МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Гюнин В.Л.

Декан факульте га 2000 «31» августа 20

РАБОЧАЯ ПРОГРАММА

дисциплины

«Теплотехника»

Специальность 23.05.01 Наземные транспортно-технологические средства

Специализация $\underline{\Pi}$ одъемно-транспортные, строительные, дорожные средства и оборудование

Квалификация выпускника инженер

Нормативный период обучения 5 лет

Форма обучения очная

Год начала подготовки <u>2021</u>

Автор программы

_/Кумицкии Б.М.

Заведующий кафедрой Теплогазоснабжения и нефтегазового дела

Руководитель ОПОП

Тульская С.Г./

_/Жилин Р.А./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Цель изучения дисциплины: формирование у студентов знаний, умений и навыков, обеспечивающих квалифицированное участие в производственной деятельности инженера.

1.2. Задачи освоения дисциплины

Формирование знаний у студентов в области теплотехники, что фундамент неформального усвоения позволяет создать материала творческий профилирующих дисциплин развивать подход И использовании элементов термодинамического анализа решении конкретных задач в области транспортных и транспортно-технологических машин и оборудования.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теплотехника» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Теплотехника» направлен на формирование следующих компетенций:

ОПК-1 - Способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей;

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-1	Знать законы, понятия и положения основных свойств и
	параметров состояния термодинамических систем
	Уметь производить оценку параметров состояния
	термодинамических систем и эффективность
	термодинамических процессов
	Владеть навыками применения математических
	методов к решению задач моделирования различных
	процессов

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Теплотехника» составляет 5 з.е. Распределение трудоемкости дисциплины по видам занятий **очная форма обучения**

Dunu i vinobnoŭ pobozni		Семестры
Виды учебной работы	часов	4
Аудиторные занятия (всего)	72	72
В том числе:		

Лекции	36	36
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	72	72
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

		очная форма ооучения				
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Основные понятия и определения.	Предмет теплотехники, ее место и роль в подготовке инженерных кадров. Связь теплотехники со смежными науками. Теплотехника и системы автоматизации теплового контроля.	6	6	12	24
2	Основные параметры состояния.	Источники тепловой энергии. Проблема экономии топлива и защиты окружающей среды от тепловых выбросов. Разделы теплотехники: термодинамика и теплопередача.	6	6	12	24
3	Газовые смеси	Техническая термодинамика. Феноменологический и статистический подходы. Понятия: термодинамическая система, рабочее тело, параметры состояния, процессы. Основные параметры состояния (температура, давление, удельный объем).	6	6	12	24
4	Первый и второй законы термодинамики.	Внутренняя энергия, теплота, работа. Первый закон термодинамики, его формулировки, аналитические выражения. Энтальпия. Располагаемая и совершаемая системой работа.	6	6	12	24
5	Термодинамические свойства реальных веществ.	Реальные газы и пары. Уравнение состояния. Водяной пар. Паросиловые установки. Принципиальная схема ПТУ.	6	6	12	24
6	Тепловые двигатели, двигатели внутреннего сгорания	Двигатели внутреннего сгорания. Схема, устройство, классификация, принцип действия. Рабочие процессы в двух- и четырехтактных ДВС. Индикаторные диаграммы. Топливо для 5 ДВС. Термический КПД. Показатели их экономичности.	6	6	12	24
		Итого	36	36	72	144

5.2 Перечень лабораторных работ

- Л.р. №1. Определение газовой постоянной воздуха и универсальной газовой постоянной.
 - Л.р. №2. Определение объемной изобарной теплоемкости воздуха.
 - Л.р. №3. Определение показателя адиабаты.
 - Л.р. №4. Измерение температуры различными методами.
- Л.р. №5. Определение теплоемкости изоляционного материала методом цилиндрического слоя.
- Л.р. №6. Определение коэффициента теплоотдачи от горизонтального цилиндра при естественной конвекции.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	Знать законы, понятия и положения основных свойств и параметров состояния термодинамических систем		Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок, предусмотренный в
	Уметь производить оценку параметров состояния термодинамических систем и эффективность термодинамических процессов	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок, предусмотренный в
	Владеть навыками применения математических методов к решению задач моделирования различных процессов	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок, предусмотренный в

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 4 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-1	Знать законы,	Тест	Выполнение	Выполнение	Выполнение	В тесте
	понятия и		теста на 90-	теста на 80-	теста на 70-	менее 70%
	положения		100%	90%	80%	правильных
	основных свойств и					ответов

параметров состояния термодинамических систем				
оценку параметров	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Задачи не решены
применения математических методов к решению задач	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

	Вопросы
1	Непрерывное изменение состояния рабочего тела в результате взаимодействия его с окружающей средой называется а) термодинамическим процессом; б) диффузией; в) релаксацией; г) временем реляции.
2	Работа сжатия газа 25 Дж. Изменение внутренней энергии 30 кДж. Следо- вательно а) подводимая теплота равна 0 Дж; б) подводимая теплота равна 55 Дж; в) подводимая теплота равна 65 Дж; г) подводимая теплота равна 75 Дж.
3	Первый закон термодинамики формулируется а) если в процессе исчезает некоторое количество тепла, то возникает равное ему количество механической энергии и, наоборот при совершении механической работы возникает равное этой работе количество тепла; б) Ср - Сv = R; в) теплота сама собой не переходит от более нагретого тела к мене нагретому, обратный переход невозможен; г) в природе все процессы обратимы.

ьного газа
атуры;
ов газовой смеси ті равна
теплоты за счет
в в чистых металлах;
неравномерно нагретых объемов
етки жидкости.
ктеризует интенсивность передачи
ому через разделяющую их стенку;
омывающей ее жидкости.
ов сгорания топлива являются
теплоты за счет
в в чистых металлах;
неравномерно нагретых объемов
етки жидкости.
у или иную размерность;
ин;
трическое подобие процессов;
чин среды.

7.2.2 Примерный перечень заданий для решения стандартных задач

	7.2.2 примерный перечень заданий для решения стандартных задач Вопросы
	2011p0021
1	Коэффициент теплопередачи характеризует интенсивность передачи теплоты
	а) от одного теплоносителя к другому через разделяющую их стенку;
	б) за счет теплопроводности; в) за счет конвекции;
	г) от поверхности твердого тела к омывающей ее жидкости.
2	Теплообменные аппараты, в которых теплота от одного
	теплоносителя к другому непрерывно передается через разделяющую их стенку, называется
	а) теплообменниками с промежуточным теплоносителем;
	б) рекуперативными теплообменниками;
	в) смесительными теплообменниками;
	г) регенеративными теплообменниками.
3	Сумма массовых долей компонентов газовой смеси mi равна a) 1;
	6) 0,5;
	B) 0;
	Γ) ∞ .
4	Коэффициент сжимаемости идеального газа
	а) не зависит от температуры;
	б) не зависит от давления и температуры;
	в) равен единице;
	г) равен нулю.
5	Непрерывное изменение состояния рабочего тела в результате
	взаимодействия его с окружающей средой называется
	а) термодинамическим процессом;
	б) диффузией;
	в) релаксацией;
	г) временем реляции.
6	Первый закон термодинамики формулируется
	а) если в процессе исчезает некоторое количество тепла, то возникает
	равное ему количество механической энергии и, наоборот при
	совершении механиче- ской работы возникает равное этой работе
	количество тепла;
	6) Cp - Cv = R;
	в) теплота сама собой не переходит от более нагретого тела к мене
	нагретому, обратный переход невозможен;

	г) в природе все процессы обратимы.
7	Теплообменные аппараты, в которых теплота от одного теплоносителя к другому непрерывно передается через разделяющую их стенку, называется а) теплообменниками с промежуточным теплоносителем; б) рекуперативными теплообменниками; в) смесительными теплообменниками; г) регенеративными теплообменниками.
8	Коэффициент теплопередачи характеризует интенсивность передачи теплоты а) от одного теплоносителя к другому через разделяющую их стенку; б) за счет теплопроводности; в) за счет конвекции; г) от поверхности твердого тела к омывающей ее жидкости.
9	Теплообменные аппараты, в которых теплота от одного теплоносителя к другому непрерывно передается через разделяющую их стенку, называется а) теплообменниками с промежуточным теплоносителем; б) рекуперативными теплообменниками; в) смесительными теплообменниками; г) регенеративными теплообменниками.
10	Теплообменные аппараты, в которых теплота от одного теплоносителя к другому непрерывно передается через разделяющую их стенку, называется а) теплообменниками с промежуточным теплоносителем; б) рекуперативными теплообменниками; в) смесительными теплообменниками; г) регенеративными теплообменниками.

7.2.3 Примерный перечень заданий для решения прикладных задач

	Вопросы
1	Непрерывное изменение состояния рабочего тела в результате взаимодействия его с окружающей средой называется а) термодинамическим процессом; б) диффузией; в) релаксацией; г) временем реляции.
2	Работа сжатия газа 25 Дж. Изменение внутренней энергии 30 кДж. Следо- вательно а) подводимая теплота равна 0 Дж;

	б) подводимая теплота равна 55 Дж;
	в) подводимая теплота равна 55 Дж;
	г) подводимая теплота равна 75 Дж.
	туподводимая теплета равна 75 дж.
3	Первый закон термодинамики формулируется
	а) если в процессе исчезает некоторое количество тепла, то возникает
	равное ему количество механической энергии и, наоборот при
	совершении механической работы возникает равное этой работе
	количество тепла;
	б) Cp - Cv = R;
	в) теплота сама собой не переходит от более нагретого тела к мене
	нагретому, обратный переход невозможен;
	г) в природе все процессы обратимы.
4	Коэффициент сжимаемости идеального газа
	а) не зависит от температуры;
	б) не зависит от давления и температуры;
	в) равен единице;
	г) равен нулю.
5	Сумма массовых долей компонентов газовой смеси ті равна
	a) 1;
	6) 0,5;
	B) 0;
	Γ) ∞ .
6	Непрерывное изменение состояния рабочего тела в результате
	взаимодейст- вия его с окружающей средой называется
	а) термодинамическим процессом;
	б) диффузией;
	в) релаксацией;
	г) временем реляции.
7	Первый закон термодинамики формулируется
	а) если в процессе исчезает некоторое количество тепла, то возникает
	равное ему количество механической энергии и, наоборот при
	совершении механиче- ской работы возникает равное этой работе
	количество тепла;
	6) Cp - Cv = R;
	в) теплота сама собой не переходит от более нагретого тела к мене
	нагретому, обратный переход невозможен;
	г) в природе все процессы обратимы.
8	Конвекция – это процесс переноса теплоты за счет
	а) диффузии свободных электронов в чистых металлах;
	б) соударения молекул газа;

	в) перемещения и перемешивания неравномерно нагретых объемов жидкости (газа);
	г) колебаний кристаллической решетки жидкости.
9	Теплообменные аппараты, в которых теплота от одного теплоносителя к другому непрерывно передается через разделяющую их стенку, называется а) теплообменниками с промежуточным теплоносителем; б) рекуперативными теплообменниками; в) смесительными теплообменниками; г) регенеративными теплообменниками.
10	Теплообменные аппараты, в которых теплота от одного теплоносителя к другому непрерывно передается через разделяющую их стенку, называется а) теплообменниками с промежуточным теплоносителем; б) рекуперативными теплообменниками; в) смесительными теплообменниками; г) регенеративными теплообменниками.

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом

7.2.5 Примерный перечень заданий для решения прикладных задач

	Вопросы к экзамену	
1.	Предмет и задачи общей теплотехники. Термодинамика и теория теплообмена.	
2.	Параметры состояния рабочего тела р, v, T (размерности).	
3.	Уравнение состояния Клайперона-Менделеева. Универсальная	
	газовая постоянная.	
4.	Смеси идеальных газов.	
5.	Теплоемкость. Массовая, объемная и мольная теплоемкость. Средняя	
	и истинная теплоемкости. Зависимость теплоемкости от	
	температуры.	
6.	Теплоемкость при постоянном давлении и объеме. Уравнение	
	Майера. Коэффициент «К».	
7.	Понятие о термодинамических процессах.	
8.	Внутренняя энергия газа. Работа газа. Первый закон термодинамики.	
9.	Сущность первого закона термодинамики. Формулировки первого	
	закона термодинамики. Аналитическое выражение первого закона	
	термодинамики.	
10.	Энтальпия. Энтропия. Аналитические выражения первого закона	
	тер-модинамики через энтальпию. TS и hs – диаграммы.	
11.	Основные термодинамические процессы: изохорный, изобарный,	
	изо-термический и адиабатный – частные случаи политропного	
	процесса. Процессы в координатах pv и TS.	

 Процессы идеальных газов. Изохорный процесс. Изображение в ру − TS − диаграммах. Процессы идеальных газов. Изобарный процесс. Изображение в ру − TS − диаграммах. Процессы идеальных газов. Адиабатный процесс. Изображение в ру − TS − диаграммах. Адиабатный процесс. Уравнение адиабатного процесса. Его исследо-вание в TS − диаграмме. Предмет и задачи теории теплообмена. Виды переноса теплоты. Сложный теплообмен. Конвективный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. Теория теплообмена. Способы передачи теплоты. Критерии и критериальные уравнения. Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. Типы теплообменых аппаратов. Особенности конструкции и расчета. Водо-водяные теплообменники. Устройство и особенности расчета. Топливо. Эпементарный состав топлива. Источники и виды загрязнения атмосферного воздуха. Двигатели внутреннего сгорания. Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. Политропный процесс. Уравнение политропы. Определение показателя политропы. 		
 Процессы идеальных газов. Изобарный процесс. Изображение в ру − TS − диаграммах. Процессы идеальных газов. Адиабатный процесс. Изображение в ру − TS − диаграммах. Адиабатный процесс. Уравнение адиабатного процесса. Его исследо-вание в TS − диаграмме. Предмет и задачи теории теплообмена. Виды переноса теплоты. Сложный теплообмен. Конвективный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. Теория теплообмена. Способы передачи теплоты. Критерии и критериальные уравнения. Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. Типы теплообменных аппаратов. Особенности конструкции и расчета. Водо-водяные теплообменники. Устройство и особенности расчета. Топливо. Элементарный состав топлива. Источники и виды загрязнения атмосферного воздуха. Двигатели внутреннего сгорания. Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в TS — диаграмме. Политропный процесс. Уравнение политропы. Определение 	12.	
 ТЅ – диаграммах. Процессы идеальных газов. Адиабатный процесс. Изображение в ру – ТЅ – диаграммах. Адиабатный процесс. Уравнение адиабатного процесса. Его исследо-вание в ТЅ – диаграмме. Предмет и задачи теории теплообмена. Виды переноса теплоты. Сложный теплообмен. Конвективный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. Теория теплообмена. Способы передачи теплоты. Критерии и критериальные уравнения. Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачии. Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. Типы теплообменных аппаратов. Особенности конструкции и расчета. Водо-водяные теплообменники. Устройство и особенности расчета. Водо-водяные теплообменники. Устройство и особенности расчета. Топливо. Элементарный состав топлива. Источники и виды загрязнения атмосферного воздуха. Двигатели внутреннего сгорания. Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. Политропный процесс. Уравнение политропы. Определение 	13	1
 Процессы идеальных газов. Адиабатный процесс. Изображение в ру − ТS − диаграммах. Адиабатный процесс. Уравнение адиабатного процесса. Его исследо-вание в ТS − диаграмме. Предмет и задачи теории теплообмена. Виды переноса теплоты. Сложный теплообмен. Конвективный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. Теория теплообмена. Способы передачи теплоты. Критерии и критериальные уравнения. Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. Типы теплообменных аппаратов. Особенности конструкции и расчета. Водо-водяные теплообменники. Устройство и особенности расчета. Топливо. Элементарный состав топлива. Источники и виды загрязнения атмосферного воздуха. Двигатели внутреннего сгорания. Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТS – диаграмме. Политропный процесс. Уравнение политропы. Определение 	13.	
- ТЅ - диаграммах. 15 Адиабатный процесс. Уравнение адиабатного процесса. Его исследо-вание в ТЅ - диаграмме. 16 Предмет и задачи теории теплообмена. Виды переноса теплоты. Сложный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. 18 Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. 19 Теория теплообмена. Способы передачи теплоты. 20 Критерии и критериальные уравнения. 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме.	1.4	
15 Адиабатный процесс. Уравнение адиабатного процесса. Его исследо-вание в ТЅ — диаграмме. 16 Предмет и задачи теории теплообмена. Виды переноса теплоты. Сложный теплообмен. 17 Конвективный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. 18 Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. 19 Теория теплообмена. Способы передачи теплоты. 20 Кригерии и критериальные уравнения. 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 19 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ — диаграмме. 32 Политропный процесс. Уравнение политропы. Определение	14.	
16 Предмет и задачи теории теплообмена. Виды переноса теплоты. Сложный теплообмен. 17 Конвективный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. 18 Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. 19 Теория теплообмена. Способы передачи теплоты. 20 Критерии и критериальные уравнения. 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменые аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменых аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ − диаграмме. 32 Политропный процесс. Уравнение политропы. Определение	15	
Сложный теплообмен. Конвективный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. Теория теплообмена. Способы передачи теплоты. Критерии и критериальные уравнения. Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. Типы теплообменных аппаратов. Особенности конструкции и расчета. Топливо. Элементарный состав топлива. Источники и виды загрязнения атмосферного воздуха. Двигатели внутреннего сгорания. Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ — диаграмме. Политропный процесс. Уравнение политропы. Определение	1.0	
17 Конвективный теплообмен. Физическая сущность конвективного теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. 18 Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. 19 Теория теплообмена. Способы передачи теплоты. 20 Критерии и критериальные уравнения. 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ — диаграмме. 32 Политропный процесс. Уравнение политропы. Определение	10	•
теплообмена. Уравнение Ньтона-Рихмана. Коэффициент теплоотдачи. 18 Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. 19 Теория теплообмена. Способы передачи теплоты. 20 Критерии и критериальные уравнения. 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение	15	
теплоотдачи. 18 Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. 19 Теория теплообмена. Способы передачи теплоты. 20 Критерии и критериальные уравнения. 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение	17	-
18 Естественная конвекция. Уравнение теплоотдачи от нагретой стенки к воздуху. 19 Теория теплообмена. Способы передачи теплоты. 20 Критерии и критериальные уравнения. 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение		теплообмена. Уравнение Ньтона-Рихмана. Коэффициент
к воздуху. 19 Теория теплообмена. Способы передачи теплоты. 20 Критерии и критериальные уравнения. 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ — диаграмме. 32 Политропный процесс. Уравнение политропы. Определение		
 Теория теплообмена. Способы передачи теплоты. Критерии и критериальные уравнения. Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. Типы теплообменных аппаратов. Особенности конструкции и расчета. Водо-водяные теплообменники. Устройство и особенности расчета. Топливо. Элементарный состав топлива. Источники и виды загрязнения атмосферного воздуха. Двигатели внутреннего сгорания. Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. Политропный процесс. Уравнение политропы. Определение 	18	Естественная конвекция. Уравнение теплоотдачи от нагретой стенки
 20 Критерии и критериальные уравнения. 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 		к воздуху.
 21 Теплообмен излучением между параллельными поверхностями (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 	19	Теория теплообмена. Способы передачи теплоты.
 (пластинами). Приведенный коэффициент излучения. 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 	20	Критерии и критериальные уравнения.
 22 Теплообменные аппараты. Определение коэффициента теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 	21	Теплообмен излучением между параллельными поверхностями
теплопередачи в водо-водяном теплообменнике. 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ — диаграмме. 32 Политропный процесс. Уравнение политропы. Определение		(пластинами). Приведенный коэффициент излучения.
 23 Лучистый теплообмен. Понятие абсолютно черного тела. Закон Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 	22	Теплообменные аппараты. Определение коэффициента
Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение		теплопередачи в водо-водяном теплообменнике.
 Кирх-гофа. 24 Сложный теплообмен. Основное уравнение теплопередачи. Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 	23	Лучистый теплообмен. Понятие абсолютно черного тела. Закон
Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ — диаграмме. 32 Политропный процесс. Уравнение политропы. Определение		Кирх-гофа.
Коэффициент теплопередачи. 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ — диаграмме. 32 Политропный процесс. Уравнение политропы. Определение	24	Сложный теплообмен. Основное уравнение теплопередачи.
 25 Сложный теплообмен. Коэффициент теплопередачи для плоской стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 		
стенки. 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение	25	11
 26 Типы теплообменных аппаратов. Особенности конструкции и расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 		
расчета. 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение	26	
 27 Водо-водяные теплообменники. Устройство и особенности расчета. 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 		-
 28 Топливо. Элементарный состав топлива. 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 	27	1
 29 Источники и виды загрязнения атмосферного воздуха. 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 		* *
 30 Двигатели внутреннего сгорания. 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 		•
 31 Адиабатный процесс. Уравнение адиабатного процесса. Его исследование в ТЅ – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение 		
исследование в TS – диаграмме. 32 Политропный процесс. Уравнение политропы. Определение		А пиободин й произов. Урорионно одиободиого произова Его
32 Политропный процесс. Уравнение политропы. Определение	31	
	22	
г показателя политроны.	32	
7.26 Маталика выставления опанки при провалении		•

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов — 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.

4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Основные понятия и определения.	ОПК-1	Тест, защита лабораторных работ.
2	Основные параметры состояния.	ОПК-1	Тест, защита лабораторных работ.
3	Газовые смеси	ОПК-1	Тест, защита лабораторных работ.
4	Первый и второй законы термодинамики.	ОПК-1	Тест, защита лабораторных работ.
5	Термодинамические свойства реальных веществ.	ОПК-1	Тест, защита лабораторных работ.
6	Тепловые двигатели, двигатели внутреннего сгорания	ОПК-1	Тест, защита лабораторных работ.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Основная литература

1. Гдалев А. В. Теплотехника: Учебное пособие / Гдалев А. В. - Саратов: Научная книга, 2012. - 287 с.

URL: http://www.iprbookshop.ru/6350.html

2. Лифенцева, Л. В. Теплотехника : Учебное пособие / Лифенцева Л. В. - Кемерово: Кемеровский технологический институт пищевой промышленности, 2010. - 188 с. - ISBN 978-5-89289-658-0.

URL: http://www.iprbookshop.ru/14394.html

3. Андреев, В.В. Теплотехника [Электронный ресурс] : учебник / Б.И. Спесивцев; В.А. Лебедев; В.В. Андреев; ред. В.А. Лебедев. - Санкт-Петербург : Санкт-Петербургский горный университет, 2016. - 288 с. - ISBN 978-5-94211-754-2.

URL: http://www.iprbookshop.ru/71706.html

4. Круглов, Г. А. Теплотехника [Электронный ресурс] / Круглов Г. А.,Булгакова Р. И.,Круглова Е. С.,. - 2-е изд., стер. - : Лань, 2012. - 208 с. - Книга из коллекции Лань - Инженерно-технические науки. - ISBN 978-5-8114-1017-0.

URL: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=3900

Дополнительная литература

1. Лифенцева Л. В. Теплотехника: учебно-методическое пособие / сост. Л. В. Лифенцева; Кемеровский государственный университет. - Кемерово: Кемеровский государственный университет, 2019. - 110 с.: ил. - Библиогр.: с. 105. - ISBN 978-5-8353-2574-0.

URL: https://biblioclub.ru/index.php?page=book&id=600345

2. Теплотехника [Электронный ресурс] : Учебное пособие / А. В. Гдалев [и др.]. - Теплотехника ; 2020-02-05. - Саратов : Научная книга, 2019. - 287 с. - Гарантированный срок размещения в ЭБС до 05.02.2020 (автопролонгация). - ISBN 978-5-9758-1790-7.

URL: http://www.iprbookshop.ru/81061.html

3. Круглов, Г. А. Теплотехника [Электронный ресурс] : учебное пособие для во / Круглов Г. А., Булгакова Р. И., Круглова Е. С. - 3-е изд., стер. - Санкт-Петербург : Лань, 2020. - 208 с. - Книга из коллекции Лань - Инженерно-технические науки. - ISBN 978-5-8114-5553-9.

URL: https://e.lanbook.com/book/143117

4. Круглов Г. А. Теплотехника. Практический курс [Электронный ресурс] / Круглов Г. А., Булгакова Р. И., Круглова Е. С., Андреева М. В. -

Санкт-Петербург: Лань, 2021. - 192 с. - Книга из коллекции Лань - Инженерно-технические науки. - ISBN 978-5-8114-2575-4.

URL: https://e.lanbook.com/book/167462

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное программное обеспечение

- Microsoft Office Word 2013/2007;
- Microsoft Office Excel 2013/2007;
- Microsoft Office Power Point 2013/2007;
- Гранд-Смета;
- Acrobat Professional 11.0 MLP;
- Maple v18;
- AutoCAD;
- − 7zip;
- PDF24 Creator;
- Программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат.ВУЗ»

Ресурсы информационно-телекоммуникационной сети «Интернет»

Российское образование. Федеральный образовательный портал:
 учреждения, программы, стандарты, Вузы, ... код доступа: http://www.edu.ru/
 Образовательный портал ВГТУ, код доступа: https://old.education.cchgeu.ru

Информационные справочные системы

- Бесплатная электронная библиотека онлайн «Единое окно к образовательным ресурсам», код доступа: http://window.edu.ru;
- ВГТУ: wiki, код доступа: https://wiki.cchgeu.ru/;
- Университетская библиотека онлайн, код доступа: http://biblioclub.ru/;
- ЭБС Издательства «ЛАНЬ», код доступа http://e.lanbook.com/;
- ЭБС IPRbooks, код доступа: http://www.iprbookshop.ru;
- научная электронная библиотека eLIBRARY.RU, код доступа: http://elibrary.ru/

Современные профессиональные базы данных

- East View, код доступа: https://dlib.eastview.com/
- Academic Search Complete, код доступа: http://search.ebscohost.com/
- MINING INTELLIGENCE & TECHNOLOGY -

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Материально-техническая база включает:

- Специализированные лекционные аудитории, оснащенные оборудованием для лекционных демонстраций и проектором, стационарным экраном.
- Учебные аудитории, оснащенные необходимым оборудованием. Аудитории для проведения практических занятий, оборудованные проекторами, стационарными экранами и интерактивными досками.
- Помещения для самостоятельной работы студентов, оснащенные компьютерной техникой с выходом в сеть "Интернет".
- Библиотечный электронный читальный зал с доступом к электронным ресурсам библиотеки и доступом в образовательный портал ВГТУ.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Теплотехника» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим

	разделом учебника, проработать дополнительную литературу и
	источники, решить задачи и выполнить другие письменные задания.
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения
работа	учебного материала и развитию навыков самообразования.
	Самостоятельная работа предполагает следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные
	перед экзаменом три дня эффективнее всего использовать для
	повторения и систематизации материала.