МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан ФМАТ Ряжских В.И.

«26» марта 2019 г.

/ Валюхов С.Г./

РАБОЧАЯ ПРОГРАММА

дисциплины

«Газораспределительные системы»

Направление подготовки 21.03.01 Нефтегазовое дело

Профиль Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 5 лет

Форма обучения очная / очно-заочная

Год начала подготовки <u>2019</u>

Автор программы /Житенев А.И./

Заведующий кафедрой Нефтегазового оборудования и транспортировки

Руководитель ОПОП / Валюхов С.Г.

Воронеж 2019

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

приобретение знаний и навыков в изучении теории проектирования и эксплуатации распределительных систем газоснабжения городов, населенных пунктов и промышленных объектов.

Изучение дисциплины позволит овладеть необходимыми знаниями и умениями правильного выбора:

рациональных структурных схем газоснабжения;

методики решения задач проектирования и расчета городских распределительных и домовых газопроводов, а также систем газоснабжения среднего и высокого давления.

технологии эксплуатации распределительных газопроводов, а также газораспределительных станций и газорегуляторных пунктов.

1.2. Задачи освоения дисциплины

владение теоретическими знаниями в области основных законов, позволяющих описывать газораспределительные системы;

теоретическое и практическое освоение методов расчета газовых сетей, методов проектирования и решения задач в области эксплуатации и обслуживания объектов газораспределительных систем;

формирование у студентов навыков самостоятельного изучения информации по проблемам транспорта газа и газораспределения.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Газораспределительные системы» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Газораспределительные системы» направлен на формирование следующих компетенций:

ПК-1 - Способен выполнять работы по эксплуатации и обслуживанию оборудования и объектов транспорта и хранения нефти, газа и продуктов переработки

ПК-7 - Способен выполнять работы по составлению проектной, служебной документации в сфере эксплуатации и обслуживания объектов транспорта и хранения нефти, газа и продуктов переработки

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-1	Знать основные схемы, конструкции узлов и агрегатов оборудования трубопроводной системы транспорта газа
	Уметь выполнять совместно со специалистами служб работы связанные с корректировкой технологического процесса объектов

	трубопроводного транспорта газа					
	Владеть методами расчета эксплуатационных					
	показателей систем транспорта газа					
ПК-7	Знать нормативные документы, действующие					
	инструкции, методики проектирования для					
	проектирования объектов трубопроводной					
	транспортной системы.					
	Уметь выполнять типовые расчеты в рамках					
	проектных и технологических работ при					
	проектировании объектов трубопроводной					
	транспортной системы.					
	Владеть современными методами для решения задач					
	проектирования объектов трубопроводной					
	транспортной системы.					

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Газораспределительные системы» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Виды учебной работы	Всего	Семестры
Биды учеоной расоты	часов	8
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	24	24
Практические занятия (ПЗ)	24	24
Лабораторные работы (ЛР)	24	24
Самостоятельная работа	72	72
Курсовой проект	+	+
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

очно-заочная форма обучения

Вини инобиой воботи	Всего	Семестры
Виды учебной работы	часов	10
Аудиторные занятия (всего)	60	60
В том числе:		
Лекции	24	24
Практические занятия (ПЗ)	12	12
Лабораторные работы (ЛР)	24	24
Самостоятельная работа	84	84

Курсовой проект	+	+
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№		очная форма обучения		Прак	Лаб.	GD G	Всего,
п/п	Наименование темы	Содержание раздела	Лекц	зан.	зан.	CPC	час
1	Раздел 1 - Основы функционирования систем доставки газа	Л.1. Введение. Системы газоснабжения: высокого, среднего и низкого давления. Структура доставки газа от источника до потребителя: стандарты, требования безопасности, организация функционирования и управления	2	2	ı	6	10
	Раздел 2 - Проектирование систем газоснабжения	Л.2. Выбор и обоснование системы газоснабжения. Реконструкция (модификация) системы газоснабжения и определение её экономического эффекта. Определение оптимального радиуса действия ГРП. Выбор труб для систем газоснабжения. Л.3. Классификация газопроводов, входящих в систему газоснабжения. Промышленные системы газоснабжения.	4	4	6	12	26
3	Раздел 3 - Гидравлический расчет газовых сетей	Л.4. Расчет тупиковых систем газоснабжения Л.5. Расчет кольцевых газопроводов	4	4	6	12	26
	Раздел 4 - Типовое оборудование газораспределительных сетей низкого и среднего давления	Л.б.Предназначение, принцип работы, требования, выбор оборудования газовых сетей: регуляторы давления; предохранительные клапаны. Л.7.Предназначение, принцип работы, требования, выбор оборудования газовых сетей: фильтры; контрольноизмерительные приборы и средства автоматики; сбросные трубопроводы.	4	4	4	12	24
5	Раздел 5 - Определение расхода газа в населенных пунктах по укрупненным показателям	Л.8. Определение расхода газа населенным пунктом: по годовым нормам; по укрупненным показателям.	2	2	4	12	20
6	Раздел 6 - Поиск оптимальных схем газоснабжения	Л.9.Основные принципы построения систем газоснабжения и поиска их оптимального расположения на местности.	6	6	4	12	28

		Л.10.Математические методы поиска оптимальных систем газоснабжения в зависимости от критериев поиска. Л.11.Программная реализация алгоритмов поиска оптимального расположения сетей с точки зрения различных критериев оптимизации					
7	Раздел 7 - Безопасность эксплуатации газовых сетей	Л.12.Безопасность персонала при сооружении и эксплуатации и экологичность газораспределительных сетей.	2	2	-	6	10
		Итого	24	24	24	72	144

очно-заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего,
1	Раздел 1 - Основы функционирования систем доставки газа	Л.1. Введение. Системы газоснабжения: высокого, среднего и низкого давления. Структура доставки газа от источника до потребителя: стандарты, требования безопасности, организация функционирования и управления	2	-	-	8	10
2	Раздел 2 - Проектирование систем газоснабжения	Л.2. Выбор и обоснование системы газоснабжения. Реконструкция (модификация) системы газоснабжения и определение её экономического эффекта. Определение оптимального радиуса действия ГРП. Выбор труб для систем газоснабжения. Л.3. Классификация газопроводов, входящих в систему газоснабжения. Промышленные системы газоснабжения.	4	2	6	14	26
3	Раздел 3 - Гидравлический расчет газовых сетей	Л.4. Расчет тупиковых систем газоснабжения Л.5. Расчет кольцевых газопроводов	4	2	6	14	26
4	Раздел 4 - Типовое оборудование газораспределительных сетей низкого и среднего давления	Л.б.Предназначение, принцип работы, требования, выбор оборудования газовых сетей: регуляторы давления; предохранительные клапаны. Л.7.Предназначение, принцип работы, требования, выбор оборудования газовых сетей: фильтры; контрольноизмерительные приборы и средства автоматики; сбросные трубопроводы.	4	2	4	14	24
5	Раздел 5 - Определение расхода газа в населенных пунктах по укрупненным показателям	Л.8. Определение расхода газа населенным пунктом: по годовым нормам; по укрупненным показателям.	2	2	4	14	22
6	Раздел 6 - Поиск оптимальных схем газоснабжения	Л.9.Основные принципы построения систем газоснабжения и поиска их оптимального	6	4	4	14	28

	расположения на местности. Л.10.Математические методы поиска оптимальных систем газоснабжения в зависимости от критериев поиска. Л.11.Программная реализация алгоритмов поиска оптимального расположения сетей с точки зрения различных критериев оптимизации					
	Л.12.Безопасность персонала при сооружении и эксплуатации и экологичность газораспределительных сетей.	2	-	-	6	8
	Итого	24	12	24	84	144

5.2 Перечень лабораторных работ

Лабораторная работа №1 - Газораспределительные сети древовидной структуры низкого давления

Лабораторная работа №2 - Газораспределительные сети древовидной структуры высокого (среднего) давления

Лабораторная работа №3 - Проектирование сети газоснабжения (гидравлический расчет)

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта в 8 семестре для очной формы обучения, 10.

Примерная тематика курсового проекта: «Гидравлический расчет сложного газопровода»

Задачи, решаемые при выполнении курсового проекта:

- вывод формулы для расчета пропускной способности трубопроводной системы
- поверочный расчет, для определения фактических значений давлений и расходов во всех участках трубопроводной системы
 - построение пьезометрического графика

Курсовой проект включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе-	Результаты обучения, характеризующие	Критерии	Аттестован	Не аттестован
тенция ПК-1	сформированность компетенции Знать основные производственные процессы, представляющие единую цепочку транспорта газа;	оценивания Активная работа на практических занятиях, отвечает на теоретические вопросы при защите курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь использовать законы гидравлики, гидромеханики, термодинамики для расчета параметров газораспределительных сетей; использовать программные средства при проектировании газораспределительных сетей;	Решение стандартных практических задач, написание курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть технологией эксплуатации распределительных газопроводов, а также газораспределительных станций и газорегуляторных пунктов	Решение прикладных задач в конкретной предметной области, выполнение плана работ по разработке курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-7	Знать режимы потребления газа различными потребителями и структуру систем газоснабжения;	Активная работа на практических занятиях, отвечает на теоретические вопросы при защите курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь подбирать типовое оборудование при проектировании и строительстве газораспределительных сетей низкого и среднего давления; использовать физико-математический аппарат для выполнения гидравлического расчета сложных газовых сетей; производить расчет толщины стенки трубопроводов с обязательной проверкой их на прочность, деформацию и устойчивость; рассчитывать и анализировать напряженное состояние трубопровода под воздействием внутреннего давления;	Решение стандартных практических задач, написание курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками работы с проектной и производственной документацией по газораспределительным сетям	Решение прикладных задач в конкретной предметной области, выполнение плана работ по	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

	разработке	
	курсового проекта	

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 8 семестре для очной формы обучения, 10 семестре для очно-заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-1	Знать основные схемы, конструкции узлов и агрегатов оборудования трубопроводной системы транспорта газа	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	Уметь выполнять совместно со специалистами служб работы связанные с корректировкой технологического процесса объектов трубопроводного транспорта газа	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	Владеть методами расчета эксплуатационных показателей систем транспорта газа	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
ПК-7	Знать нормативные документы, действующие инструкции, методики проектирования для проектирования объектов трубопроводной транспортной системы.	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	Уметь выполнять типовые расчеты в рамках проектных и технологических работ при проектировании объектов трубопроводной транспортной системы.	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	Владеть современными методами для решения задач проектирования объектов трубопроводной транспортной системы.	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные	Продемонстр ирован верный ход решения всех, но не получен	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

	ответы	верный ответ	
		во всех	
		задачах	

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - 7.2.1 Примерный перечень заданий для подготовки к тестированию
 - 1. Уравнение Бернули имеет вид:

$$\frac{\alpha_k V^2}{2g}$$
, $\frac{p}{\rho \cdot g}$, z , $\frac{\alpha_k V^2}{2g} + \frac{p}{\rho \cdot g} + z = h_{1-2}$

2. Отметьте составляющую пьезометрического напора в уравнении Бернулли?

$$\frac{\alpha_k V^2}{2g}$$
, $\frac{p}{\rho \cdot g}$, z , $\frac{1}{z}$, $\frac{\rho \cdot g}{p}$, $\frac{2g}{\alpha_k V^2}$, $\frac{V \cdot d}{v}$, $\frac{v}{V \cdot d}$, $\frac{\Delta}{d}$, $\frac{d}{\Delta}$.

3. Отметьте составляющую геометрического напора в уравнении Бернулли?

$$\frac{\alpha_k V^2}{2g}, \frac{p}{\rho \cdot g}, z, \frac{1}{z}, \frac{\rho \cdot g}{p}, \frac{2g}{\alpha_k V^2}, \frac{V \cdot d}{\upsilon}, \frac{\upsilon}{V \cdot d}, \frac{\Delta}{d}, \frac{d}{\Delta}.$$

4. Отметьте составляющую скоростного напора в уравнении Бернулли?

$$\frac{\alpha_k V^2}{2g}, \frac{p}{\rho \cdot g}, z, \frac{1}{z}, \frac{\rho \cdot g}{p}, \frac{2g}{\alpha_k V^2}, \frac{V \cdot d}{\upsilon}, \frac{\upsilon}{V \cdot d}, \frac{\Delta}{d}, \frac{d}{\Delta}.$$

5. Отметьте формулу расчета относительной шероховатости?

$$\frac{\alpha_k V^2}{2g}$$
, $\frac{p}{\rho \cdot g}$, z , $\frac{1}{z}$, $\frac{\rho \cdot g}{p}$, $\frac{2g}{\alpha_k V^2}$, $\frac{V \cdot d}{v}$, $\frac{v}{V \cdot d}$, $\frac{\Delta}{d}$, $\frac{d}{\Delta}$.

- 6. Единица измерения скоростного, геометрического и пьезометрического напора в системе «Си» равна [M], [G/p], [M/m], [M/m].
- 7. Единица измерения абсолютной шероховатости в системе «Си» равна [M], [G/p], $[M^3/q]$, [1/M], [CM], [MM], [M/M].
- 8. Единица измерения относительной шероховатости в системе «Си» равна [M], [6/p], $[M^3/q]$, [1/M], [MM], [MM].
- 9. Единица измерения величины гидравлического уклона в системе «Си» равна [м], [б/р], [м³/ч], [1/м], [см], [мм], [м/м].

10. Величину гидравлического уклона можно рассчитать по формуле

$$\lambda \frac{1}{d} \frac{V^2}{2g}$$
, $\lambda \frac{1}{d} \frac{2g}{V^2}$, $\frac{64}{Re}$, $\frac{V \cdot d}{v}$, $-\frac{dH}{dx}$, $\frac{0.3164}{\sqrt[4]{Re}}$, $0.11 \left(\varepsilon + \frac{68}{Re}\right)^{1/4}$, $0.11 \cdot \varepsilon^{0.25}$.

11. Число Рейнольдса можно рассчитать по формуле

$$\lambda \frac{1}{d} \frac{V^2}{2g}$$
, $\lambda \frac{1}{d} \frac{2g}{V^2}$, $\frac{64}{\text{Re}}$, $\frac{V \cdot d}{v}$, $-\frac{dH}{dx}$, $\frac{0,3164}{\sqrt[4]{\text{Re}}}$, $0,11 \left(\varepsilon + \frac{68}{\text{Re}}\right)^{1/4}$, $0,11 \cdot \varepsilon^{0,25}$.

12. Формула Стокса для расчета коэффициента гидравлического сопротивления

имеет вид
$$\lambda \frac{1}{d} \frac{V^2}{2g}$$
, $\lambda \frac{1}{d} \frac{2g}{V^2}$, $\frac{64}{Re}$, $\frac{V \cdot d}{v}$, $-\frac{dH}{dx}$, $\frac{0,3164}{\sqrt[4]{Re}}$, $0,11 \left(\varepsilon + \frac{68}{Re}\right)^{1/4}$, $0,11 \cdot \varepsilon^{0,25}$.

13. Формула Альтшуля для расчета коэффициента гидравлического сопротив-

ления имеет вид
$$\lambda \frac{1}{d} \frac{V^2}{2g}, \ \lambda \frac{1}{d} \frac{2g}{V^2}, \ \frac{64}{\text{Re}}, \ \frac{V \cdot d}{\upsilon}, \ -\frac{dH}{dx}, \frac{0,3164}{\sqrt[4]{\text{Re}}}, \ 0,11 \bigg(\varepsilon + \frac{68}{\text{Re}}\bigg)^{1/4}, \\ 0,11 \cdot \varepsilon^{0,25}.$$

14. Формула Блазиуса для расчета коэффициента гидравлического сопротив-

ления имеет вид
$$\lambda \frac{1}{d} \frac{V^2}{2g}, \ \lambda \frac{1}{d} \frac{2g}{V^2}, \ \frac{64}{\text{Re}}, \frac{V \cdot d}{\upsilon}, \ -\frac{dH}{dx}, \frac{0,3164}{\sqrt[4]{\text{Re}}}, \ 0,11 \bigg(\varepsilon + \frac{68}{\text{Re}}\bigg)^{1/4}, \\ 0,11 \cdot \varepsilon^{0,25}.$$

15. Формула Шифринсона для расчета коэффициента гидравлического

сопротивления имеет вид
$$\lambda \frac{1}{d} \frac{V^2}{2g}, \ \lambda \frac{1}{d} \frac{2g}{V^2}, \ \frac{64}{\text{Re}}, \frac{V \cdot d}{\upsilon}, -\frac{dH}{dx}, \frac{0,3164}{\sqrt[4]{\text{Re}}},$$

$$0,11 \left(\varepsilon + \frac{68}{\text{Re}}\right)^{1/4}, \ 0,11 \cdot \varepsilon^{0,25}.$$

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Газовая смесь состоит из 99 % метана, 0,5 % этана и 0,5 % азота. Определить молярную массу газовой смеси и значение газовой постоянной. Ответ. 16,172 кг/кмоль; 514,1 Дж/(кг К).
- 2. Газовая смесь состоит из 88 % метана, 6 % этана, 4% пропана и 2 % азота. Определить молярную массу газо- вой смеси и значение ее газовой постоянной. Ответ. 18,243 кг/кмоль; 455,7 Дж/(кг К).
- 3. Определить массу 100 тыс. нормальных (то есть вычисленных при давлении р = 0,1013 МПа и температуре T = 293 К) кубометров природного газа ($\mu = 19,2$ кг/кмоль). Ответ. 79,842 т.
- 4. Объем природного газа ($\mu = 18,5$ кг/кмоль) в стандартных условиях составляет 250 тыс. м3 . Какова его масса? Ответ. 192,328 т.

- 5. Объем природного газа, измеренный при стандартных условиях, составляет 10 тыс. м3 . Каков объем этого газа при нормальных (то есть вычисленных при давлении р = 0,1013 МПа и температуре Т = 273 К) условиях? Ответ. 9317,4 м3 . 6. Объем природного газа, измеренный при нормальных условиях, составляет 50 тыс. м3 . Каков объем этого газа при стандартных условиях? Ответ. 53663 м3 . 7. Природный газ, хранящийся в резервуаре емкостью 20 тыс. м3 при среднем давлении 0,11 МПа, подвержен колебаниям суточной температуры от +8 °C ночью до +20 °C днем. Определить амплитуду колебания давления в резервуаре. Ответ. 0,0023 МПа.
- 8. Давление в газовом резервуаре составляет 0,12 МПа, температура +15 °C. На сколько повысится давление в этом резервуаре, если температура в нем возрастет на 15 °C? Ответ. 0,0063 МПа.
- 9. Газовую полость (или газовый пузырь) подземного хранилища газа (ПХГ) можно приближенно считать прямым цилиндром, имеющим в плане форму эллипса с полуосями а =3000 м, b =2000 м и высотой h =15 м. Пористость m пласта (то есть объемная доля пустот в породах, слагающих пласт), составляет 30 % (0,3), а насыщенность s пустот газом (то есть объемная доля этих пустот, заполненных газом), равна 0,65; остальная часть пустот заполнена водой. Определить, какой объем газа в стандартных кубических метрах находится в ПХГ, если известны пластовое давление p = 10 МПа и температура T = 30 °C газа. Известны также постоянные газа: R = 470 Дж/(кг K), $p_{\text{кp}} = 4,7$ МПа, Tкр. = 200 К. Ответ. 6,554 млрд.м3 .
- 10. После того, как из подземного хранилища газа (ПХГ), параметры которого даны в условии предыдущей задачи 9, отобрали некоторое количество газа, давление в газовой полости уменьшилось до 8,5 МПа, а нысыщенность s газа снизилась с 0,65 до 0,35. Определить, какое количество газа (в стандартных кубических метрах) извлечено из ПХГ за период отбора. Ответ. 3,661 млрд. м³. 11. Природный газ (µ = 19,5 кг/кмоль) при давлении 1,5 МПа и температуре 25 °С можно приближенно считать совершенным. Определить массу газа, если его объем при указанных условиях составляет 100 тыс. м³. Ответ. 1180,6 т.
- 12. Метан находится в контейнере при давлении 20 МПа и температуре +100 °C. В каком агрегатном состоянии находится газ? В каком агрегатном состоянии находился бы метан в том же контейнере, если бы его температуру снизили до (–110) °C? Ответ обосновать. Ответ. В газообразном. В жидком.
- 13. Газовая смесь состоит из 94 % метана, 4 % этана и 2 % азота. Определить критические параметры смеси. Ответ. 4,627 МПа; 193,86 К.

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Природный газ ($\Delta = 0.62$; $p_{\kappa p} = 4.75$ МПа; $T_{\kappa p} = 194$ К) необходимо транспортировать по участку газопровода (L = 120 км, $D = 1020 \times 10$ мм, k = 0,03 мм) с коммерческим расходом 35 млн. м3 /сутки в изотермическом режиме при средней температуре +12 °C. Какое давление следует ожидать в конце участка газопровода, если давление в его начале составляет 5,5 МПа? Ответ. 3,14 МПа. 2. При стационарной перекачке газа ($p_{\kappa p} = 7.4$ МПа, $T_{\kappa p} = 194$ К) давление и

- температура в начале участка газопровода составляют 5,2 МПа и 35 °C, а в его конце 3,5 МПа и 10 °C, соответственно. Определить, во сколько раз скорость газа в конце участка превышает скорость газа в его начале. Ответ. В 1,375 раза.
- 3. Давление в начале участка газопровода составляет 7,5 МПа, а в конце участка -4,0 МПа. Найти давление в середине этого участка. Ответ. 6,0 МПа.
- 4. Давление в начале участка газопровода составляет 7,50 МПа, а в конце участка 4,00 МПа. Найти давление в сечении, отстоящим на 1/3 протяженности участка от его начала. Ответ. 6,54 МПа.
- 5. Определить среднее давление на участке газопровода при стационарном изотермическом режиме перекачки, если давление в начале участка составляет 5,2 МПа, а в его конце 3,5 МПа. Ответ. 4,405 МПа.
- 6. Коммерческий расход газа ($\mu = 17.1~\text{кг/кмоль}$, $p_{\kappa p} = 4.7~\text{МПа}$; Ткр. = 194 К) составляет 25 млн. м3 /сутки. Найти объемный расход $Q_{\text{в}}$. газа на входе в центробежный нагнетатель, если известно, что давление на входе в нагнетатель составляет 3,7 МПа, а температура газа +15 °C . Ответ. 430 м3 /мин.
- 7. Коммерческий расход газа (μ = 17,1 кг/кмоль, $p_{\kappa p}$ = 4,7 МПа; Ткр. = 194 К) составляет 25 млн. м3/сутки. Найти отношение объемного расхода $Q_{\rm H}$. газа на выходе нагнетателя к объемному расходу $Q_{\rm B}$ на входе в нагнетатель, если известны давление и температура газа 3,7 МПа, +15 °C до нагнетателя, и 5,2 МПа, +35 °C после нагнетателя. Ответ. 0,753.
- 8. Доказать, что увеличение давления в начале участка газопровода на величину Δ р (при неизменном давлении в его конце) приводит к большему увеличению коммерческого расхода газа, чем уменьшение давления в конце участка на ту же величину Δ р (при неизменном давлении в его начале).
- 9. Уменьшится или увеличится коммерческий расход газа на участке газопровода, если давления в начале и в конце этого участка одновременно увеличить на одну и ту же величину Δ р? Температуру, коэффициент сжимаемости и коэффициент гидравлического сопротивления считать постоянными. Ответ. Увеличится.
- 10. Коммерческий расход газа, перекачиваемого по участку газопровода (D = 1020×10 мм, k = 0.03 мм) равен 20 млн. м3 /сутки. Какой расход газа установился бы на участке такой же протяженности в газопроводе большего диаметра (D = 1220×12 мм, k = 0.03 мм) при тех же давлениях в начале и конце участка. Среднюю температуру и коэффициент сжимаемости газа в сравниваемых вариантах считать одинаковыми. Ответ. 31,85 млн. м3 /сутки.
- 11. Компрессорная станция обеспечивает перекачку газа по участку газопровода постоянного диаметра, развивая при этом степень сжатия 1,56. Считая, что давления перед компрессорной станцией и в конце рассматриваемого участка равны друг другу, определить, на сколько нужно увеличить степень сжатия газа, чтобы расход перекачки возрос на 10 %. Давление в конце участка, среднюю температуру и коэффициент сжимаемости газа в сравниваемых вариантах считать одинаковыми. Ответ. 1,654 (то есть на 6 %).
- 12. Давление в начале 125-км участка газопровода (D = $1020\times10\,$ мм, k = 0, 03 мм) составляет 6,0 МПа, а в конце участка 3,5 МПа. Определить коммерческий расход газа ($\Delta=0.6$; $p_{\kappa p}=4.8$ МПа; $T_{\kappa p}=200$ К), перекачиваемого при

постоянной температуре +15°C. Ответ. 37,64 млн. м3 /сутки.

- 13. Давление в начале 120-км участка газопровода (D = 1220×12 мм, k = 0.03 мм) составляет 5,5 МПа, а в конце участка 3,8 МПа. Определить коммерческий расход газа ($\Delta = 0.59$; $p_{\kappa p} = 4.7$ МПа; Ткр. = 194 К), перекачиваемого при постоянной температуре +10 °C. Ответ. 50,58 млн. м3 /сутки.
- 14. Природный газ ($\Delta = 0$, 59; $p_{\kappa p} = 4.7$ МПа; $T\kappa p = 194$ К) перекачивают по участку газопровода (L = 100 км, $D = 1020 \times 10$ мм, k = 0, 05 мм) в изотермическом режиме (T = +10 °C) с коммерческим расходом 30 млн. м3 /сутки. Какое давление необходимо поддерживать в начале участка газопровода, чтобы давление в конце участка было не ниже 3,2 МПа? Ответ. Не ниже 4,83 МПа.

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Формула расчета расхода для установившегося изотермического движения вязкого газа по трубопроводу?
- 2. Коэффициент гидравлического сопротивления газопровода?
- 3 Распределение давления газа в газопроводе?
- 4. Среднее и среднеинтегральное значение давления газа в трубопроводе?
- 5. Тепловое состояние газопровода (формула Шухова)?
- 6. Среднее и среднеинтегральное значение температуры газа в трубопроводе?
- 7. Тепловое взаимодействие трубопровода и грунта?
- 8. Расчет сложных газопроводов (основные понятия)?
- 9. Однониточные газопроводы с участками различного диаметра?
- 10. Параллельное соединение газопроводов?
- 11. Газопровод постоянного диаметра с путевыми отборами (подкачками) газа?
- 12. Понятие нормальных и стандартных условий?
- 13. Алгоритм расчета газовых сетей низкого давления?
- 14. Понятие основного направления?
- 15. Расчет удельной величины падения давления для распределительной сети?
- 16. Расчет теоретических давлений в сети?
- 17. Методика расчет газовой сети по СНИП 2.04.08-87 "Газоснабжение"?
- 18. Методика расчет газовой сети СП 42-101-2003?
- 19. Режимы движения газа?
- 20. Понятие абсолютной, относительной и эквивалентной шероховатости?
- 21. Что такое гидравлически гладкая стенка, при каких условиях существуют такие режимы течения?
- 22. Что характеризует число Рейнольдса?
- 23. Классификация газовых сетей по рабочему давлению в сети?
- 24. Как влияет шероховатость трубопроводов на пропускную способность системы?
- 25. Какие ограничение на скорость движения газа по трубопроводам существуют?
- 26. Какая допустимая максимальная величина потери давления до самого

удаленного абонента для сетей низкого давления установлена нормативными документами?

- 27. Методика расчета сети высокого (среднего) давления по СНиП 2.04.08-87?
- 28. Методика расчета сети высокого (среднего) давления по СП 42-101-2003?
- 29. Алгоритм расчета сети высокого (среднего) давления?
- 30. Алгоритм и методика расчета кольцевых газовых сетей?

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства	
1	Раздел 1 - Основы функционирования систем доставки газа	ПК-1, ПК-7	Тест, контрольная работа, защита	
2	Раздел 2 - Проектирование систем газоснабжения	ПК-1, ПК-7	Контрольная работа, защита лабораторных работ, требования к курсовому проекту	
3	Раздел 3 - Гидравлический расчет газовых сетей	ПК-1, ПК-7	Контрольная работа, защита лабораторных работ, требования к курсовому проекту	
4	Раздел 4 - Типовое оборудование газораспределительных сетей низкого и среднего давления	ПК-1, ПК-7	Контрольная работа, защита лабораторных работ, требования к курсовому проекту	
5	Раздел 5 - Определение расхода газа в населенных пунктах по укрупненным показателям	ПК-1, ПК-7	Контрольная работа, защита лабораторных работ, требования к курсовому проекту	
6	Раздел 6 - Поиск оптимальных схем газоснабжения	ПК-1, ПК-7	Тест	
	Раздел 7 - Безопасность эксплуатации газовых сетей		Тест работ	

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Марон В.И Гидравлика двухфазных потоков в трубопроводах. Учебное пособие. СПб.: «Издательство Лань», 2012.- 256.c (ЭБС «Лань»)

Лурье М.В. Задачник по трубопроводному транспорту нефти, нефтепродуктов и газа: учеб. пособие. - 3-е изд. - М.: Центр "ЛитНефтегаз", 2004. - 349 с.

А.И. Житенев, И.В. Рощупкина Методические указания по выполнению курсового проекта «Гидравлический расчет сложных газопроводов» по дисциплине «Газораспределительные системы» для студентов направления подготовки 21.03.01 «Нефтегазовое дело» всех форм обучения (№205-2016)

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Компьютерный класс, специализированное ПО для проведения лабораторных работ, MS Excel (или совместимое ПО), MS Word (или совместимое ПО)

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Компьютерный класс с доступом в Интернет

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Газораспределительные системы» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовой проект.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета газовых сетей. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсового проекта изложена в учебнометодическом пособии. Выполнять этапы курсового проекта должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсового проекта, защитой курсового проекта.

курсового проекта, защитои курсового проекта.				
Вид учебных занятий	Деятельность студента			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.			
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.			
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.			
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:			

	- работа с текстами: учебниками, справочниками, дополнительной			
	литературой, а также проработка конспектов лекций;			
	- выполнение домашних заданий и расчетов;			
	- работа над темами для самостоятельного изучения;			
	- участие в работе студенческих научных конференций, олимпиад;			
	- подготовка к промежуточной аттестации.			
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в			
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не			
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные			
	перед экзаменом, экзаменом три дня эффективнее всего использовать			
	для повторения и систематизации материала.			