$.
- 4. Какое из нижеперечисленных предложений, не является высказыванием:
 - а) Москва столица России;
 - б) 13 простое число;
 - в) «Который час?». +
- 5. Элементарной дизъюнкцией называется дизъюнкция, состоящая...
 - а) только из переменных или их отрицаний;
 - б) только из переменных;
 - в) только из отрицаний определённых переменных.
- 6. Найдите символ, обозначающий знак импликации:
 - a) \leftrightarrow :
 - б) **→**;+
 - B) /;

- 7. Какая из формул алгебры логики, соответствует форме выражения естественного языка: А или В; А или В, или оба
 - a) $A \vee B$; +
 - δ) A \rightarrow B;
 - B) $A \leftrightarrow B$.
- 8. Умозаключением называется:
 - а) элементарное высказывание;
 - б) умственное действие, с помощью которого осуществляется переход от некоторых исходных высказываний к заключительному утверждению; +
 - в) правильные схемы рассуждений, в которых заключение верно в силу именно формы рассуждения, а не содержания.
- 9. Семантическая таблица называется замкнутой, если:
 - а) если каждая ее ветвь противоречива;
 - б) если каждая непротиворечивая ее ветвь не содержит обычных вершин; +
 - в) если каждая противоречивая ее ветвь содержит обычные вершины.
- 10. Элементарное высказывание называется ...
 - а) силлогизмом;
 - б) атомом; +
 - в) умозаключением.
- 11. Что такое «Методы доказательства»?
 - а) любые алгоритмические процедуры;
 - б) алгоритмические процедуры, посредством которых можно установить, является ли данное высказывание тавтологией; +
 - в) все помеченные формулы, встречающиеся в таблице.
- 12. О чём свидетельствует получение нулевой резольвенты?
 - а) о невыполнимости исходной формулы; +
 - б) о неправильности вывода;
 - в) о неверном решении поставленной задачи.
- 13. Субъект это...
 - а) то, о чем утверждается в высказывании; +
 - б) одно из множества рассуждений;
 - в) допустимая ситуация.
- 14. Какая из перечисленных операций исчисления высказываний не применима к предикатам?
 - а) отрицание;
 - б) импликация;
 - в) эквиваленция;

- г) все вышеперечисленные операции применимы. + 15. Квантор существования заменяет в словесных формулировках слова: а) хотя бы один, найдется, существует; + б) все, всякий, каждый, любой; в) другой, не только этот. 16. Предварённая нормальная форма (ПНФ) – это: а) нормальная форма, в которой все элементарные конъюнкции максимального ранга; б) нормальная форма, которая содержит операции конъюнкции, дизъюнкции и только кванторы существования; в) нормальная форма, в которой кванторные операции либо полностью отсутствуют, либо они используются после всех операций алгебры логики.+ 17. Какой специальный знак не должен входить в сколемовскую нормальную форму: а) знак отрицания; б) квантор существования; + в) квантор всеобщности. 18. Какая логическая операция используется при определении резольвенты? а)импликация; б) конъюнкция; в) дизъюнкция; + г) отрицание. 19. Сколько существует различных булевых функций от двух переменных? a) 16; + 6)12;в)9; r)32. 20. Какое предложение не является высказыванием? а) «Москва – столица России»; б) «Снег зеленый»; в) «Решить квадратное уравнение»; +
- 21. Какое высказывание принимает значение ложь?
 - а) «Москва столица России»;

г) «3 есть простое число».

- б) «Снег зеленый»;+
- в) «Решить квадратное уравнение»;
- Γ) «2*2=4»

- 22. Какой из перечисленных терминов не относится к свойствам алгоритма:
 - а) дискретность;
 - б) детерминированность;
 - в) эффективность. +
- 23. Чем отличается машина Тьюринга от человека-вычислителя:
 - а) она не ошибается и снабжена потенциально бесконечной памятью;
 - б) она ошибается, но очень быстро находит ошибку;
 - в) она способна запомнить только 1 бит информации.

7.2.2 Примерный перечень заданий для решения стандартных задач

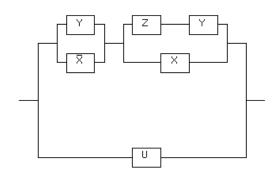
- 1. Переведите на язык алгебры логики следующее высказывание: «Я поеду в Москву, и если встречу там друзей, то мы интересно проведем время».
 - a) $(M \wedge B) \rightarrow H$;
 - б) $M \wedge (B \rightarrow H)$;+
 - в) $M \wedge B \rightarrow M$.
- 2. Укажите верную форму минимальной ДНФ, выражения $(C \to (\overline{3} \to \overline{B}))(C3 \to \overline{B})(3 \to (\overline{B} \leftrightarrow C))$.
 - a) $\overline{3} \overline{C} \vee \overline{B} \overline{3} \vee \overline{C} \overline{B} = \overline{B} \overline{3} \vee \overline{C} \overline{B}$; +
 - 6) $(C\overline{B} \vee B3)(\overline{C}\overline{B}\overline{3} \vee CB3) = CB3$;
 - B) $C\overline{B} \vee B3$.
- 3. Найдите правильно записанное на языке исчисления высказываний выражение: если яблоки будут сладкими, то для того, чтобы они были большими, достаточно, чтобы они были не зелеными:
 - a) $C \rightarrow (\bar{3} \rightarrow E)$; +
 - 6) $C3 \rightarrow \overline{B}$;
 - B) $3 \rightarrow (E \leftrightarrow C)$.
- 4. Привести следующую формулу логики предикатов сначала к предваренной нормальной форме (ПНФ), затем к сколемовской нормальной форме (СНФ):

$$\forall x R(x) \lor \exists x Q(x, y)$$

- a) $\exists x (R(x) \lor Q(x,y)); +$
- 6) $\forall x (\overline{R(x)} \vee Q(x, y));$
- B) $\forall x R(x) \lor \forall x Q(x, y)$.
- 5. Используя основные эквивалентности исчисления высказываний, проверить следующие равносильности:

 $(BD \lor AD \lor ABD \lor ABD)(A \lor AD \lor BD) = A \lor BD;$

- а) не является равносильностью;
- б) является равносильностью. +
- 6. Используя основные эквивалентности исчисления высказываний, проверить следующие равносильности:


$$(BC \lor A\overline{BC} \lor \overline{A}C)(AB \lor \overline{C} \lor AC) = A$$

- а) не является равносильностью;
- б) является равносильностью. +
- 7. Найдите правильно записанное на языке исчисления высказываний выражение: Будет пасмурная погода со снегом. Если будет снег, то будет и дождь. Если будет пасмурная погода с ветром, то дождя не будет. Вывод: ветра не будет.
 - а) $\Pi C(C \to \mathcal{I})(\Pi B \to \overline{\mathcal{I}}) \models \overline{B}$, где Π пасмурная погода; C снег; B ветер, \mathcal{I} дождь. +
 - б) $\Pi C(C \to \mathcal{I})(\Pi B \leftrightarrow \overline{\mathcal{I}}) \models \overline{B}$, где Π пасмурная погода; C снег; B ветер, \mathcal{I} дождь.
 - в) $\Pi C(\overline{C} \to \mathcal{A})(\Pi \overline{B} \to \overline{\mathcal{A}}) \models \overline{B}$, где Π пасмурная погода; C снег; B ветер, \mathcal{A} дождь.
 - 8. С помощью метода резолюций выяснить, является ли правильным вывод из следующего формального описания $(C \to G)(D \to S)$; $SG \to E$; \overline{E} $\models \overline{C} \lor \overline{D}$.
 - а) получили нулевую резольвенту, следовательно вывод правильный;+
 - б) получили нулевую резольвенту, следовательно вывод неправильный;
 - в) не получили нулевую резольвенту, следовательно вывод правильный.
 - 9. Преобразовать следующее выражение к нормальной форме: $\forall x ((\exists y P(x, y) \to \forall y Q(x, y)) \to R(x))$
 - а) получим $\exists x (\exists y P(x,y) \lor \exists y \overline{Q(x,y)} \lor R(x))$, эта форма является нормальной;
 - б) получим $\forall x(\exists y P(x,y) \& \exists y Q(x,y) \lor R(x))$, эта форма является нормальной;+
 - в) данное выражение нельзя преобразовать к нормальной форме.
- 10. Привести к минимальной ДНФ следующее выражение $\left[\left(\overline{C} \to B\right) \to A\right] \to B\left(\overline{C} \leftrightarrow A\right)$.
 - а) $\overline{A}C \vee B\overline{C}$ минимальная ДНФ;+

- б) $\overline{A}(C \vee \overline{BC})$ минимальная ДНФ;
- в) AC минимальная ДНФ;

7.2.3 Примерный перечень заданий для решения прикладных задач:

1. Найти функцию проводимости для следующей РКС:

a)
$$F = (Y \vee \overline{X}) \vee (ZY \vee X) \vee U;$$

б)
$$F = (Y \vee \overline{X})(ZY \vee X) \vee U$$
;+

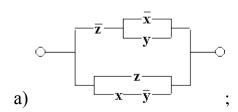
B)
$$F = (Y \vee \overline{X})(Z \vee Y \wedge X) \vee U$$
.

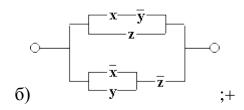
2. Программа на языке Пролог будет содержать информацию о военнослужащих некоторого воинского подразделения и их званиях: "Павлов генерал", "Денисов капитан", "Матвеев капитан". Сформулировать на Прологе следующий вопрос: Павлов генерал?

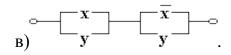
Domains

s=symbol

Predicates


military(s,s)


Clauses


military(pavlov, general). military(denisov, kapitan). military(matveev, kapitan).

Варианты формулировки:

a)goal military (pavlov, general).+ б) Clauses military (pavlov, general). в)goal military (_, general). 3. В соответствии со следующей функцией проводимости $F(x, y, z) = (x \cdot y) \cdot z \cdot (x \cdot y) \cdot z$ построить РКС:

4. Программа на языке Пролог будет содержать информацию о военнослужащих некоторого воинского подразделения и их званиях: "Павлов генерал", "Денисов капитан", "Матвеев капитан". Сформулировать на Прологе следующий вопрос: вывести военных, имеющих одинаковые звания.

Domains

s=symbol

Predicates

military(s,s)

Clauses

military(pavlov, general). military(denisov, kapitan). military(matveev, kapitan).

Варианты формулировки:

a) goal

military (_, kapitan).

б) Clauses

military (X, kapitan).

в) goal military(X,Y), military(Z,Y), X <> Z. +

5. Для составления базы банных по следующей таблице описать разделы Domains и Predicates на языке Пролог:

Назва- ние реки	Плино им	Годовой сток, км ³	Площадь бассейна, тыс. км ²	Истоки	Куда впа- дает
Амур	4416	350	1855	Яблоневый хре- бет	Татарский пролив
Лена	4400	488	2490	Байкальский хре- бет	Море Лап- тевых
Обь	4070	400	2990	Предгорья Алтая	Карское море

a) Domains

S=symbol

N=integer

Predicates

reka(N,N,S,N,S,S)

б) Domains

S=symbol

N=integer

Predicates

reka(S,N,N,N,S,S)+

в)Domains

S=symbol

N=integer

Predicates

reka(N,S,S,S,N,N)

6. Программа на языке Пролог будет содержать информацию о военнослужащих некоторого воинского подразделения и их званиях: "Павлов генерал", "Денисов капитан", "Матвеев капитан". Сформулировать на Прологе следующий вопрос: в подразделение есть военный в звание подполковника?

Domains

s=symbol

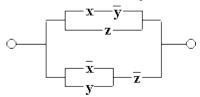
Predicates

military(s,s)

Clauses

military(pavlov, general). military(denisov, kapitan). military(matveev, kapitan).

Варианты формулировки:


a)goal military (_, podpolkovnik).+

δ) Clauses military (X, podpolkovnik).

B)goal

military(X, podpolkovnik), military(Z, Y), X<>Z.

7. Найти функцию проводимости для следующей РКС:

a)
$$F = X\overline{Y} \lor Z \lor (\overline{X} \lor Y)\overline{Z}; +$$

6)
$$F = (X\overline{Y} \vee Z)(\overline{X} \vee Y)\overline{Z}$$
;

B)
$$F = X\overline{Y} \vee (Z \vee \overline{X} \vee Y)\overline{Z}$$
.

8. Известно, что Лене нравится теннис, Денису нравится футбол, Борису – бейсбол, Эдику – плавание, Марку нравится теннис, а Фёдору то, что нравится Борису. Записать факты на Прологе и ответить на вопрос: кому нравится теннис?

a) Predicates

nondeterm likes(integer, integer)

Clauses

likes(lena, tennis).

likes(denis, football).

likes(boris, baseball).

likes(edic, swimming).

likes(mark, tennis).

likes(fedor, Z):- likes(boris, Z).

goal

likes(X, tennis).

б) Predicates

nondeterm likes(symbol,symbol)

Clauses

likes(lena, tennis).

likes(denis, football).

likes(boris, baseball). likes(edic, swimming).

likes(mark, tennis).

likes(fedor, Z):- likes(boris, Z).

goal

likes(X, tennis). +

в) Predicates

nondeterm likes(symbol,symbol)

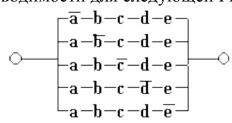
Clauses

likes(lena, tennis).

likes(denis, football).

likes(boris, baseball).

likes(edic, swimming).


likes(mark, tennis).

likes(fedor, Z):- likes(boris, Z).

goal

likes(_, tennis).

7. Найти функцию проводимости для следующей РКС:

- a) $F = \overline{ABCDE} \lor A\overline{BCDE} \lor AB\overline{CDE} \lor ABC\overline{DE} \lor ABCD\overline{E}; +$
- $F = \overline{(A \lor B \lor C \lor D \lor E)}(A \lor \overline{B} \lor C \lor D \lor E)(A \lor B \lor \overline{C} \lor D \lor E) \land;$

$$(A \lor B \lor C \lor \overline{D} \lor E)(A \lor B \lor C \lor D \lor \overline{E})$$

- в) $F = \overline{A}BC\overline{D}E \lor A\overline{B}CD\overline{E} \lor AB\overline{C}DE \lor \overline{A}B\overline{C}\overline{D}E \lor \overline{A}BCD\overline{E}$.
 - 10. Известно, что Лене нравится теннис, Денису нравится футбол, Борису бейсбол, Эдику плавание, Марку нравится теннис, а Фёдору то, что нравится Борису. Записать факты на Прологе и ответить на вопрос: что нравится Федору?
 - a) Predicates

nondeterm likes(integer, integer)

Clauses

likes(lena, tennis).

likes(denis, football).

likes(boris, baseball).

```
likes(edic, swimming).
   likes(mark, tennis).
   likes(fedor, Z):- likes(boris, Z).
goal
          likes(fedor, X).
б) Predicates
   nondeterm likes(symbol,symbol)
Clauses
   likes(lena, tennis).
   likes(denis, football).
   likes(boris, baseball).
   likes(edic, swimming).
   likes(mark, tennis).
   likes(fedor, Z):- likes(boris, Z).
goal
       likes(fedor, X). +
в) Predicates
   nondeterm likes(symbol,symbol)
Clauses
   likes(lena, tennis).
   likes(denis, football).
   likes(boris, baseball).
   likes(edic, swimming).
   likes(mark, tennis).
   likes(fedor, Z):- likes(boris, Z).
goal
        likes(Y, X).
```

7.2.4 Примерный перечень вопросов для подготовки к зачету

Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Математическая логика. Предмет и история развития.
- 2. Основные логические функции исчисления высказываний и их таблицы истинности.
- 3. Понятие «высказывание» и основные законы формальной логики.
- 4. Дизъюнктивная нормальная форма (ДНФ), конъюнктивная нормальная форма (КНФ), минимальная ДНФ, минимальная КНФ. Правила

- получения минимальной ДНФ, минимальной КНФ (привести примеры).
- 5. Совершенная дизъюнктивная нормальная форма (СДНФ), совершенная конъюнктивная нормальная форма (СКНФ). Правила приведения логической формулы к СДНФ, СКНФ (привести примеры).
- 6. Решение логических задач методами алгебры логики.
- 7. Логический вывод в исчислении высказываний. Силлогизмы.
- 8. Применение булевых функций к релейно-контактным схемам (привести примеры).
- 9. Функционально полные системы элементарных логических функций: определение, примеры.
- 10. Элементарные логические функции одного и двух аргументов: таблицы истинности, представление в виде ДНФ или КНФ. Функциональный базис, минимальный базис.
- 11. Характерные свойства элементарных логических функций, влияющих на формирование функционально полных логических базисов. Теорема Поста.
- 12. Пример формирования на основе характерных свойств функционально полного логического базиса. Теорема Поста.
- 13. Логический вывод в исчислении высказываний. Метод прямых преобразований.
- 14. Логический вывод в исчислении высказываний. Метод семантических таблии.
- 15. Логический вывод в исчислении высказываний. Метод резолюций.
- 16. Атомарная семантическая таблица.
- 17. Общая характеристика задачи минимизации логических функций.
- 18. Основные правила преобразований логических уравнений.
- 19. Минимизация методом Квайна с испытанием импликант.
- 20. Табличные методы минимизации с помощью импликантных матриц и карт Карно.
- 21. Машинно ориентированные методы минимизации.
- 22. Понятие о субъекте и предикате (привести примеры).
- 23. Одноместные и многоместные предикаты (привести примеры).
- 24. Логические операции над предикатами.
- 25. Равносильности логики предикатов.
- 26. Кванторные операции (привести примеры) (привести примеры).
- 27. Предваренная нормальная форма и алгоритм ее получения (привести примеры).
- 28.Сколемовская нормальная форма и алгоритм ее получения (привести примеры).
- 29.Определение алгоритма. Основные требования, предъявляемые к алгоритмам.
- 30. Этапы решения задачи. Варианты описания алгоритма (привести примеры).

- 31.Определение алгоритма. Основные подходы к определению алгоритма.
- 32. Рекурсивные функции.
- 33. Машина Тьюринга.
- 34. Нормальные алгоритмы А.А. Маркова.
- 35.Структура программ на языке Пролог (привести примеры).
- 36. Разработка программ на языке Пролог (привести примеры).

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Оценка при проведении промежуточной аттестации учитывает результаты тестирования. Экзамен проводится по экзаменационным билетам, каждый из которых содержит два теоретических вопроса и одно практическое задание, тестирование предполагает получение ответов на 23 вопроса.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент дал неправильные ответы на два экзаменационных вопроса, не решил практическое задание и ответил менее чем на 60% тестовых вопросов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент неправильно ответил на один экзаменационный вопрос или на все вопросы дал неполные ответы, не решил полностью практическое задание и ответил на 60-80 % тестовых вопросов.
- 3. Оценка «Хорошо» ставится в случае, если студент правильно ответил на один экзаменационный вопрос или на все вопросы дал неполные ответы, решил полностью практическое задание, продемонстрировал понимание материала, но допустил незначительные ошибки, а также выполнил тест на 80-90%.
- 4. Оценка «Отлично» ставится, если студент дал обоснованные, глубокие и теоретически правильные ответы на экзаменационные вопросы, решил полностью практическое задание, продемонстрировал понимание материала, а также выполнил тест на 90-100%.

Компетенции считаются сформированными, если в ходе изучения дисциплины выполнены и защищены курсовой проект и лабораторные работы. Выполненные лабораторные работы являются допуском к сдаче экзамена.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Основные понятия математической логики. Исчисление высказываний	ОПК-1	Тест, экзамен, контрольные работы, защита лабораторных работ, защита курсового проекта
2	Логический вывод в исчислении высказываний	ОПК-1	Тест, экзамен, контрольные работы, защита лабораторных работ, защита курсового проекта

4	Исчисление предикатов. Логика предикатов Функционально-полные системы элементарных логических функ-	ОПК-1	Тест, экзамен, контрольные работы, защита лабораторных работ, защита курсового проекта Тест, экзамен, контрольные работы, защита лабораторных работ, защита курсового про-
	ций.		екта
5	Упрощение и минимизация ло- гических функций	ОПК-1	Тест, экзамен, контрольные работы, защита лабораторных работ, защита курсового проекта
6	Практические аспекты использования исчисления высказываний и исчисления предикатов.	ОПК-1	Тест, экзамен, контрольные работы, защита лабораторных работ, защита курсового проекта
7	Теория алгоритмов	ОПК-1	Тест, экзамен, контрольные работы, защита лабораторных работ, защита курсового проекта
8	Машинная математика	ОПК-1	Тест, экзамен, контрольные работы

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 45 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 45 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 45 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8. УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Перечень учебной литературы, необходимой для освоения дисциплины

Холопкина Л.В. Математическая логика и теория алгоритмов: практикум: учеб. пособие / Л.В. Холопкина. - Воронеж, ВГТУ. 2008. – 162 с.

Карпов Ю.Г. Теория автоматов / Ю.Г. Карпов .- СПб.: Питер. 2003. — 208 с.

Шапорев С.Д. Математическая логика. Курс лекций и практических занятий / С.Д. Шапорев. – СПб.:БХВ-Петербург, 2005. – 416 с.

Маньшин М.Е. Математическая логика и теория алгоритмов [Электронный ресурс]: учебное пособие/ Маньшин М.Е.— Электрон. текстовые данные.— Волгоград: Волгоградский институт бизнеса, Вузовское образование, 2009.— 106 с.— Режим доступа: http://www.iprbookshop.ru/11334.html.— ЭБС «IPRbooks».

Макоха А.Н. Математическая логика и теория алгоритмов [Электронный ресурс]: учебное пособие/ Макоха А.Н., Шапошников А.В., Бережной В.В.— Электрон. текстовые данные.— Ставрополь: Северо-Кавказский федеральный университет, 2017.— 418 с.— Режим доступа: http://www.iprbookshop.ru/69397.html.— ЭБС «IPRbooks».

Холопкина Л.В., Носачева М.П. Методические указания по выполнению лабораторных работ 1-3 по курсу «Математическая логика и теория алгоритмов» / Л.В. Холопкина, М.П. Носачева. - Воронеж, ВГТУ. 2014. - 47 с.

Холопкина Л.В., Носачева М.П. Методические указания по выполнению лабораторных работ 4-7 по курсу «Математическая логика и теория алгоритмов» / Л.В. Холопкина, М.П. Носачева. - Воронеж, ВГТУ. 2014. - 54 с.

8.2. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Программа схемотехнического моделирования Electronics Workbench 5.12 (бесплатное программное обеспечение).

Visual Prolog 5.2.

Microsoft Windows 7.

Microsoft Office 2013 (Word, Access, Excel, PowerPoint, Visio).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная проектором

Проведение лабораторных работ проводятся в специализированной лаборатории

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Математическая логика и теория алгоритмов» читаются лекции, проводятся лабораторные работы, выполняется курсовой проект.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на компьютерах в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсового проекта изложена в учебно-методическом пособии. Выполнять этапы курсового проекта студенты должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсового проекта, защитой курсового проекта, проведением коллоквиумов и контрольных работ.

трольных расот	Т	
Вид учебных	Деятельность студента	
занятий	·	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фик- сировать основные положения, выводы, формулировки, обобщения; поме- чать важные мысли, выделять ключевые слова, термины. Проверка терми- нов, понятий с помощью энциклопедий, словарей, справочников с выпи- сыванием толкований в тетрадь. Обозначение вопросов, терминов, мате- риала, которые вызывают трудности, поиск ответов в рекомендуемой ли- тературе. Если самостоятельно не удается разобраться в материале, необ- ходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.	
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.	
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.	
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.	