МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

> **УТВЕРЖДАЮ** ньтета _____ Небольсин В.А. «30» августа 2017 г.

Декан факультета

РАБОЧАЯ ПРОГРАММА

дисциплины

«Квантовая механика и статистическая физика в микроэлектронике»

Направление подготовки 11.03.04 Электроника и наноэлектроника

Профиль Микроэлектроника и твердотельная электроника

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2017

Автор программы

/ Н.Н. Кошелева /

Заведующий кафедрой Полупроводниковой элек-

троники и наноэлектроники

Руководитель ОПОП

ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины: формирование у студентов современного представления о строении материи на микроуровне, квантовомеханических законах, лежащих в основе современной физики, методах описания квантовых систем.

1.2. Задачи освоения дисциплины:

- заложить теоретические основы для понимания физических квантовомеханических процессов;
- продемонстрировать неразрывную связь двух методов описания классического и квантового;
- дать практические навыки анализа квантовых моделей и систем при их использовании в области микроэлектроники.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Квантовая механика и статистическая физика в микроэлектронике» относится к вариативной части блока Б1 учебного плана. Индекс дисциплины Б1.В.ДВ.6.1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Квантовая механика и статистическая физика в микроэлектронике» направлен на формирование следующих компетенций:

- **ОПК-1:** способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики;
- **ОПК-5:** способность использовать основные приемы обработки и представления экспериментальных данных;
- **ОПК-7:** способность учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;
- **ПКВ-3:** способность идентифицировать новые области исследований, новые проблемы в сфере физики, проектирования, технологии изготовления и применения микроэлектронных приборов и устройств.

Компе-	Результаты обучения, характеризующие
тенция	сформированность компетенции
ОПК-1	знать основные определения, понятия и законы квантовой механики и ста-
	тистической физики;
	уметь интерпретировать наблюдаемые природные явления и технологиче-
	ские процессы на основе известных физических теорий;
	владеть информацией об области применения законов квантовой механики.
ОПК-5	знать основные свойства материалов микроэлектроники на основе положе-
	ний квантовой теории твердых тел и основных методов квантовой статисти-
	ки;

	уметь анализировать экспериментальные данные и оценивать погрешности измерений;					
	владеть навыками проведения экспериментальных исследований, обработ-					
	ки и интерпретации результатов эксперимента.					
ОПК-7	знать теоретические основы физических квантовомеханических процессов;					
	уметь критически анализировать и оценивать современные научные дости-					
	жения в области квантовой механики в области микроэлектроники и твер-					
	дотельной электроники					
	владеть методами расчетов параметров полупроводников с использованием					
	стандартных физико-математических программ					
ПКВ-3	знать применение физических законов и уравнений для решения конкрет-					
	ных практических задач;					
	уметь использовать методы физико-математического моделирования в					
	практической деятельности;					
	владеть навыками применения основных методов физико-математического					
	анализа для решения естественно-научных задач.					

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Квантовая механика и статистическая физика в микроэлектронике» составляет 4 зачетные единицы.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы		Всего	Семестры
		часов	4
Аудиторные занятия (всего)	36	36	
В том числе:			
Лекции		18	18
Практические занятия (ПЗ)	18	18	
Самостоятельная работа	108	108	
Вид промежуточной аттестации – зачет	c	+	+
оценкой	T	T	
Общая трудоемкость	час	144	144
зач	. ед.	4	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

No	Наименование	Содержание раздела	Лекц	Прак зан.	CPC	Всего,
Π/Π	темы	• • • • • • • • • • • • • • • • • • • •		зан.		час
1	Элементы	Гипотеза де-Бройля. Волны де-Бройля. Дифракция электронов и ато-	2	4	14	20
	квантовой ме-	мов. Соотношение неопределенностей Гейзенберга. Статистическое				

	ханики	толкование волн де-Бройля. Уравнение Шредингера – временное и				
		стационарное. Движение свободной частицы. Частица в одномерной				
		потенциальной яме. Условия наблюдения квантовых размерных эф-				
		фектов. Принцип размерного квантования. Квантование энергии и				
		импульса частицы. Энергетические состояния в прямоугольной по-				
		тенциальной яме сложной формы. Частица в трехмерной прямо-				
		угольной потенциальной яме. Отражение и прохождение через по-				
		тенциальный барьер (туннельный эффект).				
2	Атом водорода	Теория атома водорода по Бору. Квантование электронных орбит и	2	2	14	18
	в квантовой	энергии. Объяснение закономерностей в атомных спектрах. Недо-				
	механике	статки теории Бора. Атом водорода в квантовой механике. Квантова-				
		ние энергии, импульса, момента импульса электрона в атоме водоро-				
		да. Квантовые числа. Принцип Паули. Правила заполнения электрон-				
		ных орбит. Понятие об энергетических уровнях молекул. Спонтанное				
_		и вынужденное излучение. Лазеры.				10
3	Математиче-	Линейные самосопряженные операторы. Общая формула для средне-	2	2	14	18
	ский аппарат	го значения величины и для среднего квадратичного отклонения.				
	квантовой ме-	Операторы координаты и импульса частицы. Оператор кинетической				
	ханики. Опера-	энергии. Оператор полной энергии. Сложение и умножение операто-				
4	торы Основы зонной	ров. Описание состояния системы в квантовой механике. Уравнение Шредингера. Волновая функция. Стационарные состоя-	2	4	16	22
4	теории	ния. Уравнение Шредингера для твердого тела. Адиабатическое при-	2	4	10	22
	теории	ближение. Одноэлектронное приближение. Функция Блоха. Прибли-				
		жение сильной и слабой связи. Модель Кронига-Пенни. Свойства				
		волного вектора электрона в кристалле. Зоны Бриллюэна. Поверх-				
		ность Ферми. Энергетический спектр в кристалле. Эффективная мас-				
		са электрона. Энергетические уровни примеси в кристаллах.				
5	Элементы	Понятие о квантовой статистике Бозе-Эйнштейна и Ферми-Дирака.	2	4	14	20
	квантовой ста-	Теплоемкость твердых тел. Распределение электронов проводимости				
	тистики и фи-	в металле по энергиям. Энергия Ферми. Сверхпроводимость. Энерге-				
	зики твердого	тические зоны в кристаллах. Распределение электронов по энергети-				
	тела	ческим уровням. Валентная зона и зона проводимости. Металлы, ди-				
		электрики и полупроводники. Собственная проводимость полупро-				
		водников. Квазичастицы - электроны проводимости и дырки. При-				
		месная проводимость полупроводников.				
6	Теория возму-	Стационарная теория возмущений (невырожденный случай и с уче-	2	2	12	16
	щений	том вырождения). Нестационарная теория возмущений. Золотое пра-				
		вило Ферми. Борновское приближение.				
7	Теория много-	Многоэлектронные атомы. Приближение независимых электронов.	2		12	14
	электронных	Метод самосогласованного поля Хартри. Теория многоэлектронных				
	систем. Метод	систем. Метод Хартри-Фока. Аппроксимации атомных орбиталей,				
	Хартри-Фока	орбитали Слетера-Зенера.	4		10	1.6
8	Матрица плот-	Чистое и смешанное состояния. Матрица плотности для чистых со-	4		12	16
	ности	стояний и ее свойства. Физический смысл диагональных элементов				
		матрицы плотности, среднее значение физических величин. Уравне-				
		ние фон Неймана. Классический предел уравнения фон Неймана для классических функций распределения. Теорема Лиувилля.				
		классических функции распределения. Теорема лиувилля. Итого	18	18	108	144
<u> </u>		ИГОГО	10	10	100	144

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины «Квантовая механика и статистическая физика в микроэлектронике» не предусматривает выполнение курсового проекта (работы) и контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттесто- ван
ОПК-1	знать основные определения, понятия и законы квантовой механики и статистической физики;	Тест	Выполнение теста на 40 - 100%	В тесте менее 40 % правильных ответов
	уметь интерпретировать наблюдаемые природные явления и технологические процессы на основе известных физических теорий;	Решение стандартных практических задач	Продемонстриро- ван верный ход решения в боль- шинстве задач	Задачи не решены
	владеть информацией об области применения законов квантовой механики.	Решение приклад- ных задач в кон- кретной предмет- ной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ОПК-5	знать основные свойства материалов микроэлектроники на основе положений квантовой теории твердых тел и основных методов квантовой статистики;	Тест	Выполнение теста на 40 - 100%	В тесте менее 40 % правильных ответов
	уметь анализировать экспериментальные данные и оценивать погрешности измерений;	Решение стандартных практических задач	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	владеть навыками проведения экспериментальных исследований, обработки и интерпретации результатов эксперимента.	Решение приклад- ных задач в кон- кретной предмет- ной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ОПК-7	знать теоретические основы физических квантовомеханических процессов;	Тест	Выполнение теста на 40 - 100%	В тесте менее 40 % правильных ответов
	уметь критически анализировать и оценивать современные научные достижения в области квантовой механики в области микроэлектроники и твердотельной электроники	Решение стандартных практических задач	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	владеть методами расчетов параметров полупроводников с использованием стандартных физико-математических программ	Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ПКВ-3	знать применение физических законов и уравнений для решения конкретных прак- тических задач;	Тест	Выполнение теста на 40 - 100%	В тесте менее 40 % правильных ответов
	уметь использовать методы физико- математического моделирования в практи- ческой деятельности;	Решение стандартных практических задач	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	владеть навыками применения основных методов физико-математического анализа для решения естественно-научных задач.	Решение приклад- ных задач в кон- кретной предмет- ной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 4 семестре для очной формы обучения по системе:

«отлично»;

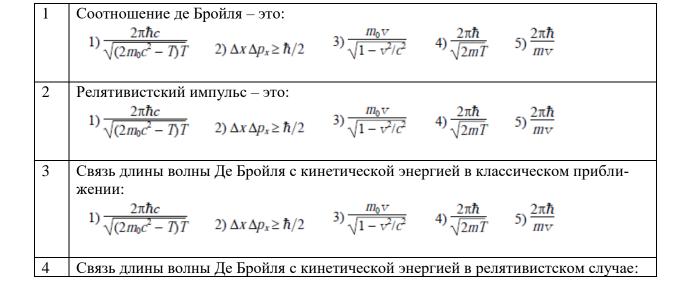
«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценива- ния	Отлично	Хорошо	Удовл	Неудовл
ОПК-1	знать основные определения, понятия и законы квантовой механики и статистической физики;	Тест	Выполнение теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правиль- ных ответов
	уметь интерпретировать наблюдаемые природные явления и технологические процессы на основе известных физических теорий;	Тест	Выполнение теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
	владеть информацией об области применения законов квантовой механики.	Тест	Выполнение теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
ОПК-5	знать основные свойства материалов микроэлектроники на основе положений квантовой теории твердых тел и основных методов квантовой статистики;	Тест	Выполнение теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
	уметь анализировать экспериментальные данные и оценивать погрешности измерений;	Тест	Выполнение теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
	владеть навыками проведения экспериментальных исследований, обработки и интерпретации результатов эксперимента.	Тест	Выполне- ние теста на 90 – 100 %	Выполне- ние теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
ОПК-7	знать теоретические основы физических квантовомеханических процессов;	Тест	Выполнение теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
	уметь критически анализировать и оценивать современные научные достижения в области квантовой механики в области микроэлектроники и твердотельной электроники	Тест	Выполнение теста на 90 – 100 %	Выполне- ние теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
	владеть методами расчетов параметров полупроводников с использованием стандартных физико-математических программ	Тест	Выполне- ние теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов
ПКВ-3		Тест	Выполне- ние теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % правильных ответов

уметь использовать методы	Тест	Выполне-	Выполне-	Выполнение	В тесте ме-
физико-математического моде-		ние теста на	ние теста на	теста на 70 -	нее 70 %
лирования в практической дея-		90 – 100 %	80 - 90 %	80 %	правильных
тельности;					ответов
владеть навыками применения	Тест	Выполне-	Выполне-	Выполнение	В тесте ме-
основных методов физико-		ние теста на	ние теста на	теста на 70 -	нее 70 %
математического анализа для		90 – 100 %	80 - 90 %	80 %	правильных
решения естественно-научных					ответов
задач.					


7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1	Волновая функция ψ , являющаяся решением уравнения Шредингера $\hat{I} \Psi = E\Psi$, должна:
	а) удовлетворять условию нормировки, т.е. там, где волновая функция не рав-
	на нулю, там частица достоверно присутствует;
	б) иметь решение при любых значениях энергии E ;
	в) иметь решение при собственных значениях энергии E ,
	в) иметь решение при сооственных значениях энергии Е.
2	Существование у атомов дискретных энергетических уровней было эксперимен-
	тально установлено в опытах:
	а) Штерна и Герлаха;
	б) Франка и Герца;
	в) Резерфорда;
	г) Ленарда и Томсона.
3	Экспериментальные доказательства волновых свойств у микрочастиц были полу-
	чены в опытах:
	а) Томсона и Тартаковского;
	б) Франка и Герца;
	в) Фабриканта, Биберма на, Сушкина;
	г) Девиссона и Джермера.
4	Квантование магнитных моментов атомов было экспериментально установлено в
	опытах:
	а) Штерна и Герлаха;
	б) Франка и Герца;
	в)Комптона;
	г) Девиссона и Джермера.
5	D vpaymana ii vayayyya Ayayyyaaya g nayyyyaaya a
3	В квантовой механике физическая величина характеризуется не числовым значе-
	нием, а оператором. Оператор - это
	а) функция, которая осуществляет связь одних чисел с другими числами;
	б) правило, с помощью которого каждой функции из некоторого множества
	функций сопоставляется функция из того же или некоторого другого множества
	функций;
	в) числовое значение физической величины, которой ставится в соответствие
	данный оператор.

6	Спектр собственных значений энергий гармонического осциллятора является а) сплошным; б) дискретным; в) смешанным.
7	Неопределенность в измерении энергии за данный промежуток времени равна
	a) $\Delta E = \hbar \omega$;
8	Гипотеза де Бройля выражается соотношениями
	a) $\lambda = \frac{2\pi\hbar}{p}$;
9	Длина волны де Бройля для заряженной частицы, ускоренной электрическим по-
	лем, определяется по формуле
	a) $\frac{2\pi\hbar}{p}$; 6) $\frac{2\pi\hbar}{\sqrt{2mT}}$; B) $\frac{2\pi\hbar}{\sqrt{2meU}}$; r) $\frac{2\pi\hbar}{mv}$.
10	
10	Оператор \hat{A} называется самосопряженным (эрмитовым), если для любых двух функций u и v
	a) $\hat{A}(a_1u + a_2v) = a_1\hat{A}u + a_2\hat{A}v;$
	6) $\int v^* \hat{A} u dV = \int u \hat{A}^* v^* dV$;
	$\mathbf{B}) \int u_n^* v_m \ dV = 0 \ (m \neq n);$
	$\Gamma) \int u_n^* v_m dV = 1 (m = n).$

7.2.2 Примерный перечень заданий для решения стандартных задач

	1) $\frac{2\pi\hbar c}{\sqrt{(2m_0c^2 - T)T}}$ 2) $\Delta x \Delta p_x \ge \hbar/2$ 3) $\frac{m_0 v}{\sqrt{1 - v^2/c^2}}$ 4) $\frac{2\pi\hbar}{\sqrt{2mT}}$ 5) $\frac{2\pi\hbar}{mv}$
5	Соотношение неопределенностей – это: 1) $\frac{2\pi\hbar c}{\sqrt{(2m_0c^2-T)T}}$ 2) $\Delta x \Delta p_x \ge \hbar/2$ 3) $\frac{m_0v}{\sqrt{1-v^2/c^2}}$ 4) $\frac{2\pi\hbar}{\sqrt{2mT}}$ 5) $\frac{2\pi\hbar}{mv}$
6	Математическое выражение плотности вероятности: 1) $\sum c_n \psi_n$ 2) $\Psi^* \Psi$ 3) $\int \Psi_n^* \Psi_m dV = 0 \ (m \neq n)$ 4) $\int \Psi_n^* \Psi_m dV = 1 \ (m = n)$
7	Математическое выражение условия нормировки: 1) $\sum c_n \psi_n$ 2) $\Psi^* \Psi$ 3) $\int \Psi_n^* \Psi_m dV = 0 \ (m \neq n)$ 4) $\int \Psi_n^* \Psi_m dV = 1 \ (m = n)$
8	Математическое выражение принципа суперпозиции: 1) $\sum c_n \psi_n$ 2) $\Psi^* \Psi$ 3) $\int \Psi_n^* \Psi_m dV = 0 \ (m \neq n)$ 4) $\int \Psi_n^* \Psi_m dV = 1 \ (m = n)$
9	Математическое выражение ортогональности волновых функций: 1) $\sum c_n \psi_n$ 2) $\Psi^* \Psi$ 3) $\int \Psi_n^* \Psi_m dV = 0 \ (m \neq n)$ 4) $\int \Psi_n^* \Psi_m dV = 1 \ (m = n)$
10	Какое из приведенных ниже уравнений представляет временное уравнение Шредингера? $a)\left(-\frac{\hbar^2}{2m}\nabla^2 + U\right)\Psi = i\hbar\frac{\partial\Psi}{\partial t}\;;$ $b) \nabla^2\Psi + \frac{2m}{\hbar^2}(E-U)\Psi = 0\;;$ $b) \hat{H}\Psi = E\Psi\;;$

$$\Gamma) \frac{d^2 \Psi}{dx^2} + \frac{2m}{\hbar^2} E \Psi = 0 \ .$$

7.2.3 Примерный перечень заданий для решения прикладных задач

1	Слагаемые уравнения Шредингера для кристалла отображают: а) основные виды взаимодействий квантовых частиц в кристалле; б) потенциальное поле кристалла; в) характер движения электронов в кристалле.
2	Физический смысл одноэлектронного приближения состоит в том, что: а) оно характеризует взаимодействие одного электрона с усредненным полем всех других электронов; б) оно отражает реакцию одного электрона на потенциал всего кристалла; в) в этом приближении один электрон взаимодействует с потенциалом всех протонов кристалла.
3	При решении уравнения Шредингера в приближении сильной связи. а) за нулевой порядок теории взаимодействия принимается энергия электрона с собственным атомом; б) сильная связь означает, что электрон не покидает придела кристалла; в) сильная связь означает сильное взаимодействие между электронами.
4	При решении уравнения Шредингера в приближении слабой связи: а) движущейся свободный электрон испытывает периодические возмущения со стороны кристаллической решетки; б) электрон может покинуть объем кристалла; в) электроны слабо связаны между собой. Правильный ответ: а)
5	Эффективная масса электрона в кристалле:
6	Уравнение электронейтральности отражает: а) закон сохранения заряда; б) закон сохранения энергии; в) нейтральное поведение ионов примеси; г) закон сохранения объема.
7	Подвижность носителей зарядов в твердом теле определяется: а) тепловой скоростью электронов; б) тепловой скоростью отрицательных ионов; в) дрейфовой скоростью электронов; г) дрейфовой скоростью ионов.
8	Электросопротивление полупроводника с ростом температуры: 1) не изменяются. 2) увеличиваются.

	3) уменьшается.
	4) становится переменной.
9	При каких соотношениях эффективных масс электронов и дырок положение уровня Ферми с ростом температуры не изменяется? а) $m_n^x = m_p^x$; б) $m_n^x < m_p^x$; в) $m_n^x > m_p^x$;
	г) не зависит от m_n^x и m_p^x .
10	Выбор статистики электронов в полупроводниках определяется: а) типом легирующей примеси; б) положением уровня Ферми в зонной структуре; в) наличием свободных электронов; г) отсутствием.дырок в полупроводнике

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Гипотеза де-Бройля. Волны де-Бройля.
- 2. Дифракция электронов и атомов.
- 3. Соотношение неопределенностей Гейзенберга.
- 4. Статистическое толкование волн де-Бройля.
- 5. Уравнение Шредингера временное и стационарное.
- 6. Движение свободной частицы. Частица в одномерной потенциальной яме.
- 7. Условия наблюдения квантовых размерных эффектов.
- 8. Принцип размерного квантования.
- 9. Квантование энергии и импульса частицы.
- 10. Энергетические состояния в прямоугольной потенциальной яме сложной формы.
- 11. Частица в трехмерной прямоугольной потенциальной яме.
- 12. Отражение и прохождение через потенциальный барьер (туннельный эффект).
- 13. Теория атома водорода по Бору.
- 14. Квантование электронных орбит и энергии.
- 15. Объяснение закономерностей в атомных спектрах.
- 16. Атом водорода в квантовой механике.
- 17. Квантование энергии, импульса, момента импульса электрона в атоме водорода.
- 18. Квантовые числа. Принцип Паули. Правила заполнения электронных орбит.
- 19. Понятие об энергетических уровнях молекул.
- 20. Спонтанное и вынужденное излучение. Лазеры
- 21. Линейные самосопряженные операторы.
- 22. Общая формула для среднего значения величины и для среднего квадратичного отклонения.
- 23. Операторы координаты и импульса частицы.
- 24. Оператор кинетической энергии. Оператор полной энергии.
- 25. Сложение и умножение операторов.
- 26. Описание состояния системы в квантовой механике.
- 27. Уравнение Шредингера.
- 28. Волновая функция. Стационарные состояния.
- 29. Уравнение Шредингера для твердого тела.
- 30. Адиабатическое приближение. Одноэлектронное приближение.
- 31. Функция Блоха. Приближение сильной и слабой связи.

- 32. Модель Кронига-Пенни.
- 33. Свойства волного вектора электрона в кристалле.
- 34. Зоны Бриллюэна. Поверхность Ферми.
- 35. Энергетический спектр в кристалле.
- 36. Эффективная масса электрона.
- 37. Энергетические уровни примеси в кристаллах.
- 38. Понятие о квантовой статистике Бозе Эйнштейна и Ферми Дирака.
- 39. Распределение электронов проводимости в металле по энергиям. Энергия Ферми.
- 40. Энергетические зоны в кристаллах.
- 41. Распределение электронов по энергетическим уровням.
- 42. Валентная зона и зона проводимости.
- 43. Металлы, диэлектрики и полупроводники.
- 44. Собственная проводимость полупроводников.
- 45. Квазичастицы электроны проводимости и дырки.
- 46. Примесная проводимость полупроводников.
- 47. Стационарная теория возмущений (невырожденный случай и с учетом вырождения).
- 48. Нестационарная теория возмущений.
- 49. Золотое правило Ферми.
- 50. Борновское приближение.
- 51. Приближение независимых электронов.
- 52. Метод самосогласованного поля Хартри.
- 53. Теория многоэлектронных систем.
- 54. Метод Хартри-Фока.
- 55. Аппроксимации атомных орбиталей, орбитали Слетера-Зенера.
- 56. Чистое и смешанное состояния. Матрица плотности для чистых состояний и ее свойства.
- 57. Физический смысл диагональных элементов матрицы плотности, среднее значение физических величин.
- 58. Уравнение фон Неймана.
- 59. Классический предел уравнения фон Неймана для классических функций распределения.
- 60. Теорема Лиувилля.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Не предусмотрено учебным планом.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится по билетам, каждый из которых содержит 3 вопроса и задачу. Каждый правильный ответ на вопрос оценивается 2 баллами, задача оценивается в 4 балла. Максимальное количество набранных баллов — 10.

- 1. Оценка «Отлично» ставится, если студент набрал от 9 до 10 баллов.
- 2. Оценка «Хорошо» ставится в случае, если студент набрал от 6 до 8 баллов.
- 3. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 3 до 5 баллов.
- 4. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 3 баллов.

При получении оценок «отлично», «хорошо» и «удовлетворительно» требуемые в рабочей программе знания, умения, владения по соответствующим компетенциям на промежуточном этапе считаются достигнутыми.

7.2.7 Паспорт оценочных материалов

7.2.7 Hachopi odcho-inbix marephanob						
№	Контролируемые разделы	Код контролируемой ком-	Наименование			
п/п	(темы) дисциплины	петенции	оценочного			
		(или ее части)	средства			
1	Элементы квантовой механики	ОПК-1, ОПК-5, ОПК-7, ПКВ-3	Тест, зачет,			
			устный опрос			
2	Атом водорода в квантовой	ОПК-1, ОПК-5, ОПК-7, ПКВ-3	Тест, зачет,			
	механике		устный опрос			
3	Математический аппарат кван-	ОПК-1, ОПК-5, ОПК-7, ПКВ-3	Тест, зачет,			
	товой механики. Операторы		устный опрос			
4	Основы зонной теории	ОПК-1, ОПК-5, ОПК-7, ПКВ-3	Тест, зачет,			
			устный опрос			
5	Элементы квантовой статисти-	ОПК-1, ОПК-5, ОПК-7, ПКВ-3	Тест, зачет,			
	ки и физики твердого тела		устный опрос			
6	Теория возмущений	ОПК-1, ОПК-5, ОПК-7, ПКВ-3	Тест, зачет,			
			устный опрос			
7	Теория многоэлектронных си-	ОПК-1, ОПК-5, ОПК-7, ПКВ-3	Тест, зачет,			
	стем. Метод Хартри-Фока		устный опрос			
8	Матрица плотности	ОПК-1, ОПК-5, ОПК-7, ПКВ-3	Тест, зачет,			
			устный опрос			

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста преподавателем и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач преподавателем и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач преподавателем и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

<u>№</u> п/п	Авторы, составители	Заглавие	Годы из- дания. Вид издания	Обеспечен- ность			
	Основная литература						
1	Ландау Л.Д. и др.	Теоретическая физика: В 10 т.: Учеб. пособие. Т.3: Квантовая механика. / Под ред. Л.П. Питаевского 5-е изд., стереотип М.: Физматлит, 2002 808 с.	Печат.	1,0			
2	Павлов П.В., Хохлов А.Ф.	Физика твердого тела: Учеб. пособие / П.В.Павлов, А.Ф.Хохлов 3-е изд., стереотип М.: Высш. шк., 2000. – 494 с.	печат.	0,7			
3	Воробьев Л.Е.	Оптические свойства наноструктур: Учеб. пособие для вузов / Под общ. ред. В.И. Ильина, А.Я. Шика СПб.: Наука, 2001. – 188 с.		0,4			
		Дополнительная литература					
1	Галицкий В.М. Карнаков Б.М. Коган В.И.	Задачи по квантовой механике: учеб ное пособие для вузов 2-е изд., пе рераб. и доп М.: Наука, 1992 880 с.		0,5			
2	Иродов И.Е.	Задачи по общей физике: Учеб. посо бие / И.Е.Иродов 4-е изд., испр. М.: Лаборатория Базовых Знаний 2001. – 432 с.	- печат.	0,5			
3	Иродов И.Е.	Квантовая физика: Основные законы [Учеб. пособие] / И.Е. Иродов М. Лаборатория Базовых Знаний, 2001 272 с.		0,5			

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Системные программные средства: Microsoft Windows, Microsoft Vista Прикладные программные средства: Microsoft Office.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- 1. Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.
- 2. Дисплейный класс, оснащенный компьютерными программами для выполнения расчетов, и рабочими местами для самостоятельной подготовки обучающихся с выходом в «Интернет».

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Квантовая механика и статистическая физика в микроэлектронике» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета параметров технологических процессов лучевых и плазменных технологий. Занятия проводятся путем решения конкретных задач в аудитории.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины оценивается на зачете.

Вид учебных	Деятельность студента		
занятий	Achient of a child		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск		
	ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.		
Практические	Конспектирование рекомендуемых источников. Работа с конспектом		
занятия	лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.		
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвое-		
работа	нию учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.		
Подготовка	Готовиться к промежуточной аттестации следует систематически, в		
к промежуточной аттестации	течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом три дня эффективнее всего использовать для по-		
	вторения и систематизации материала.		

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата вне- сения из- менений	Подпись заведую- щего кафедрой, от- ветственной за реа- лизацию ОПОП
1		31.08.2018	
2		31.08.2019	
3		31.08.2020	