МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан факультета К.А.Скляров «30» августа 2019 г.

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Математика»

Направление подготовки 27.03.05 ИННОВАТИКА

Профиль "Иннованнонные технологии"

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2017

Автор программы

/ Глазкова М.Ю /

Заведующий кафедрой Прикладной математики и

механики

DAIHERUX B.U.

Руководитель ОПОП

Воронеж 2019

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Развитие логического и алгоритмического мышления, выработка умения самостоятельно расширять и углублять математические знания; освоение необходимого математического аппарата, помогающего анализировать, моделировать и решать прикладные задачи; формирование у студента начального уровня математической культуры, достаточного для продолжения образования, научной работы или практической деятельности, методологических основ для формирования целостного научного мировоззрения, отвечающего современному уровню развития человеческой пивилизации.

1.2. Задачи освоения дисциплины

- Выработка ясного понимания необходимости математического образования в подготовке бакалавра и представления о роли и месте математики в современной системе знаний и мировой культуре;
- Ознакомление с системой понятий, используемых для описания важней-ших математических моделей и математических методов, и их взаимосвязью;
- Формирование конкретных практических приемов и навыков постановки и решения математических задач, ориентированных на практическое применение при изучении дисциплин профессионального цикла;
- Овладение основными математическими методами, необходимыми для анализа процессов и явлений при поиске оптимальных решений, обработки и анализа результатов экспериментов.
- Изучение основных математических методов применительно к решению научно-технических задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Математика» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Математика» направлен на формирование следующих компетенций:

ОК-7 - способностью к самоорганизации и самообразованию

ОПК-2 - способностью использовать инструментальные средства (пакеты прикладных программ) для решения прикладных инженерно-технических и технико-экономических задач, планирования и проведения работ по проекту

ОПК-7 - способностью применять знания математики, физики и

естествознания, химии и материаловедения, теории

информационные технологии в инновационной деятельности

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОК-7	знать:
ОПК-2	фундаментальные основы высшей математики,
ОПК-7	включая алгебру, геометрию, математический анализ,
	теорию вероятностей и основы математической
	статистики
	уметь:
	самостоятельно использовать математический
	аппарат, содержащийся в литературе по строительным
	наукам, расширять свои математические познания
	владеть:
	первичными навыками и основными методами
	решения математических задач из общеинженерных и
	специальных дисциплин профилизации

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Математика» составляет 11 з.е. Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Duran varabasa nabama	Всего	C	еместр	Ы
Виды учебной работы	часов	1	2	3
Аудиторные занятия (всего)	198	72	72	54
В том числе:				
Лекции	54	18	18	18
Практические занятия (ПЗ)	144	54	54	36
Самостоятельная работа	135	72	45	18
Часы на контроль	63	-	27	36
Виды промежуточной аттестации -	+	+	+	+
экзамен, зачет с оценкой	Т	Т	Т	Т
Общая трудоемкость:				
академические часы	396	144	144	108
зач.ед.	11	4	4	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Содержание **5.1** разделов дисциплины И распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела		Прак зан.	CPC	Всего, час
1		Определители, их свойства и вычисление. Решение систем линейных уравнений по правилу Крамера. Метод Гаусса. Однородные системы линейных уравнений.	6	12	10	28

	_					
		Виды матриц, линейные операции над матрицами, умножение матриц. Обратная матрица. Матричная форма записи системы линейных уравнений. Ранг матрицы. Теорема Кронекера-Капелли Линейное пространство, норма в линейном пространстве.				
2	Векторная и линейная алгебра	Примеры нормированных, бесконечномерных , функциональных пространств. Векторные и скалярные величины. Линейные операции над векторами в ${\bf R}^2$ и ${\bf R}^3$. Линейная зависимость и независимость векторов. Базис. Координаты вектора. Скалярное, векторное и смешанное произведение векторов, их свойства, геометрический и физический смысл.	6	12	10	28
3	Аналитическая геометрия	Прямая на плоскости (различные виды уравнений прямой). Взаимное расположение 2-х прямых. Плоскость и прямая в пространстве, их уравнения и взаимное расположение. Кривые и поверхности 2-го порядка; их канонические уравнения и построение.	6	12	10	28
4	Введение в математический анализ и дифференциальное исчисление функций одной переменной	Функция одной переменной. Предел функции. Бесконечно малые и бесконечно большие функции. Сравнение бесконечно малых. Признаки существования пределов. Приращение функции. Непрерывность функции в точке и на отрезке. Точки разрыва, их классификация. Производная функции, ее геометрический и механический смыслы.	4	12	10	26
5	анализ и дифференциальное	Правила дифференцирования. Дифференциал функции, его геометрический смысл. Применение дифференциала в приближенных вычислениях. Основные теоремы дифференциального исчисления (Ролля, Коши, Лагранжа) и их геометрическая иллюстрация. Правило Лопиталя. Возрастание и убывание функции на отрезке. Экстремум, наибольшее и наименьшее значение функции одной переменной на отрезке. Выпуклость, точки перегиба графика функции. Асимптоты. Общая схема исследования функции одной переменной.	4	12	12	28
6	Дифференциальное исчисление функций нескольких переменных	Функция нескольких переменных, область определения. Предел функции двух переменных. Непрерывность функции в точке и на области. Частные производные; их геометрический смысл. Дифференцируемость функции нескольких переменных. Полный дифференциал и его геометрический смысл. Частные производные высших порядков. Сложные функции нескольких переменных. Касательная плоскость и нормаль к поверхности (определение, уравнения). Экстремум функции двух переменных. Производная по направлению и градиент функции нескольких переменных (определения, вычисление, свойства).	4	12	12	28
7		Первообразная. Неопределенный интеграл. Методы интегрирования. Задача о площади криволинейной трапеции, приводящая к понятию определенного интеграла по отрезку. Определенный интеграл по отрезку (определение, основные свойства, вычисление, формула Ньютона-Лейбница). Задачи, приводящие к понятию двойного и криволинейного интегралов. Основные свойства и вычисление.	4	12	12	28
8	Числовые и	Числовой ряд, сходимость, сумма. Основные свойства сходящихся рядов. Признаки	4	12	12	28

	1	C				
	функциональные ряды	сходимости числовых рядов. Степенные ряды. Интервал сходимости. Ряды Тейлора и Маклорена. Разложение функций в степенные ряды. Применение степенных рядов в приближенных вычислениях. Периодические функции и процессы. Тригонометрический ряд. Коэффициенты Фурье. Ряд Фурье для функции с периодом 2π , теорема Дирихле. Разложение в ряд Фурье четных и нечетных функций, функций				
		произвольного периода, непериодических функций.				
9	Обыкновенные	функции. Задачи, приводящие к дифференциальным				
		уравнениям. Определение дифференциальным уравнениям. Определение дифференциального уравнения, его порядка и решения. Задача Коши и теорема Коши для уравнений 1-го порядка. Общее и частное решения. Основные типы дифференциальных уравнений 1 -го порядка. Дифференциальные уравнения высших порядков. Дифференциальные уравнения второго порядка. Задача Коши. Общее и частное решения. Дифференциальные уравнения второго порядка, допускающие понижение порядка. Линейные дифференциальные уравнения 2-го порядка. Теоремы о структуре общего решения линейного однородного и линейного неоднородного уравнений 2-го порядка. Фундаментальная система решений линейного однородного дифференциального уравнения. Методы решения линейных однородных и неоднородных дифференциальных уравнений с постоянными коэффициентами.	4	12	12	28
10	Теория вероятностей и основы математической статистики		4	12	12	28

12 Дискретная математика Множества. Операции над множествами Мощность множеств. Отображение множеств Отношение на множествах. Булева алгебра 4 12 11 27 Алгебра высказываний. Логические операции.	11 Теория функомплексного переменно	Функция комплексного переменного (ФКП), ее предел и непрерывность. Производная ФКП, геометрический смысл модуля и аргумента производной. Условия Коши-Римана. Аналитические функции и конформные отображения. Интеграл по контуру и его вычисление. Теорема Коши. Интегральная формула Коши. Комплексные числовые ряды и признаки их сходимости. Степенные ряды, радиус и круг сходимости. Ряды Тейлора и Лорана. Разложения различных функций а ряды. Вычеты, применение вычетов к вычислению определенных интегралов.		12	12	28
Итого 54 144 135 333	12 Дискретная математика	Мощность множеств. Отображение множеств Этношение на множествах. Булева алгебра Алгебра высказываний. Логические операции.	4	12 144	11	27 333

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОК-7	знать:	Сдача экзамена на оценку	Выполнение работ	Невыполнение
ОПК-2	фундаментальные	«отлично»	в срок,	работ в срок,
ОПК-7	основы высшей		предусмотренный	предусмотренный в
	математики, включая		в рабочих	рабочих
	алгебру, геометрию,		программах	программах

математический анализ, теорию вероятностей и основы математической статистики			
самостоятельно	Сдача экзамена на оценку «хорошо»	Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок,
владеть: первичными навыками и основными методами решения математических задач из общеинженерных и специальных дисциплин профилизации	Сдача экзамена на оценку «удовлетворительно»	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 1, 2, 3 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОК-7 ОПК-2 ОПК-7	знать: фундаментальные основы высшей математики, включая алгебру, геометрию, математический анализ, теорию вероятностей и основы математической статистики	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	уметь: самостоятельно использовать математический аппарат, содержащийся в литературе по строительным наукам, расширять свои математические познания	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	владеть: первичными	Решение прикладных	Задачи решены в	Продемонстр ирован	Продемонстр ирован	Задачи не решены

навыками и	задач в	полном	верный ход	верный ход
основными	конкретной	объеме и	решения	решения в
методами решения	предметной	получены	всех, но не	большинстве
математических	области	верные	получен	задач
задач из		ответы	верный ответ	
общеинженерных и			во всех	
специальных			задачах	
дисциплин				
профилизации				

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

Текущий контроль успеваемости осуществляется на практических занятиях: в виде опроса теоретического материла и умения применять его к решению задач у доски, в виде проверки домашних заданий, в виде тестирования по отдельным темам.

Промежуточный контроль осуществляется проведением контрольных работ по отдельным разделам дисциплины, тестирования по разделам дисциплины, изученным студентом в период между аттестациями, проведением коллоквиумов по теоретическому материалу. Контрольные работы проводятся на практических занятиях в рамках самостоятельной работы под контролем преподавателя.

Примерная тематика РГР

1-й семестр

«Введение в математический анализ. Дифференциальное исчисление функций одной переменной».

2-й семестр

«Неопределенный и определенный интегралы».

3-й семестр

«Дифференциальные уравнения».

7.3.2. Примерная тематика и содержание КР

1-й семестр

КР №1. «Аналитическая геометрия».

І. Даны координаты вершин $\triangle ABC$: A(-3; -3), B(-3; 6), C(4; 4). Сделать чертеж.

Найти: 1) уравнение медианы AD и её длину,

- 2) уравнение высоты АЕ,
- 3) длину высоты АЕ (расстояние от т.А до прямой ВС),
- 4) угол между медианой и высотой.
- II. Привести уравнение $4x^2 + 2y^2 4y 2 = 0$ к каноническому виду, определить вид кривой и изобразить её.
- III. Даны координаты вершин пирамиды ABCD: A(5; -1; 3), B(-1; 5; 3),

$$C(3; 5; -1), D(-2; -7; -5).$$

Найти:

- 1) уравнение плоскости АВС,
- 2) уравнение высоты DE, опущенной из т.D на грань ABC,
- 3) длину высоты DE (расстояние от т.D до плоскости ABC),
- 4) точку пересечения высоты DE с гранью ABC.

КР №2. «Пределы и производные».

І. Раскрыть неопределенности не пользуясь правилом Лопиталя.

a)
$$\lim_{x\to\infty} \frac{20x^3 - 10x^2 + 18}{11x - 5x^3 + 8x^2 + 3}$$
; 6) $\lim_{x\to5} \frac{\sqrt{x - 1} - 2}{x - 5}$; B) $\lim_{x\to0} \frac{4\text{tg}3x}{6x - 15x^2}$; Γ) $\lim_{x\to\infty} \left(\frac{2x - 1}{2x + 5}\right)^{x - 1}$.

II. Найти производные y'_x данных функций.

a)
$$y = (x^2 + 1)^4 \arcsin x - \ln \sqrt{1 - x^3}$$
; 6) $y = (x^2 + 1)^{\cos^2 \sqrt{x}}$; B)
$$\begin{cases} x = t - t^2 \\ y = \sqrt{t} - \sqrt{1 - t^2} \end{cases}$$
;

 $\Gamma) \quad y^2 \operatorname{tg} x = \sin 3y.$

2-й семестр

КР №1. «Интегралы и приложения».

1)
$$\int \frac{x^3 + \ln(x-1)}{x-1} dx$$
. 2) $\int \frac{x-1}{\sqrt{2x^2 + 4x - 3}} dx$. 3) $\int x^2 \sin 5x \, dx$. 4) $\int \frac{dx}{5 - \cos x}$.

5)
$$\int \frac{4}{\sqrt{x} + 3\sqrt[3]{x}} dx$$
. 6) $\int \frac{5x^2 - 3x + 20}{x^3 + 5x} dx$.

- 7) Вычислить площадь плоской фигуры, ограниченной следующими линиями: $y = x^2$, $y = \frac{x^2}{2}$, y = 2x. Сделать чертеж.
- 8) Вычислить площадь плоской фигуры, ограниченной следующими линиями: $\begin{cases} x=3t^2\\ v=3t-t^3 \end{cases}, \qquad 0 \le t \le \sqrt{3} \ .$
- 9) Найти длину дуги линии $y = x\sqrt{x}$, отсеченной прямой $y = \sqrt{5}x$.
- 10) Вычислить объём тела, полученного вращением вокруг оси ОХ фигуры, ограниченной линией: $y = \sin^2 x$ $(0 \le x \le \pi)$.

КР №2. «Кратные и криволинейные интегралы».

- 1)Вычислить двойной интеграл $\iint_D f(x, y) dx dy$ по области D, ограниченной указанными линиями: $f(x, y) = x^2 + y$; $D: y = x^2; x = y^2$
- 2) Вычислить двойной интеграл, используя полярные координаты:

$$\int_{-\sqrt{2}}^{\sqrt{2}} dx \int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} e^{-(x^2+y^2)} dy;$$

3) Вычислить криволинейные интегралы 1-го рода (по дуге)

$$\int\limits_L (2z - \sqrt{x^2 + y^2}) \, dl \,, \quad \text{где} \quad L - \text{дуга кривой:}$$

$$x = t \cos t; \;\; y = t \sin t; \;\; z = t; \;\; 0 < t < 2\pi.$$

4) Вычислить криволинейные интегралы II рода (по координатам)

 $\int\limits_{L_{AB}}(x^2-2xy)\,dx+(y^2-2xy)\,dy$, где L_{AB} — дуга параболы $y=x^2$ от точки $A(-1,\ 1)$ до точки $B(1,\ 1)$.

3-й семестр

КР №1. «Дифференциальные уравнения».

І. Найти общее решение дифференциальных уравнений.

1)
$$y' = \sin \frac{y}{x} + \frac{y}{x}$$
. 2) $y'' + 9y = \sin 3x$. 3) $y'' - \frac{y'}{x} = 0$.

II. Решить задачи Коши.

4)
$$xy' + y = \ln x$$
, $y|_{x=1} = 1.5$) $y'' - 5y' + 6y = x^2 + 1$, $y|_{x=0} = 0$, $y'|_{x=0} = 1$

KP №2. «Ряды».

1) Исследовать сходимость числового ряда $\sum_{n=1}^{\infty} u_n$.

a)
$$u_n = \frac{n^2}{(3n)!}$$
. 6) $u_n = \frac{n^2 - 1}{n^2 + 10}$. B) $u_n = \left(\frac{3n + 2}{5n + 4}\right)^{n - 3}$.

2) Определить интервал сходимости степенного ряда $\sum_{n=1}^{\infty} a_n x^n$.

a)
$$a_n = \frac{2^n}{(n^2 + 1)}$$
. 6) $a_n = \frac{5^n}{\sqrt[n]{n}}$. B) $a_n = \frac{n!}{2^n}$.

4-й семестр

КР №1. «Теория вероятностей».

1) Среди 20 экзаменационных билетов 5 содержат легкие вопросы. Определить вероятность того, что первые четыре экзаменующихся не вытянут ни одного легкого билета.

- 2) Два стрелка должны выполнить норму мастера спорта. Вероятность того, что норму выполнит первый стрелок, равна 0,95, а второй 0,9. Найти вероятность того, что норму выполнит только один стрелок.
- 3) Три автомата изготовляют детали, которые поступают на конвейер. Производительности первого, второго и третьего автоматов соотносятся как 3:7:8. Вероятность того, что деталь изготовлена первым автоматом отличного качества 0,94, для второго и третьего автоматов эти вероятности соответственно равны 0,91 и 0,89. Найти вероятность того, что наудачу взятая с конвейера деталь будет отличного качества.

4) Дано:

<u>X</u>	3	5	7	9	11
<u>P</u>	0,2	0,3	0,3	0,1	0,1

Найти M(2X-6), D(2X-6), $\sigma(X)$.

5) Дано:

$$F(x) = \begin{cases} 0, & x < 2 \\ (x-2)^2, & 2 \le x \le 3 \\ 1, & x > 3 \end{cases}$$

Найти f(x), P(2 < X < 5/2), M(X).

7.2.1 Примерный перечень заданий для подготовки к тестированию 7.2.2 Примерный перечень вопросов для коллоквиумов 1-й семестр

1-й коллоквиум «Векторная и линейная алгебра»

- 1. Матрицы. Основные определения. Виды матриц.
- 2. Линейные операции над матрицами. Умножение матриц. Свойства этих операций.
- 3. Обратная матрица, ее определение, свойства и вычисление.
- 4. Определители 2-го, 3-го и *n*-го порядков. Способы их вычисления и свойства.
- 5. Системы линейных алгебраических уравнений. Основные определения.
- 6. Ранг матрицы.
- 7. Системы линейных уравнений.
- 8. Решение систем линейных алгебраических уравнений матричным методом.
- 9. Решение систем линейных алгебраических уравнений методом

Крамера.

- 10. Решение систем линейных алгебраических уравнений методом Гаусса.
- 11. Теорема Кронекера-Капелли.
- 12. Линейные пространства. Базис. Размерность.
- 13. Разложение вектора по базису.
- 14. Векторы. Основные определения и понятия.
- 15. Линейные операции над векторами. Их свойства.
- 16. Проекция вектора на ось и на вектор.
- 17. Разложение вектора по ортам координатных осей.
- 18. Длина вектора. Направляющие косинусы.
- 19. Действия над векторами, заданными проекциями.
- 20.Скалярное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 21. Векторное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 22.Смешанное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.

2-й коллоквиум «Аналитическая геометрия»

- 1. Прямоугольная система координат на плоскости. Уравнение линии в декартовой системе координат.
- 2. Основные приложения метода координат на плоскости: расстояние между двумя точками; деление отрезка в данном отношении.
- 3. Полярная система координат. Ее связь с декартовой системой координат. Уравнение линии в полярной системе координат.
- 4. Преобразование системы координат. Параллельный перенос осей координат. Поворот осей координат.
- 5. Различные виды уравнений прямой на плоскости.
- 6. Угол между прямыми. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой.
- 7. Кривые второго порядка. Окружность.
- 8. Кривые второго порядка. Эллипс.
- 9. Кривые второго порядка. Гипербола.
- 10. Кривые второго порядка. Парабола.
- 11. Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям.
- 12. Общее уравнение кривой второго порядка. Приведение уравнения к каноническому виду.
- 13. Различные виды уравнений плоскости в пространстве.
- 14. Угол между плоскостями. Условия параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.
- 15. Прямая линия в пространстве. Различные виды уравнений прямой в пространстве.

- 16. Угол между прямыми в пространстве. Условия параллельности и перпендикулярности прямых. Условие, при котором две прямые лежат в одной плоскости.
- 17. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости. Точка пересечения прямой с плоскостью. Условие принадлежности прямой плоскости.
- 18. Поверхности второго порядка. Цилиндрические поверхности.
- 19. Поверхности вращения. Конические поверхности.
- 20.Метод сечений. Канонические уравнения поверхностей второго порядка: эллипсоид, конус, гиперболоиды и параболоиды.
- 21. Элементы теории множеств. Числовые множества. Числовые промежутки. Окрестность точки.
- 22. Функция. Понятие функции. Способы задания функции. Некоторые характеристики функции (четность, нечетность, монотонность, ограниченность, периодичность).
- 23. Обратная и сложная функции. Основные элементарные функции и их графики. Элементарная функция.
- 24. Числовая последовательность. Предел числовой последовательности.
- 25. Предел функции в точке. Односторонние пределы.
- 26. Предел функции при $x \to \infty$. Бесконечно большая функция.
- 27. Бесконечно малые функции. Определение и основные теоремы. Связь между функцией, ее пределом и бесконечно малой функцией.
- 28. Теоремы о пределах суммы, разности, произведении и частном функций. Теорема о пределе промежуточной функции.
- 29. Первый замечательный предел.
- 30.Второй замечательный предел.
- 31.Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции и их применение при раскрытии неопределенностей.
- 32. Непрерывность функции в точке, в интервале и на отрезке.
- 33. Классификация точек разрыва функции.
- 34.Основные теоремы о непрерывных функциях. Свойства функций, непрерывных на отрезке.

2-й семестр

1-й коллоквиум

«Дифференциальное исчисление функций нескольких переменных»

- 1. Функции многих переменных (ФМП). Область определения, область значений, предел, непрерывность.
- 2. Частные производные первого порядка, геометрический смысл.
- 3. Полный дифференциал функции двух переменных, дифференциалы высших порядков.
- 4. Необходимое условие дифференцируемости ФМП.
- 5. Достаточное условие дифференцируемости ФМП.

- 6. Уравнение касательной плоскости и нормали к поверхности.
- 7. Частные производные высших порядков. Теоремы о равенстве смешанных производных
- 8. Признак полного дифференциала функции двух переменных.
- 9. Формула Тейлора для функции двух переменных.
- 10. Экстремум функции двух переменных. Необходимое условие существования экстремума.
- 11. Достаточное условие существования экстремума функции двух переменных.
- 12. Метод наименьших квадратов.
- 13. Производная сложной функции двух переменных.
- 14. Градиент функции двух переменных, свойства градиента.
- 15. Производная по направлению.

2-й коллоквиум «Интегральное исчисление функций одной переменной»

- 1. Комплексные числа. Основные определения. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Формы записи комплексного числа. Формула Эйлера. Действия над комплексными числами.
- 2. Многочлены. Основные понятия. Теоремы о многочленах. Разложение многочлена на множители. Дробно рациональные функции. Представление неправильной рациональной дроби в виде суммы многочлена (целой части) и правильной дроби. Представление правильной рациональной дроби в виде суммы простейших дробей. Метод неопределенных коэффициентов.
- 3. Первообразная. Определение. Свойства.
- 4. Неопределенный интеграл. Свойства. Табличные интегралы.
- 5. Метод интегрирования внесением под знак дифференциала.
- 6. Интегрирование выражений, содержащих квадратный трехчлен.
- 7. Интегрирование рациональных дробей.
- 8. Метод интегрирования по частям в неопределенном интеграле.
- 9. Замена переменной в неопределенном интеграле.
- 10.Интегрирование тригонометрических функций. Тригонометрические подстановки.
- 11. Определенный интеграл. Геометрический смысл. Свойства.
- 12. Формула Ньютона-Лейбница.
- 13. Теорема о среднем для определенного интеграла.
- 14. Интеграл с переменным верхним пределом.
- 15.Интегрирование по частям в определенном интеграле.
- 16. Замена переменной в определенном интеграле.
- 17. Вычисление площадей плоской фигуры.
- 18. Вычисление длины дуги.
- 19.Вычисление объемов по известной площади сечения, перпендикулярного оси Ох..
- 20. Несобственные интегралы І рода. Теоремы сравнения.

- 21. Несобственные интегралы II рода. Теоремы сравнения.
- 22. Задачи, приводящие к понятию двойного интеграла: задача о массе неоднородной пластины, задача об объеме цилиндроида. Геометрический смысл и свойства. двойного интеграла.
- 23. Вычисление двойных интегралов с помощью повторных.
- 24. Вычисление двойных интегралов в полярной системе координат.
- 25. Замена переменной в двойном интеграле.
- 26. Вычисление площади плоской фигуры с помощью двойных интегралов.
- 27. Вычисление площади поверхности.
- 28.Вычисление объемов тел с помощью двойных интегралов
- 29. Приложение двойных интегралов в механике: вычисление массы, статических моментов и моментов инерции, координат центра масс плоской фигуры.
- 30.Задачи о массе материальной линии, площади цилиндрической поверхности. Криволинейные интегралы I рода, определения, свойства, физический смысл.
- 31. Вычисление криволинейного интеграла І рода.
- 32. Задача о работе силы. Криволинейные интегралы II рода, определение, свойства, физический смысл.
- 33. Формула Грина и следствия из нее.
- 34. Условие независимости интеграла II рода от пути интегрирования.
- 35.Интегрирование полных дифференциалов.
- 36.Приложения криволинейных интегралов II рода.

3-й семестр

1-й коллоквиум «Дифференциальные уравнения»

- 1. Дифференциальные уравнения. Задачи, приводящие к дифференциальным уравнениям. Поле направлений.
- 2..Общее и частное решения дифференциального уравнения первого порядка. Задача Коши и ее геометрический смысл. Теорема существования и единственности решений (без доказательства).
 - 3. Дифференциальные уравнения с разделяющимися переменными.
 - 4.Однородные дифференциальные уравнения первого порядка.
- 5. Линейные дифференциальные уравнения первого порядка. Уравнение и метод Бернулли.
- 6. Уравнение в полных дифференциалах.
- 7. Приближенное решение задачи Коши. Метод ломаных Эйлера. Метод Адамса.
- 8. Дифференциальные уравнения второго порядка, их общее и частное

решения. Задача Коши, ее физический и геометрический смысл.

- 9. Дифференциальные уравнения второго порядка, допускающие его понижение: 1) y'' = f(x) 2) F(x, y', y'') = 0 3) F(y, y', y'') = 0.
- 10. Однородные линейные дифференциальные уравнения второго порядка, свойства их решений.
- 11. Решение однородных линейных дифференциальных уравнений второго порядка с постоянными коэффициентами (в случаях, когда дискриминант характеристического уравнения положителен, равен нулю и отрицателен).
- 12. Структура решений неоднородных линейных дифференциальных уравнений второго порядка.
- Подбор частных решений неоднородных линейных дифференциальных уравнений второго порядка постоянными cкоэффициентами функций ДЛЯ специального вида $f(x) = e^{ax} [P_n(x)\cos bx + Q_n(x)\sin bx].$
- 14. Метод Лагранжа вариации произвольных постоянных для линейных дифференциальных уравнений второго порядка.
- 15. Элементы теории колебаний.
- 16. Линейные системы дифференциальных уравнений.

2-й коллоквиум «Числовые и функциональные ряды»

- 1. Числовые ряды. Сумма и сходимость числового ряда. Свойства сходящихся рядов. Ряд геометрической прогрессии.
- 2. Необходимый признак сходимости числового ряда. Гармонический ряд.
- 3. Признаки сравнения для рядов с положительными членами.
- 4. Признак Даламбера.
- 5. Радикальный признак Коши.
- 6. Интегральный признак Коши.
- 7. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость.
- 8. Функциональные ряды, их область сходимости.
- 9. Степенные ряды. Теорема Абеля. Радиус и область сходимости степенного ряда.
- 10. Ряды Тейлора и Маклорена. Нахождение коэффициентов ряда Маклорена.
- 11. Разложение в ряд Маклорена функций e^{x} , $\sin x$, $\cos x$, $\ln (1+x)$, $\arctan x$, $(1+x)^{\alpha}$.
- 12. Оценка остатка для ряда Маклорена в форме Лагранжа (без доказательства). Применение рядов Маклорена для вычисления значений фукнкций.
- 13. Вычисление определенных интегралов и раскрытие неопределенностей с помощью степенных рядов.
- 14. Интегрирование дифференциальных уравнений с помощью степенных

рядов.

- 15. Разложение функции в ряд Фурье на отрезке $[-\pi,\pi]$, нахождение коэффициентов Фурье.
- 16. Формулы коэффициентов Фурье для четных и нечетных функций. Ряды Фурье на отрезке [-l,l].

3-й семестр

1-й коллоквиум «Теория вероятностей. Случайные события»

- 1. Основные понятия, определения и формулы комбинаторики.
- 2. Испытания и события. Виды случайных событий.
- 3. Классическое определение вероятности, относительная частота событий. Связь между вероятностью и относительной частотой событий.
 - 4. Понятие о геометрической вероятности.
 - 5. Теорема сложения вероятностей несовместимых событий.
 - 6. Теорема сложения вероятностей совместных событий.
 - 7. Полная группа событий.
 - 8. Противоположные события.
 - 9. Произведение событий, условная вероятность.
 - 10. Теорема умножения вероятностей
- 11. Независимые события, теорема умножения вероятностей независимых событий.
 - 12. Вероятность появления хотя бы одного события.
 - 13. Формула полной вероятности.
 - 14. Вероятность гипотез. Формула Бейеса.
 - 15. Формула Бернулли.
 - 16. Локальная теорема Лапласа.
 - 17. Интегральная теорема Лапласа.
- 18. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях.

2-й коллоквиум «Теория вероятностей. Случайные величины»

- 1. Дискретные и непрерывные случайные величины.
- 2. Закон распределения вероятностей дискретной случайной величины.
- 3. Биноминальное распределение.
- 4. Математическое ожидание дискретной случайной величины, вероятностный смысл.
 - 5. Свойства математического ожидания.
- 6. Математическое ожидание числа появлений события в независимых испытаниях. Понятие об отклонении.
 - 7. Дисперсия ДСВ, определение, расчетная формула.
 - 8. Свойства D(x).
 - 9. Дисперсия числа появлений события в независимых испытаниях.

- Среднее квадратическое отклонение. Среднее квадратическое отклонение суммы взаимно независимых случайных величин.
- Функция распределения вероятностей случайной величины, определение, свойства, график.
- Плотность распределения вероятностей непрерывной случайной величины (НСВ), определение, свойства, график.
 - 13. Нахождение функции распределения по заданной плотности.
 - Вероятность попадания случайной величины х в заданный интервал. 14.
 - Виды распределений. Закон равномерного распределения. 15.
 - Нормальное распределение, свойства, график.
- 17. Вероятность попадания в заданный интервал нормальной случайной величины.
 - 18. Вычисление вероятности заданного отклонения.
 - Показательное распределение, определение, свойства.
- Числовые характеристики показательно распределенной случайной 20. величины.
 - 21. Закон распределения двумерной случайной величины.
 - Числовые характеристики.

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Вычислите сумму элементов первого столбца матрицы $C = 3 \cdot A - 4 \cdot B$,

если

$$A = \begin{pmatrix} 4 & -2 & 4 \\ 1 & -2 & 3 \\ 4 & 11 & 5 \end{pmatrix}, B = \begin{pmatrix} 5 & 3 & -1 \\ -2 & 9 & 2 \\ 4 & 2 & 0 \end{pmatrix}.$$

2. Возможными являются следующие произведения матриц ...

1.
$$\begin{pmatrix} 4 & 2 \\ 1 & -1 \\ 0 & 5 \end{pmatrix}$$
 \cdot $\begin{pmatrix} 1 & 6 & -9 & 3 \end{pmatrix}$ 3. $\begin{pmatrix} -6 & 4 & 5 \\ 2 & 4-7 \end{pmatrix}$ \cdot $\begin{pmatrix} 4 & 2 \\ 1 & -1 \\ 0 & 5 \end{pmatrix}$

2.
$$\begin{pmatrix} 4 & 2 \\ 1 & -1 \\ 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 1 \end{pmatrix}$$
 4. $\begin{pmatrix} 4 & 2 \\ 1 & -1 \\ 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} 7 & 1 \end{pmatrix}$

3. Даны матрицы
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \end{pmatrix}$$
 и $B = \begin{pmatrix} 2 & 1 \\ -2 & 0 \\ 1 & 3 \end{pmatrix}$. Сумма элементов матрицы

 $B \cdot A$, расположенных на ее главной диагонали, равна ...

4. Определитель
$$\begin{vmatrix} 4 & -23 & -3 \\ 0 & 4 & 0 \\ 2 & 6 & -1 \end{vmatrix}$$
 равен ... 1. -6 2. 6 3. -30 4. 30

$$3. -30$$

5. Формула вычисления определителя третьего порядка
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix}$$
 содержит следующие произведения ...

- 1. *adf* 3. *cdk*
- 2. *bfg* 4. *aek*

6. Задана матрица
$$A = \begin{pmatrix} -2 & 2 & 1 \\ 0 & 7 & 14 \\ 5 & -6 & 0 \end{pmatrix}$$
. Установите соответствие между

записью алгебраических дополнений и элементами матрицы, к которым они относятся.

1.
$$-\begin{vmatrix} 0 & 14 \\ 5 & 0 \end{vmatrix}$$
 A) A_{21}

2. $-\begin{vmatrix} 2 & 1 \\ -6 & 0 \end{vmatrix}$ B) A_{22}

2.
$$-\begin{vmatrix} 2 & 1 \\ -6 & 0 \end{vmatrix}$$

$$3. \begin{vmatrix} -2 & 1 \\ 5 & 0 \end{vmatrix}$$

7. Переменная
$$y$$
 системы уравнений
$$\begin{cases} x + 2y - 4z = 9, \\ -3x + y + 5z = 3, \\ 4x + 3y - 6z = 3 \end{cases}$$
 по формуле ...

3.
$$y = \begin{vmatrix} 4 & 1 & 5 \\ 3 & 3 & -6 \end{vmatrix}$$
$$\begin{vmatrix} -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

2.
$$y = \begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$\begin{vmatrix} 4 & y = \begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$4. \quad y = \begin{vmatrix} -3 & 4 & 5 \\ 4 & 3 & -6 \\ \hline 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

8. Если определитель квадратной матрицы A третьего порядка равен 4, то
определитель обратной матрицы A^{-1} равен
1. $\frac{1}{4}$ 2. 4 3. $-\frac{1}{4}$ 44
Q Table Pertone $a = (2, 0)$ $b = (3, 6)$ Topic roophylate Pertona $5b$

9. Даны векторы $\bar{a} = (-3; -9), \ \bar{b} = (-3; 6),$ тогда координаты вектора $5\bar{b} - \frac{\bar{a}}{3}$ равны ...

10. Скалярное произведение векторов $\bar{a} = (-1; t)$ и $\bar{b} = (t; 0)$ удовлетворяет неравенству $\bar{a} \cdot \bar{b} \le 1$ при двух значениях параметра t, равных ...

11. Если точка A(3;4) — начало отрезка AB и M(0;5) — его середина, то сумма координат точки B равна ...

12. Точки A(8;1) , B(9;5) и C(12;5) являются последовательными вершинами параллелограмма. Тогда сумма координат точки пересечения диагоналей равна ...

13. Расположите по возрастанию длины сторон треугольника ABC, где A(2; -4), B(8; -2), C(3; -2).

14. Сопоставьте уравнениям прямых их названия.

1.
$$-8x + 5y - 11 = 0$$
 A) общее уравнение прямой

2.
$$\frac{x+1}{-3} = \frac{y+1}{-4}$$
 Б) уравнение прямой с угловым коэффициентом

3. y = -3x + 5 В) каноническое уравнение прямой

15. Среди прямых l_1 : 2x+y-3=0 , l_2 : 4x+2y-6=0 , l_3 : 4x-2y-6=0 , l_4 : -4x+2y-3=0 параллельными являются ...

2.
$$l_3$$
 и l_4 4. l_1 и l_2

4.
$$l_1$$
 и l_2

- **16.** Прямая на плоскости задана уравнением 2y 8x + 1 = 0. Тогда параллельными к ней являются прямые ...
 - 1. 4x y + 5 = 0
- 3. 4x + y 9 = 0
- 2. 3y-12x+7=0 4. 3y+12x-13=0

7.2.4 Примерный перечень вопросов для подготовки к зачету 1-й семестр (зачет с оценкой)

- 1. Матрицы. Основные определения. Виды матриц.
- 2. Линейные операции над матрицами. Умножение матриц. Свойства этих действий.
- 3. Обратная матрица, ее определение, свойства и вычисление.
- 4. Определители 2-го, 3-го и *n*-го порядков. Способы их вычисления и свойства.
- 5. Системы линейных алгебраических уравнений. Основные определения.
- 6. Ранг матрицы. Способы вычисления.
- 7. Теорема Кронекера-Капелли.
- 8. Системы линейных уравнений. Основные определения.
- 9. Решение систем линейных алгебраических уравнений матричным метолом.
- 10.Решение систем линейных алгебраических уравнений Крамера.
- 11. Решение систем линейных алгебраических уравнений методом Гаусса.
- 12. Общее и фундаментальное решения систем линейных уравнений.
- 13. Линейные пространства. Базис. Размерность.
- 14. Разложение вектора по базису.
- 15. Векторы. Основные определения и понятия.
- 16. Линейные операции над векторами. Их свойства.
- 17. Проекция вектора на ось и на вектор.
- 18. Разложение вектора по ортам координатных осей.
- 19. Длина вектора. Направляющие косинусы.
- 20. Действия над векторами, заданными проекциями.
- 21.Скалярное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 22. Векторное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 23. Смешанное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 24. Прямоугольная система координат на плоскости. Уравнение линии в декартовой системе координат.

- 25. Основные приложения метода координат на плоскости: расстояние между двумя точками; деление отрезка в данном отношении.
- 26. Различные виды уравнений прямой на плоскости.
- 27. Угол между прямыми. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой.
- 28. Различные виды уравнений плоскости в пространстве.
- 29. Угол между плоскостями. Условия параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.
- 30. Прямая линия в пространстве. Различные виды уравнений прямой в пространстве.
- 31.Угол между прямыми в пространстве. Условия параллельности и перпендикулярности прямых.
- 32. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости. Точка пересечения прямой с плоскостью.
- 33. Кривые второго порядка. Окружность.
- 34. Кривые второго порядка. Эллипс.
- 35. Кривые второго порядка. Гипербола.
- 36. Кривые второго порядка. Парабола.
- 37. Элементы теории множеств. Числовые множества. Числовые промежутки. Окрестность точки.
- 38. Функция. Понятие функции. Способы задания функции. Некоторые характеристики функции (четность, нечетность, монотонность, ограниченность, периодичность).
- 39. Обратная и сложная функции. Основные элементарные функции и их графики. Элементарная функция.
- 40. Числовая последовательность. Предел числовой последовательности.
- 41. Предел функции в точке. Односторонние пределы.
- 42. Предел функции при $x \to \infty$. Бесконечно большая функция.
- 43. Бесконечно малые функции. Определение и основные теоремы. Связь между функцией, ее пределом и бесконечно малой функцией.
- 44. Теоремы о пределах суммы, разности, произведении и частном функций. Теорема о пределе промежуточной функции.
- 45.Первый замечательный предел.
- 46.Второй замечательный предел.
- 47.Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции и их применение при раскрытии неопределенностей.
- 48. Непрерывность функции в точке, в интервале и на отрезке.
- 49.Классификация точек разрыва функции.
- 50.Основные теоремы о непрерывных функциях. Свойства функций, непрерывных на отрезке.
- 51.Задачи, приводящие к понятию производной: задача о скорости прямолинейного движения точки; задача о касательной к кривой.
- 52. Определение производной, ее механический, физический и

геометрический смысл. Уравнение касательной и нормали к кривой.

- 53.Связь между непрерывностью и дифференцируемостью функции. Таблица производных основных элементарных функций.
- 54. Производная суммы, разности, произведения и частного функций. Производная сложной и обратной функций.
- 55. Дифференцирование неявных и параметрически заданных функций. Логарифмическое дифференцирование. Производные высших порядков. Механический смысл производной второго порядка.
- 56. Дифференциал функции и его геометрический смысл. Основные теоремы о дифференциалах. Таблица дифференциалов. Применение дифференциала к приближенным вычислениям.
- 57. Теоремы Ролля, Коши и Лагранжа о дифференцируемых функциях.
- 58.Правило Лопиталя для раскрытия неопределенностей $\left\{\frac{0}{0}\right\}$, $\left\{\frac{\infty}{\infty}\right\}$. Раскрытие неопределенностей вида $\{0\cdot\infty\}$, $\{\infty-\infty\}$, $\left\{0^0\right\}$, $\left\{\infty^0\right\}$, $\left\{1^\infty\right\}$.
- 59.Возрастание и убывание функций. Максимум и минимум функций. Наибольшее и наименьшее значение функции на отрезке.
- 60. Выпуклость и вогнутость графика функции. Точки перегиба.
- 61. Асимптоты графика функции. Общая схема исследования функции и построение графика.
- 62. Формула Тейлора для многочлена и для произвольной функции. Формула Маклорена.
- 63. Разложение основных элементарных функций по формуле Маклорена. Применение формулы Маклорена к вычислению пределов.

2-й семестр (экзамен)

- 1. Первообразная. Определение. Свойства.
- 2. Неопределенный интеграл. Свойства. Табличные интегралы.
- 3. Метод интегрирования внесением под знак дифференциала.
- 4. Интегрирование выражений, содержащих квадратный трехчлен.
- 5. Интегрирование рациональных дробей.
- 6. Метод интегрирования по частям в неопределенном интеграле.
- 7. Замена переменной в неопределенном интеграле.
- 8. Интегрирование тригонометрических функций. Тригонометрические подстановки.
- 9. Определенный интеграл. Геометрический смысл. Свойства.
- 10. Формула Ньютона-Лейбница.
- 11. Теорема о среднем для определенного интеграла.
- 12.Интеграл с переменным верхним пределом.
- 13.Интегрирование по частям в определенном интеграле.
- 14. Замена переменной в определенном интеграле.
- 15.Вычисление площадей плоской фигуры.
- 16.Вычисление длины дуги.

- 17. Вычисление объемов по известной площади сечения, перпендикулярного оси Ох..
- 18. Несобственные интегралы І рода. Теоремы сравнения.
- 19. Несобственные интегралы II рода. Теоремы сравнения.
- 20. Функции многих переменных (ФМП). Область определения, область значений, предел, непрерывность.
- 21. Частные производные первого порядка, геометрический смысл.
- 22.Полный дифференциал функции двух переменных, дифференциалы высших порядков.
- 23. Необходимое условие дифференцируемости ФМП.
- 24. Достаточное условие дифференцируемости ФМП.
- 25. Уравнение касательной плоскости и нормали к поверхности.
- 26. Частные производные высших порядков. Теоремы о равенстве смешанных производных
- 27. Признак полного дифференциала функции двух переменных.
- 28. Формула Тейлора для функции двух переменных.
- 29. Экстремум функции двух переменных. Необходимое условие существования экстремума.
- 30. Достаточное условие существования экстремума функции двух переменных.
- 31. Метод наименьших квадратов.
- 32. Производная сложной функции двух переменных.
- 33. Градиент функции двух переменных, свойства градиента.
- 34. Производная по направлению.
- 35. Задачи, приводящие к понятию двойного интеграла: задача о массе неоднородной пластины, задача об объеме цилиндроида.

Геометрический смысл и свойства. двойного интеграла.

- 36. Вычисление двойных интегралов с помощью повторных.
- 37. Вычисление двойных интегралов в полярной системе координат.
- 38. Замена переменной в двойном интеграле.
- 39. Вычисление площади плоской фигуры с помощью двойных интегралов.
- 40. Вычисление площади поверхности.
- 41.Вычисление объемов тел с помощью двойных интегралов
- 42. Приложение двойных интегралов в механике: вычисление массы, статических моментов и моментов инерции, координат центра масс плоской фигуры.
- 43. Задача о массе неоднородного тела. Тройной интеграл, его свойства, вычисление.
- 44. Вычисление объемов тел с помощью тройных интегралов.
- 45. Вычисление тройного интеграла в сферической системе координат.
- 46.Вычисление тройного интеграла в цилиндрической системе координат.
- 47. Приложения тройных интегралов в механике: вычисление массы тела, статических моментов, моментов инерции, координат цента масс.

- 48. Задачи о массе материальной линии, площади цилиндрической поверхности. Криволинейные интегралы I рода, определения, свойства, физический смысл.
- 49. Вычисление криволинейного интеграла І рода.
- 50.Задача о работе силы. Криволинейные интегралы ІІ рода, определение, свойства, физический смысл.
- 51. Формула Грина и следствия из нее.
- 52. Условие независимости интеграла II рода от пути интегрирования.
- 53.Интегрирование полных дифференциалов.

3-й семестр (экзамен)

- 1. Дифференциальные уравнения. Задачи, приводящие к дифференциальным уравнениям. Поле направлений.
- 2.Общее и частное решения дифференциального уравнения первого порядка. Задача Коши и ее геометрический смысл. Теорема существования и единственности решений (без доказательства).
 - 3. Дифференциальные уравнения с разделяющимися переменными.
 - 4. Однородные дифференциальные уравнения первого порядка.
 - 5. Линейные дифференциальные уравнения первого порядка. Уравнение и метод Бернулли.
 - 6. Уравнение в полных дифференциалах.
- 7. Приближенное решение задачи Коши. Метод ломаных Эйлера. Метод Адамса.
- 8. Дифференциальные уравнения второго порядка, их общее и частное решения. Задача Коши, ее физический и геометрический смысл.
- 9. Дифференциальные уравнения второго порядка, допускающие его понижение: 1) y'' = f(x) 2) F(x, y', y'') = 0 3) F(y, y', y'') = 0.
- 10. Однородные линейные дифференциальные уравнения второго порядка, свойства их решений.
- 11. Решение однородных линейных дифференциальных уравнений второго порядка с постоянными коэффициентами (в случаях, когда дискриминант характеристического уравнения положителен, равен нулю и отрицателен).
- 12. Структура решений неоднородных линейных дифференциальных уравнений второго порядка.
- решений 13. Подбор частных неоднородных линейных дифференциальных уравнений второго порядка постоянными \mathbf{c} коэффициентами функций ДЛЯ специального вида $f(x) = e^{ax} [P_n(x)\cos bx + Q_n(x)\sin bx].$
- 14. Метод Лагранжа вариации произвольных постоянных для линейных дифференциальных уравнений второго порядка.
 - 15. Элементы теории колебаний.

- 16. Линейные системы дифференциальных уравнений. 17. Числовые ряды. Сумма и сходимость числового ряда. Свойства сходящихся рядов. Ряд геометрической прогрессии. Необходимый признак 18. сходимости числового ряда. Гармонический ряд. 19. Признаки сравнения для рядов с положительными членами.
 - 20. Признак Даламбера.
 - 21. Радикальный признак Коши.
 - Интегральный признак Коши. 22.
- Знакочередующиеся ряды. Признак Лейбница. Абсолютная и 23. условная сходимость.
 - Функциональные ряды, их область сходимости. 24.
- 25. Степенные ряды. Теорема Абеля. Радиус и область сходимости степенного ряда.
- Ряды Тейлора и Маклорена. Нахождение коэффициентов ряда 26. Маклорена.
- 27. Разложение Маклорена функций В ряд e^x , $\sin x$, $\cos x$, $\ln (1+x)$, $\arctan x$, $(1+x)^{\alpha}$.
- Оценка остатка для ряда Маклорена в форме Лагранжа (без доказательства). Применение рядов Маклорена для вычисления значений фукнкций.
- Вычисление 29. определенных интегралов раскрытие И неопределенностей с помощью степенных рядов.
- Интегрирование дифференциальных уравнений с помощью степенных рядов.
- Разложение функции в ряд Фурье на отрезке $[-\pi,\pi]$, 31. нахождение коэффициентов Фурье.
- Формулы коэффициентов Фурье для четных и нечетных функций. Ряды Фурье на отрезке [-l,l].

7.2.5 Примерный перечень заданий для решения прикладных задач

1. Частная производная z'_x функции $z = 5 - x^4 + yx^2 - y^2 + y$ имеет вид ...

1.
$$2xy-4x^3-2y$$
 3. $2xy-4x^3$

3.
$$2xy - 4x^{2}$$

2.
$$2xy - 4x^3 + 7$$

2.
$$2xy-4x^3+7$$
 4. $2xy-4x^3-2y+x^2$

2. Установите соответствие между функциями И частными ИХ производными

$$1. \ \frac{\partial^2}{\partial x^2} (3xy + x^2)$$

$$2. \ \frac{\partial^2}{\partial x \partial y} (3xy + x^2)$$

$$3. \ \frac{\partial^2}{\partial y^2} \left(3y^2 + 3xy \right)$$

$$4. \quad \frac{\partial^2}{\partial y^2} \Big(4y^2 + 3xy \Big)$$

Γ) 8

3. Множество всех первообразных функции $f(x) = \frac{1}{\sin^2 x} - x^2 + x$ имеет вид

1.
$$-ctgx - \frac{x^3}{3} + \frac{x^2}{2} + C$$
 3. $-ctgx - \frac{x^3}{2} + x + C$

3.
$$-ctgx - \frac{x^3}{2} + x + C$$

2.
$$-\frac{2\cos x}{\sin^3 x} - 2x$$
 4. $\cot x - \frac{x^3}{3} + x$

4.
$$ctgx - \frac{x^3}{3} + x$$

4. Установите соответствие между интегралами и методами их вычисления.

1. непосредственное интегрирование A)
$$\int x \cos x dx$$

A)
$$\int x \cos x dx$$

$$\mathbf{b}) \int x^4 dx$$

B)
$$\int (x^2 + 3)^5 x dx$$

5. Интеграл $\int \frac{2^{ctgx}}{\sin^2 x} dx$ равен ...

1.
$$2^{ctgx} + C$$

3.
$$\frac{2^{ctgx}}{\ln 2} + C$$

$$2. -\frac{2^{ctgx}}{\ln 2} + C$$

$$4. -ctgx2^{ctgx} + C$$

6. Множество первообразных функции $f(x) = \frac{3x^2}{\sqrt{2 + x^3}}$ имеет вид ...

1.
$$2\sqrt{2+x^3}+C$$
 3. $\sqrt{2+x^3}+C$

3.
$$\sqrt{2+x^3}+C$$

2.
$$\frac{1}{2\sqrt{2+x^3}} + C$$
 4. $\ln(2+x^3) + C$

4.
$$\ln(2+x^3)+C$$

7. Дан интеграл $\int \frac{\sqrt{4-x^2}}{x} dx$. Тогда замена $x = 2\cos t$ приведет его к виду...

1.
$$-2\int \frac{\sin^2 t}{\cos t} dt$$
 3. $2\int \frac{\sin^2 t}{\cos t} dt$

$$3. \ 2\int \frac{\sin^2 t}{\cos t} dt$$

2.
$$-2\int tgtdt$$

2.
$$-2\int tgtdt$$
 4. $2\int \sin tdt$

8. Если в неопределенном интеграле $\int (x^2 + 2)\cos\frac{x}{4}dx$, применяя метод интегрирования по частям: $\int u dv = uv - \int v du$, положить, что $u(x) = x^2 + 2$, то функция v(x) будет равна ...

1.
$$\frac{1}{4}\sin\frac{x}{4}$$
 3. $4\sin\frac{x}{4}$

3.
$$4 \sin \frac{x}{4}$$

2.
$$-4\cos\frac{x}{4}$$
 4. $\cos\frac{x}{4}$

4.
$$\cos \frac{x}{4}$$

9. Установите соответствие между неопределенными интегралами и разложениями подынтегральных функций на элементарные дроби.

$$1. \int \frac{1}{x(x+1)^2} dx$$

A)
$$\frac{A}{x^2} + \frac{B}{x} + \frac{Cx + D}{x^2 + 16}$$

$$2. \int \frac{x-7}{x(x-2)} dx$$

$$\mathsf{E}) \quad \frac{A}{x} + \frac{B}{x-2}$$

3.
$$\int \frac{2x+5}{(x-1)(x^2+1)} dx$$
 B) $\frac{A}{x-1} + \frac{Bx+C}{x^2+1}$

B)
$$\frac{A}{x-1} + \frac{Bx + C}{x^2 + 1}$$

$$4. \int \frac{2x-1}{x^2(x^2+16)} dx$$

$$\Gamma) \frac{A}{x} + \frac{B}{(x+1)^2} + \frac{C}{x+1}$$

$$\coprod) \frac{A}{x-1} + \frac{B}{x^2+1}$$

10. Определенный интеграл $\int_{-2}^{1} (x - 8x^3) dx$ равен ...

$$1. -69$$

11. Значение интеграла $\int_{1}^{1} \sqrt{1+x} dx$ равно ...

1.
$$\frac{2\sqrt{8}}{3}$$
 3. $\frac{1}{\sqrt{8}}$

3.
$$\frac{1}{\sqrt{8}}$$

2.
$$\frac{3(\sqrt{8}-1)}{2}$$
 4. $\frac{15}{2}$

4.
$$\frac{15}{2}$$

12. Несобственным интегралом является интеграл ...

1.
$$\int_{2}^{3} \frac{\ln x}{x} dx$$

3.
$$\int_{1}^{+\infty} \frac{dx}{x}$$

$$2. \int_{0}^{2} \frac{x}{1+x} dx$$

4.
$$\int x^2 arcctgx dx$$

13. Несобственный интеграл $\int_{-5}^{+\infty} (x+6)^{-8} dx$ равен ...

1.
$$\frac{1}{7}$$
 3. $\frac{1}{5}$

3.
$$\frac{1}{5}$$

2.
$$\frac{1}{8}$$
 4. $\frac{1}{6}$

4.
$$\frac{1}{6}$$

14. Несобственный интеграл $\int_{3}^{+\infty} \frac{dx}{(x-2)^2}$ равен ...

15. Сходящимися являются несобственные интегралы ...

$$1. \int_{1}^{+\infty} x^{-1} dx$$

$$3. \int_{1}^{+\infty} x^{-5} dx$$

$$2. \int_{1}^{+\infty} x^{\frac{3}{5}} dx$$

2.
$$\int_{1}^{+\infty} x^{\frac{3}{5}} dx$$
 4. $\int_{1}^{+\infty} x^{-\frac{5}{2}} dx$

16. Ненулевая функция y = f(x) является четной на отрезке [-8; 8] .

Тогда $\int_{0}^{8} f(x)dx$ равен ...

$$3. \ 2\int\limits_{0}^{8} f(x)dx$$

2.
$$16\int_{0}^{1} f(x)dx$$
 4. $\frac{1}{16}\int_{0}^{1} f(x)dx$

4.
$$\frac{1}{16} \int_{0}^{1} f(x) dx$$

7.2.6. Методика выставления проведении оценки при

промежуточной аттестации

При проведении устного экзамена обучающемуся предоставляется 60 минут на подготовку. Опрос обучающегося по билету на устном экзамене не должен превышать двух астрономических часов. С экзамена снимается материал тех КР и КЛ, которые обучающийся выполнил в течение семестра на «хорошо» и «отлично».

Во время проведения экзамена (зачета) обучающиеся могут пользоваться программой дисциплины, а также вычислительной техникой.

7.2.7 Паспорт оценочных материалов

	2.7 паспорт оценочных мате	31141102	
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	л	ОК-7, ОПК-2, ОПК -7	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
2	Векторная и линейная алгебра	ОК-7, ОПК-2, ОПК -7	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
3	Аналитическая геометрия	ОК-7, ОПК-2, ОПК -7	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
4	Введение в математический анализ и дифференциальное исчисление функций одной переменной	ОК-7, ОПК-2, ОПК -7	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
5	Введение в математический анализ и дифференциальное исчисление функций одной переменной	ОК-7, ОПК-2, ОПК -7	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
6	Дифференциальное исчисление функций нескольких переменных	ОК-7, ОПК-2, ОПК -7	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
7	Интегральное исчисление функций одной и нескольких переменных	ОК-7, ОПК-2, ОПК -7	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту

8	Числовые и функциональные ряд	ы ОК-7, ОПК-2, ОПК	Тест, контрольная работа,
		-7	защита лабораторных
			работ, защита реферата,
			требования к курсовому
			проекту
9	Обыкновенные	ОК-7, ОПК-2, ОПК	Тест, контрольная работа,
	дифференциальные уравнения	-7	защита лабораторных
			работ, защита реферата,
			требования к курсовому
			проекту
10	Теория вероятностей и основы	ОК-7, ОПК-2, ОПК	Тест, контрольная работа,
	математической статистики	-7	защита лабораторных
			работ, защита реферата,
			требования к курсовому
			проекту
11	Теория функции комплексного	ОК-7, ОПК-2, ОПК	Тест, контрольная работа,
	переменного	-7	защита лабораторных
			работ, защита реферата,
			требования к курсовому
			проекту
12	Дискретная математика		Тест, контрольная работа,
		-7	защита лабораторных
			работ, защита реферата,
			требования к курсовому
			проекту

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

1. С.М. Алейников, В.В. Горяйнов. Высшая математика.

- Контрольно—измерительные материалы для аттестации обучающихся в технических вузах: практикум: Учебное пособие, 2006.
- 2. Колпачев В.Н., Дементьева А.М., Горяйнов В.В. Решение тестовых заданий федерального интернет-экзамена по математике. Часть 1. Алгебра и геометрия: Учебное пособие, 2012.
- 3. Кущев А.Б., Ханкин Е.И., Акчурина Л.В. Теория вероятностей: Методические указания, 2010.
- 4. В.С. Муштенко, Л.В. Стенюхин, В.К. Еченко Неопределенный и определенный интегралы: Методические указания, 2010.
- 5. Дементьева А.М., Горяйнов В.В., Ханкин Е.И., Ульянова Е.Л., Глазкова М.Ю. Дифференциальные уравнения: Методические указания, 2014.
- 6. Дементьева А.М., Святская Т.Г., Горяйнов В.В., Акчурина Л.В., Попова В.А. Дифференциальные уравнения. Ряды: Методические указания, 2012.
- 7. Колпачев В.Н., Гончаров М.Д., Некрасова Н.Н., Седаев А.А., Ханкин Е.И Математика: Методические указания, 2012.
- 8. Гончаров М.Д., Седаев А.А., Некрасова Н.Н., Чернышова Р.В. Математика: Методические указания,2012.
- 9. Глазкова М.Ю., Акчурина Л.В., Ульянова Е.Л., Кущев А.Б. Теория вероятностей и математическая статистика: Методические указания, 2012.
- 10. Барсуков Андрей Иванович, Глазкова Мария Юрьевна, Минаков Виктор Иванович Задачи повышенной сложности по высшей математике: учебно-методическое пособие Ч. 1. Воронеж: [б. и.], 2013 -119 с.
- 11. Дементьева, Александра Марковна, Артыщенко, Степан Владимирович, Попова, Виктория Анатольевна Интегральное исчисление функций одной и нескольких переменных: учеб. пособие: рек. ВГАСУ. Воронеж: [б. и.], 2010 -163 с.
- 12. Шипачев В.С. Основы высшей математика. М.: Высш. шк., 2007 г.
- 13. Привалов И.И. Аналитическая геометрия. 37-е изд., стер. СПб;М.; Краснодар: Лань, 2008 г.
- 14. Дементьева, Александра Марковна, Артыщенко, Степан Владимирович, Попова, Виктория Анатольевна Интегральное исчисление функций одной и нескольких переменных: учеб. пособие: рек. ВГАСУ. Воронеж: [б. и.], 2010 -1 электрон. опт. диск
- 15. Данилов А. М., Гарькина И. А. Математика: Учебное пособие. Пенза: Пензенский государственный университет архитектуры и строительства, ЭБС АСВ, 2012 -204 с., http://www.iprbookshop.ru/23097

Дополнительная литература:

1. Гмурман В.Е. Теория вероятностей и математическая статистика. -

- 11-е изд., стер. М.: Высш. шк., 2005 г
- **2.** Берман Г.Н. Сборник задач по курсу математического анализа. 22-е изд., перераб. СПб.:Профессия, 2008 г.
- **3.** Седаев А.А., Стенюхин Л.В., Евченко В.К. Избранные главы курса математики в инженерном вузе (множества, графы, топология, функциональный анализ, вариационное исчисление). Воронеж. гос. архит.-строит. ун-т. Воронеж, 2008 г.
- **4.** Диденко О. П., Мухаметдинова С. Х., Рассказова М. Н. Математика: Учебное пособие. Омск : Омский государственный институт сервиса, 2013 -160 с., http://www.iprbookshop.ru/18256
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - 1. Консультирование посредством электронный почты.
 - 2. Использование презентаций при проведении лекционных занятий.

Для работы в сети рекомендуется использовать сайты:

- http://encycl.yandex.ru (Энциклопедии и словари).
- http://www.intuit.ru/department/mathematics/intmath/ (Вводный курс в высшую математику. Рассматриваются основы высшей математики для «нематематических» специальностей. Изложение сопровождается большим количеством специально подобранных примеров, поясняющих суть исследуемых понятий и фактов).
- http://mathelp.spb.ru (Лекции, учебники on-line, web-сервисы по высшей математике в помощь студентам).
- http://mathem.by.ru (Справочная информация по математическим дисциплинам).
- http://www.exponenta.ru (Материалы по высшей математике).
- http://teorver-online.narod.ru/teorver73.html (Манита А. Д. Теория вероятностей и математическая статистика. Интернет-учебник).

 http://eqworld.ipmnet.ru/ru/library/mathematics.htm. (Книги в форматах PDF и DjVu).

Для работы с электронными учебниками требуется наличие таких программных средств, как Adobe Reader для Windows и DjVuBrowserPlugin.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения ряда лекционных занятий по дисциплине необходимы

аудитории, оснащенные презентационным оборудованием (компьютер с ОС Windows и программой PowerPoint или Adobe Reader, мультимедийный проектор и экран).

Для обеспечения практических занятий требуется компьютерный класс с комплектом лицензионного программного обеспечения (при использовании электронных изданий — компьютерный класс с выходом в Интернет).

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Для более эффективного усвоения курса математики рекомендуется использовать на лекциях и практических занятиях видеоматериалы, обобщающие таблицы и др.

№	Темы учебных занятий, проводимых в интерактивных формах	Объем занятий
1.	Лекции с элементами проблемного обучения с использованием ПК, мультимедиапроектора и комплекта презентаций по темам: «Кривые второго порядка: эллипс, гипербола, парабола», «Поверхности второго порядка», «Исследование функций с помощью производных», «Функции нескольких переменных. Область определения. Геометрическое изображение», «Приложения определенного интеграла», «Кратные интегралы», «Криволинейные интегралы», «Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами и правой частью специального вида», «Ряды Фурье», «Основные законы распределения случайных величин»	20
2.	Лекции – учебные дискуссии (с использованием рабочих тетрадей, содержащих опорные конспекты изучаемых тем и пропущенные	10

Всего, час / удельный вес, %	60 / 21
D /	CO / 21
ряд».	
уравнений», «Разложение функций в	
«Решение дифференциальных	
одной и нескольких переменных»,	
переменных», «Интегрирование функций	
функций одной и нескольких	
функций», «Дифференцирование	
исследования и построение графиков	
«Действия с матрицами», «Общая схема	
линейных алгебраических уравнений»,	30
определителей и решение систем	
с расчетами, по темам: «Вычисление	
(индивидуальных) заданий, связанных	
профессионально ориентированных	
комплекса Maple для выполнения	
классе с использованием программного	
дидактических игр) в компьютерном	
компьютерных симуляций и	
3. Практические занятия (с элементами	
«Схема Бернулли»	
формулы и правила комбинаторики»,	
уравнения первого порядка», «Основные	
«Обыкновенные дифференциальные	
разложения на простейшие дроби»,	
рациональных функций путем	
интегрирования», «Интегрирование	
примеров) по темам «Основные методы	
смысловые места для заметок, поправок,	

Для повышения интереса к дисциплине и развития математической культуры целесообразно сообщать на лекциях сведения из истории математики и информацию о вкладе российских ученых в математическую науку.

Важным условием успешного освоения дисциплины «Математика» является самостоятельная работа студентов. Для осуществления индивидуального подхода к студентам и создания условий ритмичности учебного процесса рекомендуются индивидуальные расчетно-графические работы (РГР) в группах, коллоквиумы и контрольные работы (КР).

Коллоквиум и контрольная работа являются не только формами промежуточного контроля, но и формами обучения, так как позволяют своевременно определить уровень усвоения студентами разделов программы и провести дополнительную работу.