МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Факультет машиностроеку ТВЕРЖДАЮ аарокосмической Некентом АТ / В.И. Ряжских / 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля) «Сопротивление материалов»

Направление подготовки 15.03.05 — Конструкторско-технологическое обеспечение машиностроительных производств
Профиль Металлообрабатывающие станки и комплексы
Квалификация выпускника Бакалавр
Нормативный период обучения 4 года / 4 г. и 11 м.
Форма обучения Очная / Заочная
Год начала подготовки 2021 г.

Автор программы(/ Д.В Хван. /
Заведующий кафедрой прикладной математики и механин	ки/В.И Ряжских. /
Руководитель ОПОП	В.Р Петренко./

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1 Цели дисциплины

– изучение методов расчета на прочность, жесткость и устойчивость деталей машин и элементов конструкций.

Освоение дисциплины должно способствовать формированию основ научного мышления, в том числе: пониманию границ применимости технических понятий и теорий; умению оценивать степень достоверности результатов теоретических и экспериментальных исследований, умению обрабатывать результаты экспериментов с использованием современных методов.

1.2 Задачи освоения дисциплины

- овладение инженерными методами расчета на прочность, жесткость и устойчивость стержневых систем при различных видах напряженного состояния и различных условиях силового и температурного воздействия;
- знакомство с методами расчета на прочность некоторых типов оболочек;
- проведение лабораторных испытаний и исследований механических свойств материалов.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Сопротивление материалов» относится к дисциплинам обязательной части блока Б.1 учебного плана.

З ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Сопротивление материалов» направлен на формирование компетенции:

ОПК-5 — Способен использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда.

Компетенция	Результаты обучения, характеризующие
	сформированность компетенции
ОПК-5	Знать основные модели сопротивления материалов и гра-
	ницы их применения (модели материалов, форм, сил), ос-
	новные методы исследования нагрузок, перемещений и
	напряжений при напряженно-деформированном состоянии
	в элементах конструкций.
	Уметь выполнять оценку элементов конструкций по проч-
	ности, жесткости и другим критериям работоспособности.
	Владеть навыком выбора аналогов и прототипов кон-
	струкций при их проектировании; навыками проведения
	расчетов по механике деформируемого тела.

4 ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Сопротивление материалов» составляет 4 зачетные единицы.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего	Семестры		
	часов	3		
Аудиторные занятия (всего)	54	54		
В том числе:				
Лекции	18	18		
Практические занятия (ПЗ)	18	18		
Лабораторные работы (ЛР)	18	18		
Самостоятельная работа	90	90		
Курсовой проект (работа) (нет, есть)	нет	нет		
Контрольная работа (нет, есть)	нет	нет		
Вид промежуточной аттестации – зачет с	+	+		
оценкой				
Общая трудоемкость, часов	144	144		
Зачетных единиц	4	4		

Заочная форма обучения

Вид учебной работы	Всего	Семестры		ЭЫ	
	часов	3			
Аудиторные занятия (всего)	12	12			
В том числе:					
Лекции	4	4			
Практические занятия (ПЗ)	4	4			
Лабораторные работы (ЛР)	4	4			
Самостоятельная работа	128	128			
Курсовой проект (работа) (нет, есть)	нет	нет			
Контрольная работа (нет, есть)	нет	нет			
Вид промежуточной аттестации – зачет с	4	4			
оценкой	4	4			
Общая трудоемкость, часов	144	144			·
Зачетных единиц	4	4			

5 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

Очная форма обучения

		Очная форма обучения					
№ п/п	Наименова- ние темы	Содержание раздела	Лекции	Практические занятия	Лаборатор- ные занятия	CPC	Всего, час
1	Введение. Растяжение и сжатие	Основные задачи. Расчетная схема. Принципы сопротивления материалов. Напряжения, деформации. Классификация видов деформирования. Нормальная сила. Нормальное напряжение. Условие прочности. Условие жесткости.	4	4	4	15	27
2	Кручение	Гипотеза плоских сечений. Касательное напряжение. Полярный момент инерции поперечного сечения. Полярный момент сопротивления сечения. Условия прочности и жесткости.	2	2	4	10	18
3	Изгиб	Внутренние силовые факторы: поперечная сила, изгибающий момент. Нормальное и касательное напряжения. Осевые моменты инерции и сопротивление поперечного сечения. Условие прочности по нормальным и касательным напряжениям. Расчет на прочность. Перемещения при изгибе. Интеграл Мора. Расчет на жесткость.	4	4	2	18	28
4	Сложное сопротивление.	Косой изгиб. Условие прочности. Уравнение нейтральной линии. Расчет на прочность. Внецентренное растяжение — сжатие. Условие прочности. Уравнение нейтральной линии. Расчет на прочность. Совместное действие изгиба с кручением. Построение эпюр изгибающих моментов и крутящих моментов. Условия прочности согласно теориям прочности: энергетическая, наибольших касательных моментов. Расчет на прочность.	4	4	2	17	27
5	Устойчи- вость сжа- тых стоек	Понятие устойчивости равновесия. Критическая сила. Задача Эйлера. Зависимость критической силы от условий закрепления. Гибкость стержня. Радиус инерции сечения. Расчет на устойчивость по коэффициенту уменьшения допускаемого напряжения на сжатие.	2	2	4	15	23

		Итого	18	18	18	90	144
	ка	зависимости от высоты падающего груза, скорости перемещения ударяемого тела. Влияние жесткости упругой системы на ее прочность и жесткость.					
6.	Динамиче- ская нагруз-	Расчет на прочность и жесткость при ударе. Коэффициент динамичности в	2	2	2	15	21

Заочная форма обучения

No	Наименова-	Содержание раздела					
п/п	ние темы	содержание раздела	Лекции	Практиче- ские занятия	Лаборатор- ные занятия	CPC	Всего, час
1.	Введение. Растяжение и сжатие	Основные задачи. Расчетная схема. Принципы сопротивления материалов. Напряжения, деформации. Классификация видов деформирования. Нормальная сила. Нормальное напряжение. Условие прочности. Условие жесткости.	1	1	1	22	25
2	Кручение	Гипотеза плоских сечений. Касательное напряжение. Полярный момент инерции поперечного сечения. Полярный момент сопротивления сечения. Условия прочности и жесткости.				20	20
3.	Изгиб	Внутренние силовые факторы: поперечная сила, изгибающий момент. Нормальное и касательное напряжения. Осевые моменты инерции и сопротивление поперечного сечения. Условие прочности по нормальным и касательным напряжениям. Расчет на прочность. Перемещения при изгибе. Интеграл Мора. Расчет на жесткость.	1	1	1	22	25
4	Сложное сопротивление.	Косой изгиб. Условие прочности. Уравнение нейтральной линии. Расчет на прочность. Внецентренное растяжение — сжатие. Условие прочности. Уравнение нейтральной линии. Расчет на прочность. Совместное действие изгиба с кручением. Построение эпюр изгибающих моментов и крутящих моментов. Условия прочности согласно теориям прочности: энергетическая, наибольших касательных моментов. Расчет на прочность.				20	20
5.	Устойчи- вость сжа- тых стоек	Понятие устойчивости равновесия. Критическая сила. Задача Эйлера. Зави- симость критической силы от условий закрепления. Гибкость стержня. Радиус	1	1	1	22	25

		инерции сечения. Расчет на устойчивость по коэффициенту уменьшения допускаемого напряжения на сжатие.					
6	Динамиче- ская нагруз- ка	Расчет на прочность и жесткость при ударе. Коэффициент динамичности в зависимости от высоты падающего груза, скорости перемещения ударяемого тела. Влияние жесткости упругой системы на ее прочность и жесткость.	1	1	1	22	25
		Итого	4	4	4	128	140
		Зачет с оценкой	-	-	-	-	4
		Всего	4	4	4	128	144

5.2 Перечень лабораторных работ

- 1. Испытание малоуглеродной стали на растяжение. (Лабораторная работа № 1)
- 2. Испытание цилиндрических образцов из пластичного и хрупкого материала на сжатие. (Лабораторная работа № 2)
- 3. Испытание на кручение круглого стального образца. (Лабораторная работа № 3)
 - 4. Определение ударной вязкости. (Лабораторная работа № 4)
- 5. Определение модуля упругости и коэффициента поперечной деформации. (Лабораторная работа № 7)
- 6. Определение прогибов и угла поворота поперечных сечений двухопорной балки. (Лабораторная работа № 9)
- 7. Определение перемещений при косом изгибе. (Лабораторная работа № 11)
- 8. Определение критической силы для сжатого стержня. (Лабораторная работа № 13)

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) в 3 семестре очной и в 3 семестре заочной форм обучения.

Учебным планом по дисциплине не предусмотрено выполнение контрольной работы (контрольных работ) в 3 семестре очной и в 3 семестре заочной форм обучения.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе-	Результаты обучения, характе-	Критерии	Аттестован	Не аттестован
тенция	ризующие сформированность	оценивания		
	компетенции			
ОПК-5	знать основные модели со-	Активная работа	Выполнение	Невыполне-
	противления материалов и	на практических	работ в срок,	ние работ в
	границы их применения (мо-	и лабораторных	предусмот-	срок, преду-
	дели материалов, форм, сил),	занятиях, отве-	ренный в	смотренный в
	основные методы исследова-	чает на теорети-	рабочих	рабочих про-
	ния нагрузок, перемещений и	ческие вопросы	программах.	граммах.
	напряжений при напряженно-	при их защите.		
	деформированном состоянии в			
	элементах конструкций.			
	уметь выполнять оценку эле-	Решение стан-	Выполнение	Невыполне-
	ментов конструкций по проч-	дартных практи-	работ в срок,	ние работ в
	ности, жесткости и другим	ческих задач,	предусмот-	срок, преду-
	критериям работоспособно-	написание до-	ренный в	смотренный в
	сти.	машнего зада-	рабочих	рабочих про-
		ния.	программах.	граммах.
	владеть навыком выбора ана-	Решение при-	Выполнение	Невыполне-
	логов и прототипа конструк-	кладных задач в	работ в срок,	ние работ в
	ций при их проектировании;	конкретной	предусмот-	срок, преду-
	навыками проведения расче-	предметной об-	ренный в	смотренный в
	тов по механике деформируе-	ласти, выполне-	рабочих	рабочих про-
	мого тела.	ние плана работ	программах.	граммах.
		по разработке		
		домашнего зада-		
		ния.		

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний для очной формы обучения оцениваются в 3 семестре и для заочной формы обучения оцениваются в 3 семестре по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Крите- рии оцени-	Отлично	Хорошо	Удовл	Неудовл
ОПК-5	знать основные модели со-	вания Тест	Выполне-	Выполне-	Выполне-	В тесте
	противления материалов и границы их применения (модели материалов, форм, сил), основные методы исследования нагрузок, перемещений и напряжений при напряженно-деформированном состоянии в элементах конструк-		ние теста на 90-100%	ние теста на 80-90%	ние теста на 70-80%	менее 70% правиль- ных отве- тов
	ций.					
	уметь выполнять оценку элементов конструкций по прочности, жесткости и другим критериям работоспособности.	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выпол- нение теста на 70-80%	В тесте менее 70% пра- вильных ответов
	владеть навыком выбора аналогов и прототипа конструкций при их проектировании; навыками проведения расчетов по механике деформируемого тела.	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выпол- нение теста на 70-80%	В тесте менее 70% пра- вильных ответов

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. Нормальное напряжение при растяжении стержня равно:

a)
$$\sigma = NF$$
;

$$σ = \frac{F}{N};$$
B)
$$σ = \frac{N}{F};$$

B)
$$\sigma = \frac{\ddot{N}}{F}$$

$$\Gamma$$
). $\sigma = N \cdot F$.

2. Изменение длины стержня при растяжении равно:

a)
$$\Delta l = \frac{NF}{lE}$$
;

$$δ$$
) $Δl = \frac{FF}{Nl}$;

B)
$$\Delta l = \frac{NL}{FF}$$
;

$$\Gamma$$
). $\Delta l = NlFE$.

- 3. Наибольшее касательное напряжение при кручении вала равно:
- a) $\tau = M_k W_p$;
- б) $\tau = \frac{W_p}{M_k}$;
- $\mathrm{B)} \ \tau = \frac{M_k}{W_p};$
- $\Gamma). \ \tau = \frac{1}{M_k W_p}.$
- 4. Угол поворота концевых сечений вала равен:
- a) $\varphi = \frac{M_k J_p}{lG}$;
- б) $\varphi = \frac{M_k G}{l J_p}$;
- $\mathrm{B)} \ \varphi = \frac{J_p G}{M_k l};$
- Γ). $\varphi = \frac{M_k l}{J_p G}$.
- 5. Условие прочности при кручении записывается в виде:
- a) $\tau = \frac{M_k}{J_p} \le [\tau];$
- б) $\sigma = \frac{M_k}{W_p} \le [\sigma];$
- B) $\tau = M_k W_p \leq [\tau];$
- $\Gamma). \ \tau = \frac{M_k}{W_p} \le [\tau].$

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Нормальная сила равна 10 кН. Площадь поперечного сечения 100 мм². Следовательно:
 - а) Нормальное напряжение равно 20 МПа;
 - б) Нормальное напряжение равно 150 МПа;
 - в) Нормальное напряжение равно 100 МПа;
 - г) Нормальное напряжение равно 0 МПа.
- 2. Крутящий момент равен 5 кH·м. Диаметр вала равен 50 мм. Следовательно:
 - а) Касательное напряжение равно 0 МПа;

- б) Касательное напряжение равно 10 МПа;
- в) Касательное напряжение равно 27,2 МПа;
- г) Касательное напряжение равно 128,5 МПа.
- 3. Диаметр вала равен 100 мм. Следовательно:
- а) Полярный момент инерции сечения равен 150 мм⁴;
- б) Полярный момент инерции сечения равен 100 мм⁴;
- в) Полярный момент инерции сечения равен 10^7 мм³;
- г) Полярный момент инерции сечения равен 0.
- 4. Расчетный изгибающий момент 5 КН·м; диаметр круглого поперечного сечения равен 100 мм. Следовательно:
 - а) Нормальное напряжение равно 10 МПа;
 - б) Нормальное напряжение равно 40 МПа;
 - в) Нормальное напряжение равно 163,5 МПа;
 - г) Нормальное напряжение равно 52,5 МПа.
- 5. Диаметр круглого поперечного сечения равен 100 мм. Следовательно:
 - а) Полярный момент сопротивления сечения равен 200 мм²;
 - б) Полярный момент сопротивления сечения равен $2 \cdot 10^5$ мм³;
 - в) Полярный момент сопротивления сечения равен 10^5 мм 3 ;
 - г) Полярный момент сопротивления сечения равен 10^6 мм³.

7.2.3 Примерный перечень заданий для решения прикладных задач

<u>Задача 1</u>.

Для представленной на рис. 1 стержневой системы, определить диаметр стержня при следующих значениях $[\sigma]$ = 160МПа; b = 0,5 м; a = 1 м; P = 10кH.

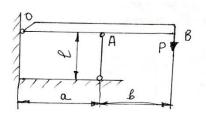
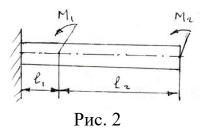
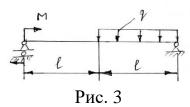



Рис. 1

Задача 2. Расчет статически определимого вала.


Для представленного на рис. 2 закрепленного одним концом вала,

- определить диаметры вала при следующих значениях $[\tau]$ =100МПа; M_1 = 10 кH/м; M_2 = 15 кH/м; l_1 = l_2 = 1 м.
- проверить жесткость вала, приняв модуль сдвига $G = 8 \cdot 10^4$ МПа и $[\theta] = 3$ град/м.

Задача 3. Расчет двухопорной балки.

Для приведенной на рис. З двухопорной балки, необходимо определить номер двутавра при следующих данных: $q = 20 \, \mathrm{kH/m}$; $M = 10 \, \mathrm{kH/m}$; $l = 1 \, \mathrm{m}$; $\sigma = 160 \, \mathrm{MHz}$.

Задача 4. Расчет консольной балки.

Для приведенной на рис. 4 консольной балки, определить размеры трех форм поперечного сечения (круг диаметром D, прямоугольник h=2 b; двутавр), определить размеры сечения и установить, какая из рассмотренных форм сечения является выгодной с точки зрения материалоемкости при следующих данных: P=20кH; q=15кP/м; l=1 м; $\sigma=160$ МПа.

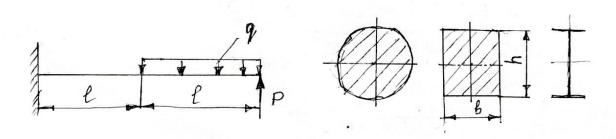


Рис. 4

Задача 5.

Стальной стержень длиной l=3м и диаметром d=50мм (см. рис. 5) сжимается силой P. Определить допустимую нагрузку на устойчивость, приняв $n_{_{\rm V}}=1,5$.

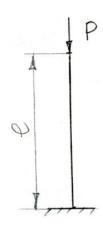


Рис. 5

Задача 6.

Стальная балка из двутавра № 12 и длиной l = 2м подвергается ударной нагрузке при падении груза весом 10кH (см. рис. 6). Определить наименьшую высоту H, приняв $[\sigma] = 100$ МПа.

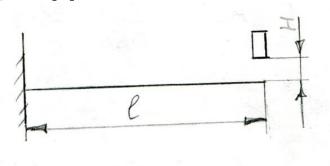


Рис 6

7.2.4 Примерный перечень вопросов для подготовки к зачету с оценкой

- 1. Какие принципы используются в сопротивлении материалов?
- 2. Дать определение понятий прочности, жесткости и устойчивости элементов конструкций.
 - 3. Объясните суть закона Гука.
 - 4. Объясните суть, принципы независимости действия нагрузок.
 - 5. Что такое нормальное напряжение?
 - 6. Что такое касательное напряжение?
 - 7. Что такое относительная линейная деформация?
 - 8. Что такое относительная угловая деформация?
 - 9. Что такое нормальная сила?
 - 10. Как записывается условие прочности при растяжении сжатии?
 - 11. Что такое крутящий момент?
 - 12. Запишите условие прочности при кручении.

- 13. Что такое абсолютный угол закручивания?
- 14. Что такое относительный угол закручивания?
- 15. Чему равен поперечный момент сопротивления сечения круглого вала?
 - 16. Чему равен поперечный момент инерции сечения круглого вала?
 - 17. Что такое изгибающий момент?
 - 18. Что такое поперечная сила?
 - 19. Какие напряжения возникают в балке при чистом изгибе?
 - 20. Какие напряжения возникают в балке при прямом изгибе?
 - 21. Как определяется изгибающий момент?
 - 22. Как определяется поперечная сила?
 - 23. Запишите условия прочности при чистом изгибе.
 - 24. Запишите условия прочности при поперечном изгибе.
 - 25. Назовите виды сложного сопротивления.
 - 26. Запишите условие прочности при косом изгибе.
- 27. Запишите условие прочности при внецентренном растяжении сжатии.
 - 28. Запишите условие прочности при изгибе с кручением.
 - 29. Критическая сила Эйлера.
 - 30. Коэффициент приведения длинны стержня.
 - 31. Условия применимости формулы Эйлера.
 - 32. Что такое коэффициент динамичности?
 - 33. Условие прочности при ударе.
 - 34. Условие жесткости при ударе.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Не предусмотрено учебным планом.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится в форме Зачета с оценкой по тест-билетам, каждый из которых содержит 5 вопросов, 5 стандартных задач и 5 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов — 15.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 8 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 8 до 10 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 12 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 12 до 15 баллов.

7.2.7 Паспорт оценочных материалов

№	Контролируемые разде-	Код контролируемой	Наименование оце-
Π/Π	лы (темы) дисциплины	компетенции (или ее	ночного средства
		части)	
1	Введение.	ОПК-5	Тест, зачет с оцен-
	Растяжение и сжатие		кой, устный опрос
2	Кручение.	ОПК-5	Тест, зачет с оцен-
			кой, устный опрос
3	Изгиб.	ОПК-5	Тест, зачет с оцен-
			кой, устный опрос
4	Сложное сопротивле-	ОПК-5	Тест, зачет с оцен-
	ние.		кой, устный опрос
5	Устойчивость сжатых	ОПК-5	Тест, зачет с оцен-
	стоек.		кой, устный опрос
6	Динамическая нагрузка.	ОПК-5	Тест, зачет с оцен-
			кой, устный опрос

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем преподавателем осуществляется проверка теста и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем преподавателем осуществляется проверка решения задач и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем преподавателем осуществляется проверка решения задач и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Защита домашнего задания осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Александров, А.В. Сопротивление материалов: учебник / А.В. Александров, В.Д. Потаров, Б.П. Державин 2-е изд., испр. М.: Высш. шк., 2001. 560 с.: ил. ISBN 5-06-003732-0: 133.00; 91.00.
 - Рекомендовано Мин. обр. РФ в качестве учебника
- 2. Алмаметов, Ф.З. Расчетные и курсовые работы по сопротивлению материалов: учеб. пособие / Ф.З. Алмаметов [и др.]. 3-е изд., стереотип. СПб.: Лань, 2005. 368 с.: ил. (Учебники для вузов. Специальная литература). ISBN 5-8114-0640-1: 333-00.
- 3. Воропаев, А.А. Задания на расчетно-проектировочные работы по курсу «Сопротивление материалов» и руководство к их выполнению: учеб. пособие / А. А. Воропаев [и др.]. Воронеж: ВГТУ, 2004. 95 с.
- 4. Воропаев А.А. Расчетно-проектировочные работы по курсу «Сопротивление материалов»: учеб. пособие / А.А. Воропаев [и др.]. Воронеж: ВГТУ, 2005.-103 с.
- 5. Воропаев А.А. Лабораторный практикум по курсу «Сопротивление материалов»: учеб. пособие / А.А. Воропаев [и др.]. Воронеж: ВГТУ, 2002. 133с. 17.00.
- 6. Воропаев, А.А. Методические указания к решению задач по курсу «Сопротивление материалов» (раздел «Простое деформирование») для студентов очной формы обучения [Текст] / кафедра прикладной механики; сост.: А.А. Воропаев, С.С. Одинг, Ф.Х. Томилов, Д.В. Хван. Воронеж: ГОУВПО «ВГТУ», 2005. 48 с. 00-00.
- 7. Воропаев, А.А. Методические указания к решению задач по курсу «Сопротивление материалов» (раздел «Сложное деформирование») для студентов очной формы обучения [Текст] / кафедра прикладной механики; сост.: А.А. Воропаев, С.С. Одинг, Ф.Х. Томилов, Д.В. Хван. Воронеж: ГОУВПО «ВГТУ», 2006. 49 с. 00-00.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсовинформационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Microsoft Word, Microsoft Excel, Internet Explorer, виртуальные лабораторные работы на ПЭВМ.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная плакатами и пособиями по профилю.

Лаборатория механических испытаний - ауд. 110/2.

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Сопротивление материалов» читаются лекции, проводятся практические занятия и лабораторные работы, выполняются домашние задания.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета на прочность деталей машин и элементов конструкций, подбора основного и вспомогательного оборудования. Занятия проводятся путем решения конкретных задач в аудитории.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о видах самостоятельной работы студенты получают на занятиях.

Методика выполнения домашнего задания изложена в учебнометодическом пособии. Выполняться этапы домашнего задания должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой практических и лабораторных работ и их защитой.

Освоение дисциплины оценивается на зачете с оценкой.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, по- следовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, вы- делять ключевые слова, термины. Проверка терминов, по- нятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопро- сов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самосто- ятельно не удается разобраться в материале, необходимо
	сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практические	Конспектирование рекомендуемых источников. Работа
занятия	с конспектом лекций, подготовка ответов к контрольным

	вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по ал-		
	горитму.		
Лабораторные	Выполнение лабораторных работ под руководством		
работы	преподавателя. Самостоятельная обработка результатов		
	испытаний. Составление отчета.		
Подготовка к	При подготовке к зачету с оценкой необходимо ориен-		
зачету с оцен-	тироваться на конспекты лекций, рекомендуемую литера-		
кой	туру и решение задач на практических занятиях.		

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1	Актуализирован раздел 8.1 в части состава учебной литературы, необходимой для освоения дисциплины	31.08.2022	del
2	Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем	31.08.2022	Olpho .
3	Актуализирован раздел 9 в части состава материально-технической базы, необходимой для осуществления образовательного процесса	31.08.2022	defo