МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан ФМАТ______ Ряжских В.И. <u>«27» августа 2021 г.</u>

РАБОЧАЯ ПРОГРАММА

дисциплины

«Технология сварки плавлением и термической резки»

Направление подготовки 15.03.01 МАШИНОСТРОЕНИЕ

Профиль Оборудование и технология сварочного производства

Квалификация выпускника бакалавр

Нормативный период обучения <u>4 года / 4 года и 11 м.</u>

Форма обучения очная / заочная

Год начала подготовки <u>2021</u>

Автор программы	Ju-	_/Пешков В.В./
Заведующий кафедрой Технологии сварочного производства и диагностики	C/	_/Селиванов В.Ф./
Руководитель ОПОП	C/	_/Селиванов В.Ф./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Обеспечение подготовки, позволяющей будущим специалистам разрабатывать технологии и применение эффективных способов сварки плавлением и термической резки для создания конкурентоспособных сварных конструкций с заданными свойствами путем обоснованного выбора: метода сварки (термической резки), технологических параметров процесса, сварочных материалов и оборудования.

1.2. Задачи освоения дисциплины

- приобретение знаний сущности о физических и металлургических процессах, протекающие при реализации традиционных и новых способов сварки плавлением и термической резке металлов;
- овладение основными принципами и методиками выбора технологических параметров процессов сварки плавление и термической резки металлов;
- овладение основными принципами и методиками выбора сварочных материалов;

изучение оборудования и аппаратуры, использующихся в сварочном производстве для оснащения рабочих мест по сварке плавлением и термической резке;

- формирование у студентов знаний, позволяющих определять причины появление дефектов в сварных соединениях и находить методы их устранения;

формирование у студентов навыков, позволяющих выбирать и разрабатывать технологии получения неразъемных соединений с требуемыми характеристиками.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Технология сварки плавлением и термической резки» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Технология сварки плавлением и термической резки» направлен на формирование следующих компетенций:

- ПК-13 способность обеспечивать техническое оснащение рабочих мест с размещением технологического оборудования; умение осваивать вводимое оборудование
- ПК-17 умение выбирать основные и вспомогательные материалы и способы реализации основных технологических процессов и применять прогрессивные методы эксплуатации технологического оборудования при изготовлении изделий машиностроения

Компетенция	Результаты обучения, характеризующие сформированность компетенции						
ПК-13	Знать принципы работы и устройство оборудования используемого при различных способах сварки плавлением и термической резки						
	Уметь осуществлять техническое оснащение рабочих мест оборудованием и осваивать вводимое в эксплуатацию оборудование						
	Владеть навыками выбора и размещения технологического оборудования для производства сварных конструкций						
ПК-17	Знать влияние технологических параметров режимов сварки плавлением и термической резки, а также основных и сварочных материалов на развитие и качество процессов сварки и термической резки						
	Уметь выбирать технологические параметры режимов сварки и термической резки, а также основные и сварочные материалы для обеспечения требуемого качества изделия и производительности						
	Владеть навыками выбора технологических параметров режимов сварки и термической резки, а также основных и сварочных материалов, обеспечивающих требуемое качество изделия и производительность						

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Технология сварки плавлением и термической резки» составляет 9 з.е.

Распределение трудоемкости дисциплины по видам занятий очная форма обучения

Виды учебной работы	Всего	Семестры	
Виды учеоной расоты	часов	6	7
Аудиторные занятия (всего)	144	72	72
В том числе:			
Лекции	54	36	18
Практические занятия (ПЗ) в том числе в форме практической подготовки (при наличии)	54	18	36
Лабораторные работы (ЛР) в том числе в форме практической подготовки (при наличии)	36	18	18
Самостоятельная работа	144	72	72
Курсовой проект (работа)	Нет	Нет	Нет
Контрольная работа	Нет	Нет	Нет

Часы на контроль	36	-	36
Виды промежуточной аттестации		зачет с оцен- кой	экза- мен
Общая трудоемкость: академические часы зач.ед.	324 9	144 4	180 5

заочная форма обучения

Duwi wieńskiej neśczni	Всего	Семе	стры
Виды учебной работы	часов	8	9
Аудиторные занятия (всего)	44	22	22
В том числе:			
Лекции	12	6	6
Практические занятия (ПЗ) в том числе в форме практической подготовки (при наличии)	16	8	8
Лабораторные работы (ЛР) в том числе в форме практической подготовки (при наличии)	16	8	8
Самостоятельная работа	267	46	221
Курсовой проект (работа)	Нет	Нет	Нет
Контрольная работа	Нет	Нет	Нет
Часы на контроль	13	4	9
Виды промежуточной аттестации - экзамен, зачет с оценкой	+	+	+
Общая трудоемкость:			
академические часы	324	72	252
зач.ед.	9	2	7

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоем-кости по видам занятий

очная форма обучения

	o mun popula ody remin							
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час	
1	1	Образование металлических связей. Формирование сварочной ванны и влияние технологических параметров режима сварки на геометрические размеры шва. Металлургические процессы при сварке. Формирование химического состава металла шва. Микроструктура сварного соединения Классификация способов сварки плавлением. Классификация сварных швов и соединений	10	8	6	24	48	
2	рактеристики основных	Ручная дуговая сварка покрытыми электродами. Автоматическая сварка под флюсом. Сварка в среде защитных газов. Плазменная сварка. Комбинированный	10	8	6	24	48	

		процесс точечной плазменно-дуговой сварки. Электрошлаковая сварка. Газовая сварка					
3	Сварочные материалы	Сварочная проволока сплошного сечения для сварки сталей и цветных металлов. Порошковая сварочная проволока. Активированная сварочная проволока. Сварочные покрытые электроды для сварки сталей и цветных металлов. Флюсы для электрошлаковой сварки. Защитные инертные и активные газы. Горючие газы. Кислород.	10	8	6	24	48
4	Технологии сварки сталей и чугуна	Характеристика сталей. Металлургические особенности сварки сталей. Сварка низко- углеродистых сталей. Сварка среднеугле- родистых сталей. Сварка низколегиро- ванных низкоуглеродистых сталей. Сварка средне- и низколегированных среднеугле- родистых (закаливающихся) сталей. Свар- ка высоколегированных сталей. Техноло- гии сварки чугуна	8	10	6	24	48
5	Технологии сварки цветных металлов	Сварка меди и её сплавов. Особенности сварки. Сварка никеля и его сплавов, особенности сварки. Сварка алюминия и его сплавов, особенности сварки. Сварка магниевых сплавов. Сварка титана и его сплавов, особенности сварки	8	10	6	24	48
6	Термическая резка металлов	Кислородная резка. Кислородно-флюсовая резка. Резка кислородным копьём. Электродуговая резка. Плазменная резка. Лазерная резка.	8	10	6	24	48
		Итого	54	54	36	144	288

заочная форма обучения

	_	заочная форма обуче					
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1		Образование металлических связей. Формирование сварочной ванны и влияние технологических параметров режима сварки на геометрические размеры шва. Металлургические процессы при сварке. Формирование химического состава металла шва. Микроструктура сварного соединения Классификация способов сварки плавлением. Классификация сварных швов и соединений	2	2	4	46	54
2	рактеристики основных	Ручная дуговая сварка покрытыми электродами. Автоматическая сварка под флюсом. Сварка в среде защитных газов. Плазменная сварка. Комбинированный процесс точечной плазменно-дуговой сварки. Электрошлаковая сварка. Газовая сварка	2	2	4	44	52
3	Сварочные материалы	Сварочная проволока сплошного сечения для сварки сталей и цветных металлов. Порошковая сварочная проволока. Активированная сварочная проволока. Сварочные покрытые электроды для сварки сталей и цветных металлов. Флюсы для электрошлаковой сварки. Защитные инертные и активные газы. Горючие газы. Кислород.		2	2	44	50
4	Технологии сварки сталей и чугуна	Характеристика сталей. Металлургические особенности сварки сталей. Сварка низко- углеродистых сталей. Сварка среднеугле- родистых сталей. Сварка низколегиро- ванных низкоуглеродистых сталей. Сварка средне- и низколегированных среднеугле-	2	2	2	44	50

		родистых (закаливающихся) сталей. Сварка высоколегированных сталей. Технологии сварки чугуна					
5	Технологии сварки цветных металлов	Сварка меди и её сплавов. Особенности сварки. Сварка никеля и его сплавов, особенности сварки. Сварка алюминия и его сплавов, особенности сварки. Сварка магниевых сплавов. Сварка титана и его сплавов, особенности сварки	2	4	2	44	52
6	Термическая резка металлов	Кислородная резка. Кислородно-флюсовая резка. Резка кислородным копьём. Электродуговая резка. Плазменная резка. Лазерная резка.	2	4	2	45	53
	·	Итого	12	16	16	267	311

5.2 Перечень лабораторных работ

Лабораторная работа № 1 — Ручная дуговая сварка покрытыми электродами

Лабораторная работа № 2 – Автоматическая сварка под флюсом

Лабораторная работа № 3 — Полуавтоматическая сварка в углекислом газе

Лабораторная работа № 4 — Ручная дуговая сварка неплавящимся вольфрамовым электродом в инертных газах

Лабораторная работа № 5 – Сварка сталей

Лабораторная работа № 6 – Сварка алюминия и его сплавов

Лабораторная работа № 7 – сварка титана и его сплавов

Лабораторная работа № 8 – сварка меди и её сплавов.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-13		1 ' 1	Выполнение теста на 70% и более	В тесте менее 70% правильных ответов
	Уметь осуществлять	Степень	Выполнение работ	Невыполнение ра-

	техническое оснащение рабочих мест оборудованием и осваивать вводимое в эксплуатацию оборудование	самостоятельности в решении задачи при выполнение лабораторных ра- бот	в срок, предусмотренный в рабочих программах	бот в срок, преду- смотренный в ра- бочих программах
	Владеть навыками выбора и размещения технологического оборудования для производства сварных конструкций	Степень самостоятельности в решении задачи при выполнение лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-17	Знать влияние тех- нологических пара- метров режимов сварки плавлением и термической резки, а также основных и сварочных материалов на развитие и качество процессов сварки и термической резки	Процент правильных ответов при тестировании	Выполнение теста на 70% и более	В тесте менее 70% правильных ответов
	Уметь выбирать технологические параметры режимов сварки и термической резки, а также основные и сварочные материалы для обеспечения требуемого качества изделия и производительности	Степень самостоятельности в решении задачи при выполнение лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками выбора технологических параметров режимов сварки и термической резки, а также основных и сварочных материалов, обеспечивающих требуемое качество изделия и производительность	Степень самостоятельности в решении задачи при выполнение лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6, 7 семестре для очной формы обучения, 8, 9 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
	ство оборудования	системность, прочность знаний, обобщенность зна- ний	Знает прин- ципы работы и устройство оборудования используемого при различных способах свар-	Знает принципы работы оборудования используемого при различных способах сварки плавлением	Знает принципы работы оборудования используемого при некоторых способах сварки плавлением и терми-	Нет соответствия критериям оценки «удовлетворительно»

	ческой резки		ки плавлением и термической резки	и термической резки	ческой резки	
	Уметь осуществ- лять техническое оснащение рабо- чих мест оборудо- ванием и осваи- вать вводимое в эксплуатацию оборудование	степень самостоятельности выполнения дейст- вия	Умение продемонстрировано в полном объеме и получены верные и полные рекомендации	Продемонстр ирован верный подход в решении, но не получены полные рекомендации	Продемонстр ирован верный подход в реше- нии, но не полу- чены верные рекомендации	Нет соответ- ствия крите- риям оценки «удовлетво- рительно»
	Владеть навыка- ми выбора и раз- мещения техно- логического обо- рудования для производства сварных конст- рукций	применение знаний и умений, как готовность самостоятельного применения их, демонстрировать осуществлять деятельность в различных ситуациях, относящихся к данной компетенции	Навыки продемонстрированы в полном объеме и получены верные и полные рекомендации	Продемонстр ирован верный подход в решении, но не получены полные рекомендации	Продемонстр ирован верный подход в реше- нии, но не полу- чены верные рекомендации	Нет соответ- ствия крите- риям оценки «удовлетво- рительно»
ПК-17	Знать влияние технологических параметров режимов сварки плавлением и термической резки, а также основных и сварочных материалов на развитие и качество процессов сварки и термической резки	системность, прочность знаний, обобщенность зна- ний	Знает влияние технологиче- ских парамет- ров режимов сварки плав- лением и тер- мической рез- ки, а также основных и сварочных материалов на развитие и качество про- цессов сварки и термической резки	Знает влияние технологических параметров режимов сварки плавлением и термической резки, а также основных и сварочных материалов на качество процессов сварки и термической резки	Знает влияние технологических параметров режимов сварки плавлением и термической резки на качество процессов сварки и термической резки	Нет соответствия критериям оценки «удовлетворительно»
	Уметь выбирать технологические параметры режимов сварки и термической резки, а также основные и сварочные материалы для обеспечения требуемого качества изделия и производительности	степень самостоятельности выполнения дейст- вия	Умение продемонстрировано в полном объеме и получены верные и полные рекомендации	Продемонстр ирован верный подход в решении, но не получены полные рекомендации	Продемонстр ирован верный подход в реше- нии, но не полу- чены верные рекомендации	Нет соответ- ствия крите- риям оценки «удовлетво- рительно»
	Владеть навыка- ми выбора техно- логических пара- метров режимов сварки и термиче- ской резки, а также основных и сва- рочных материа- лов, обеспечи- вающих требуемое качество изделия и производитель- ность	применение знаний и умений, как готовность самостоятельного применения их, демонстрировать осуществлять деятельность в различных ситуациях, относящихся к данной компетенции	Навыки продемонстрированы в полном объеме и получены верные и полные рекомендации	Продемонстр ирован верный подход в решении, но не получены полные рекомендации	Продемонстр ирован верный подход в реше- нии, но не полу- чены верные рекомендации	Нет соответ- ствия крите- риям оценки «удовлетво- рительно»

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний,

умений, навыков и (или) опыта деятельности) 7.2.1 Примерный перечень заданий для подготовки к тестированию

1.	С помощью каких сварных швов выполняют тавровые соединения?
	□ - СТЫКОВЫХ
	🗆 - угловых
	🗆 - пробочных
	□ - прорезных
2.	При ручной дуговой сварке каких швов требуется наиболее высокая
	квалификация сварщика?
	□ - нижних
	□ - вертикальных
	□ - ПОТОЛОЧНЫХ
	□ - горизонтальных
3.	Что представляет собой сварочная порошковая проволока?
	- проволока из прессованного и спеченного металлического по-
	рошка
	□ - металлическая оболочка, в которую запрессован порошок
	□ - в качестве ионизирующих и стабилизирующих компонентов
	□ - стержень, на поверхность которого нанесён порошок
4.	Из какой стали изготавливают низкоуглеродистую сварочную про-
	волоку Св-08, Св-08А, сВ-08АА?
	□ - из кипящей стали
	□ - из полуспокойной стали
	□ - из спокойной стали
5.	Что отражает тип покрытого электрода для сварки конструкционных
	сталей?
	□ - химический состав покрытия
	□ - организацию, разработавшую электрод
	 □ - величину временного сопротивления разрыв сварного шва
	□ - состав и свойства стержня электрода
	□ - химический состав сварного шва
6.	С какой целью в покрытые электроды вводят ферросплавы Mn, Si, Ti?
	□ - для рафинирования металла шва
	□ - для облегчения возбуждения дуги
	□ - в качестве ионизирующих и стабилизирующих компонентов
	□ - для легирования и раскисления металла шва
	□ - в качестве нейтральных добавок
7.	Покрытие электрода состоит из следующих компонентов: хлористый
	калий, хлористый натрий, криолит. Для сварки какого металла
	предназначены эти электроды?
	- низкоуглеродистых сталей
	- высоколегированной стали- меди
	- титана

Ш	- алюминия
8.	Покрытие электрода состоит из следующих компонентов: мрамор, плавиковый шпат, кварцевый песок, ферросилиций, ферромарганец, ферротитан. Для сварного какого металла предназначены эти электроды?
	никеля
	□ - стали
	□ - меди
	□ - алюминия
	🗆 - титана
9.	Покрытие электрода состоит из компонентов: ферромарганец,
	кремниевая медь, плавиковый шпат, полевой шпат. Для сварного ка-
	кого металла предназначены эти электроды?
	плавиковый шпат, стали
	□ - никеля
	□ - меди
	🗆 - алюминия
	🗆 - титана
10	. Какой вид защиты создается при сварке электродами с целлюлозным
	покрытием?
	□ - шлаковая защита
	🗆 - газовая защита
	□ - газо-шлаковая защита
	_ 1800 IIII18IIODWI JAIILIII

7.2.2 Примерный перечень заданий для решения стандартных задач Вопросы для обсуждения на практических занятиях:

<u>Тема 1</u>. Образование соединения при сварке плавлением

- 1. Классификация сварных швов и соединений.
- 2. Параметры характеризующие форму разделки кромок.
- 3. Параметры характеризующие сварной шов.
- 4. Виды стыковых и угловых швов.
- 5. Основные параметры режима дуговой сварки и их влияние на размеры сварочной ванны.
 - 6. Причины образования прожогов.
 - 7. Что такое феррит, аустенит, цементит, перлит, ледебурит, мартенсит?
- 8. Чем обусловлены внутридендритная химическая неоднородность и слоистость, наблюдение при кристаллизации сварочной ванны?
- 9. Влияет ли форма разделки кромок на развитие процесса кристаллизации?
- 10. На основании чего можно прогнозировать структуру и фазовый состав сварного шва и зоны термического влияния.
- 11. Металлургические процессы, протекающие в сварочной ванне при дуговой сварке.
 - 12. За счет чего можно регулировать химический состав сварочной

ванны?

- 13. Как можно оценить химический состав сварочной ванны?
- 14. Как можно оценить механические свойства сварного шва при сварке низколегированной низкоуглеродистой стали?

<u>Тема 2</u>. Ручная дуговая сварка покрытым электродом

- 1.Основные параметры режима ручной дуговой сварки (РДС) покрытыми электродами и методика их выбора.
 - 2. Какую ВАХ должен иметь источник питания для РДС, почему?
- 3. Какую толщину металла можно сварить в один проход без разделки кромок РДС?
 - 4. Для чего и какие подкладки используются при РДС?
 - 5. Способы повышения производительности при РДС.
 - 6. В чем заключаются особенности процесса сварки под водой?

<u>Тема 3</u>. Автоматическая сварка под флюсом

- 1.Область применения сварки под флюсом, её достоинства и недостатки.
- 2. Сущность процесса дуговой сварки под флюсом, её разновидности.
- 3. Металлургические процессы при сварке под флюсом, например, сталей.
- 4. Основные параметры режима сварки под флюсом, их влияние на процесс сварки и методика выбора.
- 5. Какую толщину стали можно сварить без разделки кромок за один проход?
- 6. Системы автоматического регулирования параметров процесса сварки под флюсом.
 - 7. Система саморегулирования (ТС-17).
- 8. Регуляторы напряжения путем изменения скорости подачи проволоки (АДС-1000-2).

<u>Тема 4</u>. Сварка в среде активных газов

- $1. Преимущества и недостатки сварки в <math>CO_2$.
- 2. Для сварки каких материалов используется сварка в CO_2 ?
- 3. Сварочные материалы, используемые при сварке в СО2.
- 4. Состав газа в реакционной зоне при сварке в СО₂.
- 5. Реакции окисления железа и легирующих элементов при сварке в СО₂.
- 6. Какими параметрами характеризуется режим сварки в СО₂?
- 7. Как влияют параметры режима сварки на геометрические размеры сварочной ванны?
- 8. Соблюдение каких условий при сварке в ${\rm CO_2}$ способствует уменьшению разбрызгивания металла?
 - 9. Чем руководствуются при выборе диаметра сварочной проволоки?
 - 10. Как связаны сварочный ток и диаметр сварочной проволоки?
 - 11. От чего зависит расход углекислого газа при сварке?
 - 12. Что входит в состав рабочего поста для сварки в ${\rm CO}_2$.

<u>Тема 5</u>. Сварка в среде инертных газов

1.Область применения сварки в среде инертных газов.

- 2. Роль инертных газов при сварке.
- 3. Металлургические процессы при сварке в инертных газах.
- 4. Как влияют род и полярность тока на процесс сварки?
- 5. Как влияет величина тока на размеры сварочной ванны?
- 6. Почему при сварке неплавящимся электродом в среде аргона стыковых соединений, толщиной более 4 мм, рекомендуют выполнять разделку кромок.
- 7. В чём сущность процессов аргоно-дуговой сварки: погруженной дугой; полым вольфрамовым электродом; плазменной струёй; с активирующими флюсами.

Тема 6. Электрошлаковая сварка

- 1.Сущность процесса электрошлаковой сварки (ЭШС).
- 2. Область применения ЭШС, её достоинства и недостатки.
- 3. Роль флюса при ЭШС.
- 4. При каких значениях плотности тока возможен электрошлаковый процесс?
 - 5. Какие виды электродов используют при ЭШС.
 - 6. Основные технологические параметры режима ЭШС и их выбор.
 - 7. Системы автоматического регулирования процесса ЭШС.

<u>Тема 7</u>. Газовая сварка и кислородная резка металлов

- 1.Строение сварочного пламени при горении углеводородов.
- 2. Стадии процесса горения углеводородов.
- 3. Что такое коэффициент регулировки пламени?
- 4. Как влияет коэффициент регулировки на состав зон пламени?
- 5. При каких значениях коэффициента регулировки будет происходить окисление науглераживания или восстановление оксидов?
 - 6. Параметры режимов газовой сварки и их выбор.
 - 7. Сущность процесса кислородной резки металлов.
 - 8. Каким требованиям должен отвечать металл для кислородной резки?
- 9. Как влияют легирующие элементы на способность сталей к кислородной резке?
 - 10. Что такое подогревающее пламя и его роль при кислородной резке?
- 11. Что такое режущая струя кислорода и как зависит расход кислорода от ширины реза?
 - 12. Кислородно-флюсовая резка металлов и её применение.
 - 13. Копьевая и порошково-кислородная резка металлов.

<u>Тема 8</u>. Сварочная проволока и покрытые электроды

- 1. Что относится к сварочным материалам, назначение сварочных материалов?
- 2. Как влияют примеси и легирующие элементы (C, Si, Mu, Al, Ti и др.), содержащиеся в сварочной проволоке, на свариваемость?
 - 3. Что такое омедненная сварочная проволока, что дает омеднение?
- 4. Условное обозначение стальной сварочной проволоки, выпускаемой по ГОСТ2246. Как расшифровываются сварочные проволоки: ДКРХТ5,0БТМ1р; БрАЖМц10-3-1,5; БрКМц3-1.

- 6. Для сварки каких сплавов используются проволоки: BT1-00св; BT6св; BT20-1св; OT4св.
 - 7. Что такое порошковая проволока, её преимущества и недостатки?
 - 8. Какую роль выполняет покрытие электродов для РДС?
- 9. Какие компоненты входят в состав покрытия для сварки сталей, меди, алюминия?
 - 10. Какую роль выполняет мрамор, вводимый в покрытие электродов?
- 11. Какая среда создаётся при разложении органических компонентов покрытия электродов?
 - 12. С какой целью вводят в состав покрытия электродов ферросплавы?
- 13. По каким признакам можно классифицировать покрытые электроды для сварки сталей?
 - 14. Что отражено в обозначении типа электрода для сварки сталей?
- <u>Тема 9</u>. Сварочные флюсы и газы, используемые в сварочном производстве
 - 1. Какую роль выполняют флюсы при электродуговой сварке?
 - 2. Каким требованиям должны отвечать флюсы?
- 3. Механизма раскисления сварочной ванны при сварке сталей под флюсом.
 - 4. По каким признакам классифицируются флюсы?
- 5. Что отражает коэффициент относительной химической активности флюса $A_{\rm d}$.
- 6. Чему равно значение A_{φ} для высокоактивных, активных, низкоактивных и пассивных флюсов.
 - 7. Чем отличается керамический флюс от плавленого?
- 8. Какие основные компоненты входят в состав флюсов для сварки сталей и сплавов на основе меди, алюминия титана?
- 9. Каким требованиям должен отвечать флюс для ЭШС? В чем заключается основная роль флюса при ЭШС?
- 10. Для каких материалов используют активные и инертные защитные газы?
 - 11. Какие газы используют для газопламенной обработки металлов?
 - 12. Ацетилен, его свойства, получение, хранение, транспортировка.

<u>Тема 10</u>. Свариваемость металлов и методики её оценки

- 1. Что такое свариваемость металлов?
- 2. Какими процессами определяются свойства сварного соединения?
- 3. Какие процессы протекают при образовании сварного шва?
- 4. Какие процессы протекают в ЗТВ и как их анализируют?
- 5. По каким показателям можно проводить оценку свариваемости металлов?
 - 6. Для анализа структуры в ЗТВ используют термокинетический анализ.
 - 7. Что такое валиковая проба, что она позволяет оценить?

<u>Тема 11</u>. Сварка сталей

1. Как по эквиваленту углерода оценивается свариваемость сталей?

- 2. Какие металлургические процессы протекают при электродуговой сварке сталей?
- 3. Какие дефекты сварных соединений могут образовываться при сварке низкоуглеродистых сталей и причины их образования?
- 4. Исходя из каких условий следует подбирать покрытые электроды для РДС изделий из сталей?
- 5. Какие дефекты могут образовываться при сварке среднеуглеродистых сталей и причины их образования?
- 6. Технологические мероприятия, рекомендуемые при сварке среднеуглеродистых сталей.
 - 7. Что такое «отжигающий валик» и для чего он применяется?
- 8. Как влияет количество содержания легирующих элементов в сталях на их свариваемость?
 - 9. В чём заключается особенность сварки теплоустойчивых сталей?
- 10. В чём заключается особенность сварки средне-и низколегированных среднеуглеродистых (закаливающихся) сталей?
- 11. Что отражает первая и вторая критические скорости охлаждения при сварке закаливающихся сталей?
- 12. Какие технологические мероприятия следует использовать при сварке закаливающихся сталей?
 - 13. В чём особенность сварки аустенитных сталей?
 - 14. В чём особенность сварки ферритных сталей?

<u>Тема 12</u>. Сварка чугуна

- 1. Что такое чугун?
- 2. Как влияют углерод, кремний, марганец, сера, фосфор на свариваемость чугуна?
 - 3. Причины плохой свариваемости чугуна?
 - 4. Дефекты, образующиеся при сварке чугуна?
 - 5. Какие технологии сварки чугуна Вы знаете?
- 6. Что Вы знаете о технологии, обеспечивающей получение в металле шва чугуна?
- 7. Что Вы знаете о технологии, обеспечивающей получение в металле шва стали?
- 8. Что Вы знаете о технологии, обеспечивающей получение в металле шва сплавов цветных металлов?
- 9. Как влияют примеси (висмут, кислород, водород) и температура нагрева на механические свойства меди?
 - 10. В чём состоят особенности сварки меди?
 - 11. Какие дефекты могут образовываться при сварке меди?
 - 12. Какие способы сварки применяются для меди?

<u>Тема 13</u>. Сварка титана и его сплавов

Цостоинства и недостатки титана, как конструкционного материала.

Область применения титан и его сплавов.

Механизм взаимодействия титана с кислородом.

- 4. Влияние кислорода, азота, углерода, водорода на механические свойства титана.
 - 5. Как можно оценить пригодность титана для сварки?
 - 6. Что такое альфированные слои и причины их образования?
- 7. Что Вы знаете о микроструктуре титановых сплавов и её влиянии на механические свойства?
- 8. Как влияет термический цикл сварки на микроструктуру сварного шва и 3TB?
- 9. Какие дефекты могут образовываться при сварке титана и причины их образования?
- 10. Какие способы сварки и сварочные материалы применяют для изготовления сварных конструкций из титана?
- 11. Дл чего рекомендуется вакуумный отжиг сварных конструкций из титана?

<u>Тема 14</u>. Сварка алюминия и его сплавов

- 1. Алюминиевые сплавы; их достоинство и недостатки; область применения.
 - 2. Свойства алюминия, определяющие его свариваемость.
 - 3. Особенности взаимодействия алюминия с кислородом.
- 4. Способы очистки поверхностей от алюминия от оксидов перед сваркой и в процессе сварки.
- 5. Взаимодействие алюминия с водородом и влияние этого процесса н свойства металла.
 - 6. Технологические особенности сварки алюминия.
 - 7. Способы сварки алюминия и его сплавов.

7.2.3 Примерный перечень заданий для решения прикладных задач Не предусмотрено

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Образование соединения при сварке плавлением.
- 2. Ручная дуговая сварка покрытым электродом.
- 3. Автоматическая сварка под флюсом.
- 4. Сварка в среде активных газов.
- 5. Сварка в среде инертных газов.
- 6. Электрошлаковая сварка.
- 7. Газовая сварка и кислородная резка металлов.
- 8. Сварочная проволока и покрытые электроды.
- 9. Сварочные флюсы и газы, используемые в сварочном производстве.
- 10. Свариваемость металлов и методики её оценки

7.2.5 Примерный перечень вопросов для экзамена

- 1. Классификация сварных швов и соединений; параметры, характеризующие форму разделки кромок.
- 2. Технологические параметры режимов дуговой сварки и их влияние на размеры сварочной ванны.

- 3. Закономерности формирования структуры и фазового состава сварного шва при дуговой сварке.
- 4. Закономерности формирования структуры и фазового состава зоны термического влияния при дуговой сварке.
- 5. Металлургические процессы, протекающие в сварочной ванне при дуговой сварке.
- 6. Регулирование химического состава сварочной ванны. Оценка химического состава металла сварного шва.
- 7. Сущность и техника ручной дуговой сварки покрытыми электродами; разновидности (способы) ручной дуговой сварки покрытым электродом.
- 8. Выбор электродов, параметров режима и оборудования при ручной дуговой сварке покрытыми электродами.
- 9. Ручная дуговая сварка покрытыми электродами под водой, особенности процесса, его разновидности, технологические параметры.
- 10. Дуговая сварка под флюсом, область применения. Технологические параметры режима сварки, их выбор.
- 11. Системы автоматического регулирования параметров процесса сварки под флюсом.
- 12. Сварка в среде защитных газов, способы защиты сварочной ванны и зоны термического влияния, их выбор.
- 13. Сварка в углекислом газе, область применения. Параметры режима сварки, их выбор.
- 14. Сварка в среде инертных газов, способы сварки, область применения. Основные технологические параметры процесса, их выбор.
- 15. Разновидности сварки вольфрамовым электродом (погруженной дугой, полым электродом плазменной струей и дугой).
- 16. Электрошлаковая сварка, сущность процесса, область применения, достоинства и недостатки. Основные технологические параметры процесса, их выбор.
- 17. Системы автоматического регулирования процесса электрошлаковой сварки.
- 18. Газовая сварка. Строение сварочного пламени. Взаимодействие пламени с металлом.
 - 19. Технология газовой сварки.
- 20. Кислородная резка металлов, сущность процесса, область применения.
 - 21. Технология кислородной резки металлов.
- 22. Разновидности кислородной резки металлов (кислородно-флюсовая, копьевая); газоэлектрическая резка металла.
 - 23. Плазменная резка металлов; лазерная резка металлов.
- 24. Сварочные материалы, их назначение и роль в процессе сварки, требования, предъявляемые к ним.
- 25. Стальная проволока для сварки и наплавки, ГОСТы на сварочную проволоку. Условное обозначение. Влияние химического состава на свари-

ваемость.

- 26. Омеднённая сварочная проволока, область её применения, условное обозначение.
- 27. Сварочная проволока для сварки алюминия и его сплавов. Условное обозначение. Область применения.
- 28. Сварочная проволока для сварки меди и её сплавов, условное обозначение, область применения.
- 29. Порошковая сварочная проволока, её конструкция, состав сердечника, условное обозначение, назначение.
- 30. Сварочные покрытые электроды, назначение покрытия. Основные компоненты покрытия электродов для сварки сталей.
- 31. Классификация и условное обозначение покрытых электродов согласно ГОСТ 9466.
- 32. Состав и области применения электродов с кислым, основным, рутиловым и целлюлозным покрытиями.
- 33. Технологические характеристики плавления покрытых электродов, методики их определения.
- 34. Покрытые электроды для сварки алюминия и его сплавов, состав покрытий.
 - 35. Покрытые электроды для сварки меди и её сплавов, состав покрытий.
- 36. Неплавящиеся электроды, их характеристика, свойства, условия применения.
- 37. Флюсы, их назначение, классификация, требования, предъявляемые к ним.
- 38. Механизмы раскисления сварочной ванны при сварке сталей под слоем флюса.
- 39. Флюсы, их назначение, классификация, требования, предъявляемые к ним.
 - 40. Флюсы для сварки цветных металлов.
 - 41. Флюсы для электрошлаковой сварки.
- 42. Защитные газы для дуговой сварки. Назначение, свойства и область применения.
- 43. Инертные защитные газы, их свойства, область применения, хранение, транспортировка.
- 44. Активные защитные газы, их свойства, область применения, хранение, транспортировка.
 - 45. Газовые смеси для дуговой сварки, область применения.
- 46. Газы для газопламенной обработки металлов. Кислород, его свойства, получение, хранение, транспортировка, техника безопасности.
- 47. Горючие газы для газопламенной обработки металлов. Ацетилен, его свойства, получение, хранение, транспортировка, техника безопасности.
- 48. Ацетиленовые генераторы, принцип их действия. Предохранительные затворы.
 - 49. Свариваемость металлов и её оценка.

- 50. Металлургические процессы при сварке сталей.
- 51. Свариваемость низко-, средне- и высокоуглеродистых сталей и её оценка.
 - 52. Технология сварки низко-, средне- и высокоуглеродистых сталей.
- 53. Свариваемость низколегированных низкоуглеродистых (в том числе теплоустойчивых) сталей.
- 54. Технология сварки низколегированных низкоуглеродистых (в том числе теплоустойчивых) сталей.
- 55. Свариваемость низко- и среднелегированных среднеуглеродистых (закаливающихся) сталей.
- 56. Технологии сварки низко- и среднелегированных среднеуглеродистых (закаливающихся) сталей.
 - 57. Свариваемость аустенитных сталей.
 - 58. Технологии сварки аустенитных сталей.
 - 59. Свариваемость ферритных сталей.
 - 60. Технологии сварки ферритных сталей.
 - 61. Свариваемость чугуна.
- 62. Технологии сварки, обеспечивающие получение в металле шва чугуна.
- 63. Технологии сварки чугуна, обеспечивающие получение в металле шва низкоуглеродистой стали.
- 64. Технологии сварки чугуна, обеспечивающие получение в металле шва цветных металлов.
 - 65. Свариваемость меди и её сплавов.
 - 66. Технологии сварки меди и её сплавов.
 - 67. Свариваемость титана и её сплавов.
- 68. Взаимодействие титана и его сплавов с газами при дуговой сварке и его влияния на свойства.
 - 69. Технологии сварки титана и её сплавов.
 - 70. Свариваемость алюминия и её сплавов.
 - 71. Технологии сварки алюминия и её сплавов.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится на основе аттестационного задания по примерным вопросам зачета и экзамена. Задание включает в себя два вопроса.

Оценка выставляется по соответствии ответа критериям оценивания изложенным в разделе 7.1.2 Правильный и полный ответ на вопрос в билете оценивается 5 баллами. Максимальное количество набранных баллов – 10.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов или имеет оценки «Неудовлетворительно» за вопрос.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 7 баллов и не имеет оценки «Неудовлетворительно» за вопрос.

- 3. Оценка «Хорошо» ставится в случае, если студент набрал 8 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 9 до 10 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Образование соединения при сварке плавлением	ПК-13, ПК-17	Тест, защита лабораторных ра- бот, экзамен
2	Технологические характеристики основных способов сварки плавлением	ПК-13, ПК-17	Тест, защита лабораторных ра- бот, экзамен
3	Сварочные материалы	ПК-13, ПК-17	Тест, защита лабораторных ра- бот, экзамен
4	Технологии сварки сталей и чугуна	ПК-13, ПК-17	Тест, защита лабораторных ра- бот, экзамен
5	Технологии сварки цветных металлов	ПК-13, ПК-17	Тест, защита лабораторных работ, экзамен проекту
6	Термическая резка металлов	ПК-13, ПК-17	Тест, защита лабораторных ра- бот, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Оценка знаний умений и навыков по дисциплине «Технология сварки плавлением и термической резки» осуществляется посредством устного опроса, тестирования, выполнения лабораторных работ, контрольных работ (для заочной формы обучения) и экзамена.

Устные опросы проводятся во время практических занятий и при проведении экзамена в качестве дополнительного испытания при недостаточности информации для оценки. Устные опросы необходимо строить так, чтобы вовлечь в тему обсуждения максимальное количество обучающихся, проводить параллели с уже пройденным материалом учебной дисциплины и другими курсами программы, приводить примеры для увеличения эффективности запоминания материала на ассоциациях.

Основные вопросы не должны выходить за рамки темы занятий и доводится до сведения на предыдущем занятии.

При оценке ответов на устный опрос анализу подлежит точность и полнота формулировок, обоснованность высказываемых суждений и целостность изложения материала.

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 10 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки, изложенной в фонде оценочных средств.

Лабораторные работы должны выполняться согласно графику, самостоятельно, в полном объеме, отчет должен соответствовать требованиям методических указаний.

Контрольные работы для заочной формы обучения включают в себя вариант из десяти частных вопросов курса и оцениваются по следующим

критериям:

- полнота и глубина изложения материала (учитывается количество усвоенных факторов, понятий и т. п.);
- сознательность изложения материала (учитывается понимание излагаемого материала);
- логика изложения материала (учитывается умение строить целостный, последовательный ответ, грамотно пользоваться специальной терминологией);
- актуальность используемой информации и баз данных (учитывается их соответствие современному уровню науки и техники).

Методика оценки контрольной работы для заочной формы обучения изложена в фонде оценочных средств

Промежуточная аттестация проводится на основе аттестационного задания по вопросам зачета и экзамена. Время подготовки 40 мин. Затем осуществляется проверка ответов экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
- 1. Патон Б.Е. и др. Технология электрической сварки металлов и сплавов плавлением. М.: Машиностроение. 1974. 767 с.
- 2. Никифоров Г.Д. и др. Технология и оборудование сварки плавлением. М.: Машиностроение, $1986.-320~\mathrm{c}$.
- 3. Петренко В.Р., Пешков В.В., Коломенский А.Б. Технология и оборудование сварки плавлением и термической резки металлов: учеб. пособие. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2007. 415 с.
- 4. Петренко В.Р., Пешков В.В., Коломенский А.Б. Технологические основы сварки плавлением и давлением. Учеб. пособие. Воронеж: ГОУВПО «Воронежский государственный технический университет». 2008. 250 с.
- 5. Фролов В.А., Петренко В.Р., Пешков В.В., Коломенский А.Б., Казаков В.А. Технология сварки плавлением и термической резки металлов. М.: Альфа-М: ИНФА-М. 2011. 448 с.
- 6. Быковский О.Г., Фролов В.А., Пешков В.В. Сварка и резка цветных металлов. М.: Альфа-М, 2014. 366 с.
- 7. Фролов В.А., Пешков В.В., Коломенский А.Б., Корчагин И.Б. Технологические основы современных способов сварки. М.: Кнорус, 2018. 274 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая пе-

речень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Сварка под слоем флюса

Сварка в углекислом газе

Сварка TIG-Weid

Экспертная программа по выбору покрытых электродов

Мультимедийные видеофильмы:

Ручная дуговая сварка (техника и технология)

Дуговая сварка под флюсом

Сварка изделий из нержавеющей стали.

MS Office

VS Windows

Браузер Яндекс

Профессиональные стандарты. Доступ свободный: http://profstandart.rosmintrud.ru

«Техэксперт» - профессиональные справочные системы; Доступ свободный http://техэксперт.рус/

Информационная система «ТЕХНОРМАТИВ»; Доступ свободный https://www.technormativ.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы, укомплектованные специализированной мебелью и техническими средствами обучения для представления учебной информации большой аудитории.

Лабораторные занятия по дисциплине проводятся в специализированной лаборатории сварки плавлением, обеспеченной оборудованием:

Разрывная машина Р-10;

Механизм подачи проволоки МППЗ-4 А-1;

Полуавтомат сварочный Вітах-182;

Модуль для аргонодуговой сварки АДМ-251;

Установка плазменной резки УПР-1210;

Компрессор воздушный 40037;

Передвижная фильтровентиляционная установка УВП-ФВУ-1200-ФК17-109;

Трактор сварочный ТС-16 с подставкой и направляющей;

Источник питания сварочный ВС-600С с блоком управления;

Выпрямитель универсальный ВДУ-505;

Выпрямитель универсальный ВСВУ-315;

Источник питания сварочный ТИР-315; Комплект для аргонодуговой сварки Magic Wave 2500; Полуавтомат сварочный Trans Steel 3500.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Технология сварки плавлением и термической резки» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на закрепление знаний, умений и навыков. Занятия проводятся путем интерактивного обсуждения тем дисциплины, решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных	методиками, приведенными в указаниях к выполнению расот.	
занятий	Деятельность студента	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.	
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.	
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.	
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.	

Подготовка к	Готовиться к промежуточной аттестации следует систематически, в		
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не		
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные		
	перед зачетом с оценкой, экзаменом, зачетом с оценкой, экзаменом три		
	дня эффективнее всего использовать для повторения и систематизации		
	материала.		

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП