МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета_

Бурковский А.В.

«31» августа 202

РАБОЧАЯ ПРОГРАММА

дисциплины

«Энергосберегающее управление электротехническими комплексами»

Направление подготовки 13.03.02 Электроэнергетика и электротехника

Профиль Электропривод и автоматика

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 4 года и 11 м.

Форма обучения очная / заочная

Год начала подготовки 2021

Автор программы

/ к.т.н. доцент Кожин А.С./

Заведующий кафедрой

Электропривода,

автоматики и управления в

технических системах

/д.т.н. проф. Бурковский В.Л./

Руководитель ОПОП

/д.т.н. проф. Питолин В.М./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

формирование знаний об основных методах и средствах управления электротехническими комплексами.

1.2. Задачи освоения дисциплины

освоение обучающимися знаний о современных аппаратных и програмных средствах управления режимами работы электротехническими комплексами.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Энергосберегающее управление электротехническими комплексами» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Энергосберегающее управление электротехническими комплексами» направлен на формирование следующих компетенций:

- ПК-2 Способен выполнять подготовку элементов документации, проектов планов и программ проведения отдельных этапов работ.
- ПК-4 Способен разрабатывать проектные решения отдельных частей автоматизированной системы управления технологическими процессами
- ПК-5 Способен осуществлять предпроектное обследование технологического процесса, для которого разрабатывается автоматизированная система управления
- ПК-7 Способен осуществлять эксплуатацию систем электроприводов и автоматизированных систем управления

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-2	Знать: методы анализа и моделирования электротехнических устройств; - принципы и основные установки для выработки, передачи, преобразования и распределения электрической и тепловой энергии
	Уметь: применять методы теоретического и экспериментального исследования электроэнергетических объектов Владеть: методами проведения компьютерных исследований электротехнических комплексов (ЭТК)

	знать принципы работы элементов автоматизированной						
	системы управления технологическими процессами;						
	уметь проектировать состав, определять функции и						
ПК-4 анализировать работу автоматизированных систем управле							
	технологическими процессами;						
	владеть методикой синтеза автоматизированных систем						
	управления технологическими процессами						
	знать методики теоретического и экспериментального						
	исследования электроэнергетических объектов						
	уметь применять методы теоретического и экспериментального						
ПК-5	исследования электроэнергетических объектов						
	владеть методами проведения компьютерных исследований						
	электроэнергетических объектов						
	знать методики проведения испытаний систем электроприводов						
	и автоматизированных систем управления;						
	уметь определять особенности построения и физической						
ПК-7	реализации систем электроприводов и автоматизированных						
	систем управления.						
	владеть методами настройки и запуска в эксплуатацию систем						
	электроприводов и автоматизированных систем управления;						
	электроприводов и автоматизированных систем управления,						

2. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Энергосберегающее управление электротехническими комплексами» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

D	Всего	Семестры
Виды учебной работы	часов	5
Аудиторные занятия (всего)	36	36
В том числе:		
Лекции	18	18
Лабораторные работы (ЛР)	18	18
Практические занятия (ПЗ)	-	-
Самостоятельная работа	72	72

Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость		
академические часы	108	108
3.e.	3	3

заочная форма обучения

Duran makan makan m	Всего	Семестры
Виды учебной работы	часов	6
Аудиторные занятия (всего)	8	8
В том числе:		
Лекции	4	4
Лабораторные работы (ЛР)	4	4
Практические занятия (ПЗ)	-	-
Самостоятельная работа	96	96
Часы на контроль	4	4
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость академические часы з.е.	108	108

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	o man wopma ooy iciinn						
№ п/п	Наименование темы	Содержание раздела	Лек.	Лаб. зан.	Пр. зан.	CPC	Всего, час
1	Введение. Общие сведения об ЭТК	Развитие электроэнергетики России; электроэнергетические системы; электрические сети и комплексы	3	3		12	18
2	Системы электроснабжения ЭТК	Общая характеристика систем электроснабжения; основные группы потребителей электроэнергии и основные типы схем электрических сетей ЭТК;	3	3		12	18
3	Режимы работы ЭТК и управление ими	Классификация режимов ЭТК; переходные режимы и процессы; нормативные показатели устойчивости и их обеспечение; средства управления режимами и их функции; автоматизированная система диспетчерского управления; структура системы противоаварийной автоматики	3	3		12	18
4	Регулирование напряжения и РМ в	Баланс реактивной мощности и его связь с напряжением; потребители и источники	3	3		12	18

	ЭТК	реактивной мощности; компенсация реактивной мощности; Регулирование напряжения и РМ в ЭТК					
5	Вопросы противоаварийной защиты	Требования, предъявляемые к защите ЭТК, дистанционная защита	3	3		12	18
6	Качество электроэнергии в системах электроснабжения ЭТК	показатели качества электроэнергии; влияние качества электроэнергии на функционирование технических средств; технические средства контроля качества электроэнергии; обеспечение качества электроэнергии	3	3		12	18
		Итого	18	18	-	72	108

заочная форма обучения

	заочная форма обучения						
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	Пр. занятия	CPC	Всего,
1	Введение. Общие сведения об ЭТК	Развитие электроэнергетики России; электроэнергетические системы; электрические сети и комплексы	1	1	-	16	18
2	Системы электроснабжения ЭТК	Общая характеристика систем электроснабжения; основные группы потребителей электроэнергии и основные типы схем электрических сетей ЭТК;	1	1	-	16	18
3	Режимы работы ЭТК и управление ими	Классификация режимов ЭТК; переходные режимы и процессы; нормативные показатели устойчивости и их обеспечение; средства управления режимами и их функции; автоматизированная система диспетчерского управления; структура системы противоаварийной автоматики	1	1	-	16	18
4	Регулирование напряжения и РМ в ЭТК	Баланс реактивной мощности и его связь с напряжением; потребители и источники реактивной мощности; компенсация реактивной мощности; Регулирование напряжения и РМ в ЭТК	1	1	-	16	18
5	Вопросы противоаварийной защиты	Требования, предъявляемые к защите ЭТК, дистанционная защита	-	-	-	16	16
6	Качество электроэнергии в системах электроснабжения ЭТК	показатели качества электроэнергии; влияние качества электроэнергии на функционирование технических средств; технические средства контроля качества электроэнергии; обеспечение качества электроэнергии	-	-	-	16	16
	•	Итого	4	4	-	96	103

5.2 Перечень лабораторных работ

- 1. Общая характеристика систем электроснабжения; основные группы потребителей электроэнергии ЭТК
- 2. Регулирование напряжения и РМ в ЭТК
- 3. Качество электрической энергии; показатели качества электроэнергии в ЭТК
- 4. Технические средства контроля качества электроэнергии; ЭМС и обеспечение качества электроэнергии в ЭТК

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-2	принципы и основные установки для выработки, передачи, преобразования и распределения электрической и тепловой энергии	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	проводить экспериментальные исследования электроэнергетического оборудования; обрабатывать результаты экспериментальных исследований электротехнических установок	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть методами проведения экспериментальных исследований электротехнических комплексов; современными методами и средствами оформления технической документации по результатам проведения экспериментальных исследований электротехнических	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

ПК-4	знать основные виды параметров оптимизации; требования, предъявляемые к факторам при планировании эксперимента; уметь разрабатывать	Тест Решение стандартных	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах Невыполнение работ в
	планы, программы и методики проведения экспериментальных исследований;	практических задач	в срок, предусмотренный в рабочих программах	срок, предусмотренный в рабочих программах
	владеть навыками выбора четкой стратегии, позволяющей принимать обоснованные решения после каждой серии экспериментов;	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-5	знать методики теоретического и экспериментального исследования электроэнергетических объектов	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь применять методы теоретического и экспериментального исследования электроэнергетических объектов	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть методами проведения компьютерных исследований электроэнергетических объектов	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-7	знать принципы выбора моделей; методы проведения факторного эксперимента;	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь варьировать всеми переменными, определяющими процесс, по специальным правилам;	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

владеть	навыками	Решение прикладных задач в	Выполнение работ	Невыполнение работ в
выбора	четкой	конкретной предметной	в срок,	срок, предусмотренный
стратегии,		области	предусмотренный	в рабочих программах
позволяюще	ей		в рабочих	
принимать			программах	
обосновании	ые			
решения по	сле каждой			
серии экспер	риментов;			

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 5 семестре для очной формы обучения, 6 семестре для заочной формы обучения по двухбалльной тестовой системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ПК-2	принципы и основные установки для выработки, передачи, преобразования и распределения электрической и тепловой энергии	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	проводить экспериментальные исследования электроэнергетического оборудования; обрабатывать результаты экспериментальных исследований электротехнических установок	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	Владеть методами проведения экспериментальных исследований электротехнических комплексов; современными методами и средствами оформления технической документации по результатам проведения экспериментальных исследований электротехнических	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ПК-4	знать основные виды параметров оптимизации; требования, предъявляемые к факторам при планировании эксперимента;	Тест	Выполнение теста на 70-100%	Выполнение менее 70%

	уметь разрабатывать планы, программы и методики проведения экспериментальных исследований;		Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	владеть навыками выбора четкой стратегии, позволяющей принимать обоснованные решения после каждой серии экспериментов;	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ПК-5	знать методики теоретического и экспериментального исследования электроэнергетических объектов	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь применять методы теоретического и экспериментального исследования электроэнергетических объектов	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	владеть методами проведения компьютерных исследований электроэнергетических объектов	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ПК-7	знать принципы выбора моделей; методы проведения факторного эксперимента;	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь варьировать всеми переменными, определяющими процесс, по специальным правилам;	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	владеть навыками выбора четкой стратегии, позволяющей принимать обоснованные решения после каждой серии экспериментов;	конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств:

7.2.1 Примерный перечень заданий:

Контрольная работа № 1 «Средства управления энергетическими режимами ЭТК»

для подготовки к тестированию

№ **1. Что входит в понятие энергосбережение?** отве

Т

- 1 реализация организационных, правовых, научных, технических производственных, И экономических мер, направленных на эффективное использование энергетических ресурсов вовлечение В хозяйственный оборот на возобновляемых источников энергии
- 2 результат интеллектуальной деятельности, содержащий систематизированные знания, используемые для выпуска соответствующей продукции, применения соответствующего процесса или оказания соответствующих услуг, совокупность научно-технических знаний, технических решений, процессов, материалов и оборудования, которые могут быть использованы при разработке, производстве или эксплуатации продукции
- 3 топливно-энергетический комплекс страны, охватывает получение, передачу, преобразование и использование различных видов энергии и энергетических ресурсов

№ **2. Что такое показатель энергоэффективности?** отве

Т

- 1 энергетический ресурс, получаемый в виде побочного продукта основного производства или являющийся таким продуктом
- 2 абсолютная или удельная величина потребления или потери энергетических ресурсов для продукции любого назначения, установленная государственными стандартами
- 3 носитель энергии, который используется в настоящее время или может быть полезно использован в перспективе

№ **3. Что такое энергетический ресурс?** отве

T

- 1 энергетический ресурс, получаемый в виде побочного продукта основного производства или являющийся таким продуктом
- 2 абсолютная или удельная величина потребления или потери энергетических ресурсов для продукции любого назначения, установленная государственными стандартами
- 3 носитель энергии, который используется в настоящее время или может быть полезно использован в перспективе
- № 4. Что входит в понятие эффективное использование

отве энергетических ресурсов?

T

- 1 достижение экономически оправданной эффективности использования энергетических ресурсов при существующем уровне развития техники и технологий и соблюдении требований к охране окружающей природной среды
- 2 расход энергетических ресурсов, обусловленный несоблюдением требований, установленных государственными стандартами, а также нарушением требований, установленных иными нормативными актами, технологическими регламентами и паспортными данными для действующего оборудования
- 3 абсолютная или удельная величина потребления или потери энергетических ресурсов для продукции любого назначения, установленная государственными стандартами

№ 5. На каких принципах основана энергосберегающая отве политика государства?

T

- 1 эффективного приоритет использования энергетических ресурсов; осуществление государственного надзора эффективным использованием энергетических ресурсов; обязательность учета юридическими лицами производимых или расходуемых ими энергетических ресурсов, а также учета получаемых физическими лицами ИМИ энергетических ресурсов;
- 2 включение в государственные стандарты на оборудование, материалы и конструкции, транспортные средства показателей их энергоэффективности; сертификация топливо-, энергопотребляющего, энергосберегающего и диагностического оборудования, материалов, конструкций, транспортных средств, а также энергетических ресурсов;
- 3 потребителей, сочетание интересов поставщиков И производителей энергетических ресурсов; заинтересованность ЛИЦ производителей юридических И поставщиков энергетических ресурсов В эффективном использовании энергетических ресурсов;

№ 6. На чем основаны принципы управления в области отве энергосбережения?

T

- 1 стимулирование производства и использования топливо- и энергосберегающего оборудования; организация учета расхода энергетических ресурсов, а также контроль за их расходом;
- 2 осуществление государственного надзора за эффективным использованием энергетических ресурсов; проведение энергетических обследований организаций;
- 3 проведение энергетической экспертизы проектной

документации для строительства; реализация демонстрационных проектов высокой энергетической эффективности

$N_{\underline{0}}$ направления 7. Какие повышения эффективности отве ТЭР использования реализации потенциала И Т энергосбережения В жилищно-коммунальном хозяйстве являются основными?

- 1 внедрение новых и совершенствование существующих технологий в производстве энергоёмких строительных материалов, изделий и конструкций;
 - разработка и внедрение энергоэффективных технологий производства строительно-монтажных работ;
 - автоматизация технологических процессов, внедрение регулируемых электроприводов;
 - увеличение термосопротивления ограждающих конструкций жилого фонда;
- 2 ликвидация неэкономичных котельных с переводом их нагрузок на другие котельные;
 - децентрализация систем теплоснабжения со строительством котельных малой мощности;
 - повышение эффективности работы коммунальных котельных путём замены неэкономичных котлов на более эффективные, перевода паровых котлов в водонагрейный режим работы, использование безопасных и экономичных способов очистки поверхности нагрева от накипи и нагара, внедрение безреагентных моноблочных водоподготовительных установок, перевод котельных с мазута на газ;
 - перевод котельных на местные виды топлива;
 - установка в котельных электрогенерирующего оборудования;
- 3 внедрение систем обогрева производственных помещений инфракрасными излучателями;
 - использование гелиоколлекторов для нагрева воды, используемой на технологические нужды;
 - внедрение частотно-регулируемого привода для технологических установок;
 - перевод котельных в водогрейный режим;
 - децентрализация схем теплоснабжения с внедрением газогенераторных установок;
 - замена электрокотлов и неэкономичных чугунных котлов на котельные установки, работающие на местных видах топлива;

№ **8. Какое производство является малоотходным?** отве

Т

1 производство, при котором происходит процесс создания материальных благ, необходимых для существования и

- развития общества;
- 2 такое производство, в результате которого создаются разные виды экономического продукта;
- 3 такое производство, результаты которого при воздействии их на окружающую среду не превышают уровня, допустимого санитарно-гигиеническими нормами, т. е. ПДК;

№ 9. На чем основан принцип комплексности использования отве ресурсов?

T

- 1 требует максимального использования всех компонентов сырья и потенциала энергоресурсов;
- 2 каждый отдельный процесс или производство рассматривается как элемент динамичной системы всего промышленного производства в регионе (ТПК) и на более высоком уровне как элемент эколого-экономической системы в целом, включающей кроме материального производства и другой хозяйственно-экономической деятельности человека, природную среду;
- 3 требует разумного использования всех компонентов сырья, максимального уменьшения энерго-, материало- и трудоемкости производства и поиска новых экологически обоснованных сырьевых и энергетических технологий;

№ 10. Какой из принципов безотходных технологий является отве основным?

Т

- 1 принцип рациональности технологий;
- 2 принцип комплексного экономного использования сырья
- 3 принцип системности;

№ 11. Какие из направлений создания мало- и безотходных отве производств являются главными?

T

- 1 комплексное использование сырьевых и энергетических ресурсов; усовершенствование существующих и разработки принципиально новых технологических процессов и производств и соответствующего оборудования;
- 2 внедрение водо- и газооборотных циклов (на базе эффективных газо- и водоочистных методов);
- 3 кооперация производства с использованием отходов одних производств в качестве сырья для других и создания безотходных ТПК;

№ 12. Какие преимущества использования энергетических отве технологий с использованием топливных элементов Вы т знаете?

- 1 высокая эффективность; возможность интегрирования с другими типами энергоустановок в комбинированных циклах;
- 2 самая высокая по сравнению с другими энерготехнологиями

экологическая чистота при использовании органического топлива; низкий уровень шума;

3 отсутствие загрязнения воды; высокая мобильность;

$N_{\underline{0}}$ **13.** Какие показатели относятся К недостаткам отве децентрализованного теплоснабжения?

 \mathbf{T}

- 1 необходимость проектирования каждой миникотельной (т. к. все проекты систем индивидуальны для каждого здания), котлы работают только на газе;
- 2 ТЭР ниже, чем у централизованного Удельные расходы теплоснабжения, Модульность, т.е. возможность дополнительного наращивания мощности при необходимости;
- 3 котел является объектом повышенной опасности, который непосредственной близости от устанавливается В проживания и отдыха людей;

$N_{\underline{0}}$ Какие показатели относятся К преимуществам отве децентрализованного теплоснабжения?

 \mathbf{T}

- существенно улучшают качество теплоснабжения; удельные 1 расходы низкий, модульность, т.е. возможность дополнительного наращивания мощности при необходимости;
- 2 необходимость проектирования каждой миникотельной (т. к. все проекты систем индивидуальны для каждого здания), котлы работают только на газе;
- 3 незначительные габариты удобство И при монтаже эксплуатации; обладают возможностью по снижению влияния вредных выбросов продуктов сгорания при совместном использовании с солнечными коллекторами;

направления $N_{\underline{0}}$ Какие основные предусмотрены концепции водообеспечения города Севастополя и его отве Т региона?

- 1 разведка новых подземных источников пресной воды;
- 2 строительство открытых водохранилищ;
- 3 подведение днепровской воды из Северо-Крымского канала:

$N_{\underline{0}}$ 16. Какие мероприятия относятся к первоочередным при осуществлении Концепции энергосбережения на объектах

- ЖКХ г. Севастополя? T
- 1 - круглосуточное водоснабжение;
 - улучшенное отопление;
 - подключение горячего водоснабжения;
 - улучшение освещения уличного и освещения лестничных площадок и маршей;
 - установка счетчиков газа, воды, тепла и электроэнергии коллективного и квартирного учета;
 - -сохранность оборудования и имущества;

- 2 -замена окон и дверей на металлопластиковые;
 - -устройство тепловых фасадных экранов;
 - -устройства шатровой крыши;
 - -утепление подвальных и чердачных помещений;
 - -установка системы автоматического контроля и передачи данных АСУП;
 - -установка охранной системы;
 - обустройство административно-культурного и торгового блока помещений.
- 3 верно (1) и (2);

№ 17. Какие мероприятия относятся к мероприятиям второй отве очереди при осуществлении Концепции энергосбережения на объектах ЖКХ г. Севастополя?

- 1 круглосуточное водоснабжение;
 - улучшенное отопление;
 - подключение горячего водоснабжения;
 - улучшение освещения уличного и освещения лестничных площадок и маршей;
 - установка счетчиков газа, воды, тепла и электроэнергии коллективного и квартирного учета;
 - -сохранность оборудования и имущества;
- 2 -замена окон и дверей на металлопластиковые;
 - -устройство тепловых фасадных экранов;
 - -устройства шатровой крыши;
 - -утепление подвальных и чердачных помещений;
 - -установка системы автоматического контроля и передачи данных АСУП;
 - -установка охранной системы;
 - обустройство административно-культурного и торгового блока помещений.
- 3 верно (1) и (2);

№ 18. Что входит в понятие энергетический аудит? отве

- T
- 1 это независимое всестороннее обследование энергетических оборудования целью определения: систем И действующим фактического состояния соответствия нормативам; 2. резервов энергосбережения и повышения энергоэффективности; энергосберегающих 3. программы мероприятий;
- 2 это система управления, основанная на проведении типовых измерений и проверок, обеспечивающая такую работу предприятия, при которой потребляется только совершенно необходимое для производства количество энергии;
- 3 это систематический режим для регистрации и контроля

энергопотребления и условий эксплуатации зданий;

7.2.3 Примерный перечень заданий для решения прикладных задач

№1. Воздушная линия напряжением 0,38 кВ длиной 500 м с проводами АС25, по которой предполагается передавать нагрузку I_p =27A. Определить годовые издержки на потери электроэнергии в линии, если время потерь τ =2000 час, а удельные затраты на потери составляют C_{π} =1,25 руб/кВт·ч.

Решение задачи: Годовые издержки на потери электроэнергии в линии определяются следующим образом:

$$U_{\Gamma} = m \cdot I_{P}^{2} \cdot R \cdot \tau \cdot C_{J} \cdot 10^{-3},$$

где m — число фаз линии; I_p — расчетный ток линии; R — активное сопротивление линии, при известных значениях удельного сопротивления линии r_0 и ее длины l: $^{R}=r_0$ $\cdot l$ Для провода A-25 r_0 =1,14 Ом/км / 6 /; τ — время потерь; $C_{\it П}$ — удельные затраты на потери электроэнергии в линии. Тогда для нашего случая:

$$M_{\Gamma} = 3.27^{2} \cdot 1,14.0,5.2000 \cdot 1,25.10^{-3} = 3116,50 \text{ py6}.$$

№ 2. Односменное предприятие получает питание от рядом расположенной подстанции по двум трёхфазным кабелям напряжением 380 В с алюминиевыми жилами сечением по 70 мм² и L=300 м. Почасовая токовая нагрузка его в амперах составляет 1-ый час 130, 2 – 160, 3 – 180, 4 – 170, 5 – 80, 6 – 100, 7 – 130, 8 – 120, 9 – 90. Определить суточные потери электроэнергии. Для рассматриваемого кабеля по справочнику $R_o = 0,443 \text{ Ом/км}$.

Решение: Воспользуемся методом среднеквадратичного тока.

Найдём среднеквадратичный ток

$$I_{cp} = \sqrt{\Sigma I_i^2} / t = \sqrt{(130^2 + 169^2 + 180^2 + 170^2 + 80^2 + 100^2 + 130^2 + 120^2 + 90^2)/9} = 133,2A.$$

Сопротивление кабельной линии R_{κ} = $R_oL/2$ = 0,443 0,3 /2 = 0,066 Ом. Потери электроэнергии в линии ΔW = 3 $I^2_{c.\kappa}$ R_{κ} t = 3 133,2 2 0,066 9 10^3 = 31,6 кВт ч.

№ : Определить реактивную мощность, потребляемую электродвигателем 4A280M6 при степени его загрузки равной 1. Паспортные данные данные двигателя $P_H = 90 \kappa B m$; $\eta_H = 92,5\%$; $\cos \varphi_H = 0,89$; $U_A = 380$ B; Ток холостого хола $I_{XX} = 0,6 \cdot I_H$.

РЕШЕНИЕ задачи: Определить номинальный ток двигателя

$$I_{H} = \frac{P_{H}}{\sqrt{3} \cdot U_{\pi} \cdot \cos \varphi_{H} \cdot \eta_{H}} = \frac{90}{\sqrt{3} \cdot 0.38 \cdot 0.925 \cdot 0.89} = 166$$
A.

Реактивная мощность, потребляемая электродвигателем при степени

$$Q_{H} = \frac{P_{H}}{\eta_{H}} \cdot tg\phi_{H} = \frac{90}{0,925} \cdot 0,512 = 49,8 \text{ KBAp}$$

загрузки равной 1.

№ 3. При диагностике электродвигателя были измерены сопротивления фазных обмоток постоянному току. В результате измерения были

получены следующие значения R_A =20 Ом; R_B =19,8 Ом; R_C =19,9 Ом. Паспортное значение сопротивления фазной обмотки постоянному току равно 20 ОМ. Сделать вывод о состоянии фазных обмоток электрических машин.

РЕШЕНИЕ задачи: Измеренные значения сопротивлений обмоток различных фаз не должны отличаться более чем на 0,02 Ом. Определим, на сколько изменяются измеренные значения относительно паспортного значения сопротивления обмотки.

Фаза A - ΔR_A =0 Ом; фаза B - ΔR_B =0,2 Ом; фаза C - ΔR_C =0,1 Ом. Это недопустимо, значит в фазах B и C могут быть короткозамкнутые витки или сечение провода этих фазных обмоток отличается от расчетного.

No Для оценки технического изоляции состояния обмотки асинхронного короткозамкнутого электродвигателя линейным c номинальным напряжением U_н=380 В необходимо провести испытания повышенным напряжением межвитковой изоляции и электрической прочности главной изоляции. Измеренное сопротивление изоляции обмотки электродвигателя через 15 (R_{15}) и 60 (R_{60}) секунд после включения мегомметра равны: R_{15} =8Moм, R_{60} =10 Мом. При оценке индукционными методами технического состояния активной стали этого электродвигателя, масса которой составляет G=17 кг, зафиксированные ваттметром потери в стали составили Р=50Вт. Определить: Напряжение межвитковой изоляции, время испытаний. Напряжение испытания электрической прочности главной изоляции, испытания испытаний.

Решение задачи: 1. Напряжение испытания межвитковой изоляции равно $U_{{\scriptscriptstyle HC\Pi}}=U_{{\scriptscriptstyle H}}+0,3U_{{\scriptscriptstyle H}}=380+114=494~B$. Время испытаний равно $t_{{\scriptscriptstyle HC\Pi}}=3$ мин.

2. Напряжение испытания электрической прочности равно $U_{{\scriptscriptstyle MC\Pi}}=1000+2U_{{\scriptscriptstyle H}}=1000+760=1760\,B$. Время испытаний равно $t_{{\scriptscriptstyle MC\Pi}}=1$ мин.

№ 5. Определить среднегеометрическое расстояние D_{cp} между проводами с тремя линиями при их горизонтальном расположении на расстоянии 4 м и определить погонные параметры для провода марки AC 120/19.

Решение: $D_{cp} = 1,26.4 = 5,04 \text{ M}.$

По таблице выбираем искомые параметры

 $R_O = 0.270 \text{ Om/km}$; $X_O = 0.423 \text{ Om/km}$; $b_O = 2.69 \cdot 10^{-6} \text{ Cm/km}$.

№ 6. Определить зависимость активного сопротивления R_0^t от температуры сталеалюминиевого провода AC 95/16, равной $t=32^{\circ}C$. Температурный коэффициент электрического сопротивления для сталеалюминиевого провода $\alpha=0,00403$ Ом/град.

Решение: Нормативное значение активного сопротивления при температуре проводника 20° C $R^{20}_{o} = \rho$ / F = 30/ 95 = 0.31 Ом/км;

 ρ – удельное активное сопротивление материала провода, Ом мм²/км;

F – сечение фазного провода (жилы), мм².

 $R^{32}_{o} = R^{20}_{o} [1 + \alpha(t - 20^{\circ}C)] = 0.31 [1 + 0.00403 (32 - 20^{\circ}C)] = 0.325 \text{ Ом/км}.$ № 7. ВЛЭП с фазными проводами АС 600/72.

Определить погонные параметры фазы, расщеплённой на два провода АС

300/48; диаметр провода после расщепления $2r_{np} = 24,2$ мм.

Решение: Активное погонное сопротивление провода

 $R_0 = 1.05 \rho / 2F = 1.05 30 / 2 300 = 0.052 Om/km;$

Индуктивное погонное сопротивление фазы $X_o = 0.144 \text{ lg } (D_{cp}/r_{экв}) + 0.016$ / n , Oм/км.

Эквивалентный радиус провода $r_{_{9KB}} = \sqrt[n]{r_{_{np}}a^{_{n-1}}} = \sqrt{12,1400} = 69,6$ мм.

а – расстояние между расщеплёнными проводами, а = 400 мм.

 $X_0 = 0.144 \text{ lg } (8.82 \text{ } 10^3 / 69.6) + 0.016 / 2 = 0.311 \text{ Om/km}.$

№ 8.Трёхфазный двухобмоточный трансформатор типа ТМ на 10 кВ имеет паспортные данные $S_{\text{ном}} = 100$ кВ A, $U_{\text{вн}} = 10$ кВ, $U_{\text{нн}} = 0.4$ кВ, $\Delta P_{\kappa} = 1.97$ кВт, $\Delta P_{\kappa} = 0.36$ кВт, $u_{\kappa} = 4.5\%$, $I_{\kappa} = 2.6\%$.

Составить упрощённую схему замещения трансформатора без учёта поперечной ветви в виде продольной ветви и определить параметры схемы замещения. Определить коэффициент трансформации $\kappa_{\scriptscriptstyle T}$.

Решение:

Активное сопротивление трансформатора, приведённое к напряжению высшей обмотки

$$R = \Delta P_{\kappa} U^{2}_{H} 10^{-3} / S^{2}_{HOM} = 1,97 10^{2} 10^{3} / 100^{2} = 19,7 \text{ Om}$$

Полное сопротивление $Z = u_{\kappa} U_{H}^{2} 10^{3} / 100 S_{HOM} = 4,5 10^{2} 10^{3} / 100 100 = 45,0 Ом.$

Реактивное сопротивление $X = \sqrt{Z^2 + R^2} = \sqrt{45^2 + 19}$, $7^2 = 40$, 5 Ом.

Коэффициент трансформации (идеального трансформатора). $\kappa_{\scriptscriptstyle T}$ = $U_{\scriptscriptstyle BH}$ / $U_{\scriptscriptstyle HH}$ = 10/0,4 = 25.

№ 9. Кабельная линия напряжением 10 кВ протяжённостью 0,8 км, выполненная кабелем AAБ-3x120, питает предприятие мощностью нагрузки 1500 кВт, а коэффициент мощности $\cos \varphi = 0,9$.

Определить потери мощности в линии и напряжение в конце линии, если в начале линии $U_1 = 10,3$ кВ. Из параметров схемы замещения следует учитывать только активное и реактивное сопротивления, удельные значения которых равны: $R_0 = 0,258$ Ом/км; $X_0 = 0,081$ Ом/км;

Решение:

$$R_{\rm JI} = R_{\rm o} \ 0.8 = 0.258 \, \text{x} \ 0.8 = 0.206 \ \text{Om}. \ X_{\rm JI} = 0.081 \ 0.8 = 0.065 \ \text{Om}.$$

Вставив в формулу в качестве напряжения номинальное значение найдём потери мощности

$$\Delta P = P^2 R_{JI} / (U_{H}^2 \cos^2 \phi) = 1500^2 0,206 10^3 / (10^2 0,9^2) = 5,7 \text{ kBt.}$$

$$\Delta Q = P^2 X_{\text{JI}} / (U_{\text{H}}^2 \cos^2 \phi) = 1500^2 0,065 \ 10^{-3} / (10^2 0,9^2) = 1,8 \text{ kBap.}$$

Напряжение в конце линии определяется через потерю напряжения, используя также допущение расчёта распределительных сетей о равенстве мощностей в начале и конце линии

$$U_2 = U_1 - [(P R_{\pi} + Q X_{\pi}) / U_{H}] =$$

=
$$10.3 - [(1500 \ 0.206 + 726.5 \ 0.065)/10] = 10.264 \text{ kB}.$$

Здесь
$$Q = P tg\phi = 1500 0,484 = 726,5 кВАр.$$

№10. Определить ток плавкой вставки предохранителей для защиты от коротких замыканий электродвигателя токарного станка: $P_{\rm H} = 7.5~{\rm kBt}$; $U_{\rm H}$

= 380 B; $\cos \varphi$ = 0,8; η = 87%; $k_{пуск}$ = 7. Коэффициент кратковременной тепловой перегрузки α = 2,5 – для легких условий.

Решение: Определим номинальную силу тока эд:

$$I_{H} = \frac{P_{H}}{\sqrt{3}U_{H}\cos\phi \cdot \eta} = \frac{7500}{\sqrt{3} \cdot 380 \cdot 0.8 \cdot 0.87} = \frac{16.4 \text{ A};}{16.4 \text{ A};}$$

Рассчитывается пусковой ток электродвигателя: $I_{\text{пуск}} = I_{\text{H}} \cdot k_{\text{пуск}} = 16,4 \cdot 7 = 114,8A$

В соответствии с условиями выбора плавких предохранителей определяются номинальные токи плавких вставок: $I_{\text{вс}}=16,4$ A; $I_{\text{вс}}$

$$=\frac{I_{\Pi YCK}}{\alpha} = \frac{114,8}{2,5} = 45,9$$
A;

Из двух полученных значений выбираем большее.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Развитие электроэнергетики России;
- 2. Электроэнергетические системы;
- 3. Электрические сети и комплексы;
- 4. Общая характеристика систем электроснабжения;
- 5. Основные группы потребителей электроэнергии;
- 6. Основные типы схем электрических сетей ЭТК;
- 7. Классификация режимов ЭТК;
- 8. Переходные режимы и процессы;
- 9. Нормативные показатели устойчивости и их обеспечение;
- 10. Средства управления режимами и их функции;
- 11. Атоматизированная система диспетчерского управления;
- 12. Структура системы противоаварийной автоматики;
- 13. Баланс реактивной мощности и его связь с напряжением;
- 14. Потребители и источники реактивной мощности;
- 15. Компенсация реактивной мощности;
- 16. Регулирование напряжения и РМ в ЭТК
- 17. Требования, предъявляемые к защите ЭТК,
- 18. Дистанционная защита;
- 19. Показатели качества электроэнергии;
- 20. Влияние качества электроэнергии на функционирование технических средств;
- 21. Технические средства контроля качества электроэнергии;
- 22. Обеспечение качества электроэнергии.

Не предусмотрено учебным планом

7.2.5. Методика выставления оценки при проведении аттестации

Зачет проводится по билетам, каждый из которых содержит 2 вопроса и задачу. Каждый правильный ответ на вопрос оценивается в 5 баллов, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов –

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.6 Паспорт оценочных материалов

	7.2.0 Hachopi odcho-hibix marephanob					
№ п/п	Контролируемые разделы	Код	Наименование			
	(темы) дисциплины	контролируемой	оценочного средства			
		компетенции				
1	Введение. Общие сведения об	ПК-2, ПК-4,	Тест, защита			
	ЭТК	ПК-5, ПК-7	лабораторных работ			
2	Системы электроснабжения	ПК-2, ПК-4,	Защита			
	ЭТК	ПК-5, ПК-7	лабораторных работ			
3	Режимы работы ЭТК и	ПК-2, ПК-4,	Тест, защита			
	управление ими	ПК-5, ПК-7	лабораторных работ,			
4	Регулирование напряжения и	ПК-2, ПК-4,	Защита			
	РМ в ЭТК	ПК-5, ПК-7	лабораторных работ			
5	Вопросы защиты ЭТК	ПК-2, ПК-4,	Тест, защита			
		ПК-5, ПК-7	лабораторных работ			
6	Качество электроэнергии в	ПК-2, ПК-4,	Тест, защита			
	системах электроснабжения	ПК-5, ПК-7	лабораторных работ			
	ЭТК					

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

13айцев, А.И. Энергосберегающие технологии в распределенных электроэнергетических сетях: Монография. - Воронеж: ФГБОУ ВО "Воронежский государственный технический университет", 2016. - 224 с. - ISBN 978-5-7731-0458-2: 267-42; 500 экз.

2Крысанов, В.Н. Программно-аппаратное обеспечение систем управления ЭЭС на базе технологии FACT : Монография. - Воронеж : ФГБОУ ВО "Воронежский государственный технический университет", 2016. - 232 с. - 416-77; 250 экз.

ЗМещеряков В.Н. Энергосберегающие системы электропривода переменного тока с частотным управлением для механизмов с вентиляторным статическим моментом [Электронный ресурс]: учебное пособие/ Мещеряков В.Н.— Электрон. текстовые данные.— Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2012.— 50 с.— Режим доступа: http://www.iprbookshop.ru/17682.html.— ЭБС «IPRbooks»

B.H. 4Мещеряков Энергосбережение В электроэнергетике И [Электронный pecypc]: электроприводе методические указания «Энергосберегающие практическим занятиям дисциплине ПО 13.03.02 направления подготовки технологии» ДЛЯ студентов «Электроэнергетика и электротехника»/ Мещеряков В.Н., Языкова текстовые Л.Н. данные.— Липецк: Электрон. Липецкий государственный технический университет, ЭБС АСВ, 2017.— 28 с.— Режим доступа: http://www.iprbookshop.ru/74425.html.— ЭБС «IPRbooks»

5 Крысанов В.Н. Аппаратно-программное управление режимами узлов нагрузки региональных сетей электроснабжения с помощью статических устройств / В.Н.Крысанов. – Воронеж: ВГТУ, 2017. – 244 с.

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное программное обеспечение

1. LibreOffice;

- 2. Apache OpenOffice 4.1.11;
- 3. Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic;
 - 4. ABBYY FineReader 9.0;
 - 5. FEMM 4.2;
 - 6. SciLab;
 - 7. MATLAB Classroom;
 - 8. Simulink Classroom.

Отечественное ПО

- 1. «Программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат. ВУЗ»».
- 2. Модуль «Программный комплекс поиска текстовых заимствований в открытых источниках сети интернет «Антиплагиатинтернет»».
- 3. Модуль обеспечения поиска текстовых заимствований по коллекции диссертаций и авторефератов Российской государственной библиотеки (РГБ).
- 4. Модуль поиска текстовых заимствований по коллекции научной электронной библиотеки eLIBRARY.RU.

Ресурс информационно-телекоммуникационной сети «Интернет»

http://www.edu.ru/ Образовательный портал ВГТУ

Информационная справочная система

- 1. http://window.edu.ru
- 2. https://wiki.cchgeu.ru/

Современные профессиональные базы данных

1. Электротехника. Сайт об электротехнике

Адрес pecypca: https://electrono.ru

2. Электротехнический портал

http://электротехнический-портал.рф/

3. Силовая электроника для любителей и профессионалов http://www.multikonelectronics.com/

4. Netelectro

Новости электротехники, оборудование и средства автоматизации. Информация о компаниях и выставках, статьи, объявления

Адрес pecypca: https://netelectro.ru/

5. Marketelectro

Отраслевой электротехнический портал. Представлены новости отрасли и компаний, объявления, статьи, информация о мероприятиях, фотогалерея, видеоматериалы, нормативы и стандарты, библиотека,

электромаркетинг.

Адрес pecypca: https://marketelectro.ru/

6. Электромеханика

Адрес pecypca: https://www.electromechanics.ru/

7. Electrical 4U

Разделы сайта: «Машины постоянного тока», «Трансформаторы», «Электротехника», «Справочник»

Адрес pecypca: https://www.electrical4u.com/

8. All about circuits

Одно из самых крупных онлайн-сообществ в области электротехники. На сайте размещены статьи, форум, учебные материалы (учебные пособия,

видеолекции, разработки, вебинары) и другая информация

Адрес pecypca: https://www.allaboutcircuits.com

9. Библиотека ООО «Электропоставка»

Адрес pecypca: https://elektropostavka.ru/library

10. Электрик

Адрес pecypca: http://www.electrik.org/

11. Чертежи.ru

Адрес pecypca: https://chertezhi.ru/

12. Электроспец

Адрес pecypca: http://www.elektrospets.ru/index.php

13. Библиотека

Адрес ресурса: WWER http://lib.wwer.ru

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- **1.** Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.
- **2.** Учебные лаборатории: "Электропривода, «Энергосбережения и энергоэффективности».
- **3. Дисплейный класс**, оснащенный компьютерными программами для проведения лабораторного практикума.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Энергосберегающее управление электротехническими комплексами».

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета электрооборудования систем электроснабжения. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Контроль усвоения материала дисциплины производится проверкой контрольной работы.

Вид учебных	Деятельность студента		
занятий			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.		
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.		
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в		
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться		
аттестации	не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом три дня эффективнее всего использовать для повторения и систематизации материала.		