МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

«УТВЕРЖДАЮ» /Ряжских В.И./ августа 2021 г. **РАБОЧАЯ ПРОГРАММА** дисциплины «Теория литейных процессов» Направление подготовки 22.03.02 «МЕТАЛЛУРГИЯ» Профиль «Технология литейных процессов» Квалификация выпускника бакалавр Нормативный период обучения 4 года Форма обучения очная Год начала подготовки <u>2021</u> / Ожерельев В.В. /

/Селиванов В.Ф./

/Печенкина Л.С./

Автор программы

Заведующий кафедрой технологии сварочного

Руководитель ОПОП

производства и диагностики

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Изучение дисциплины направлено на усвоение студентами базовых знаний о явлениях и процессах, имеющих место при получении отливок различными способами из литейных металлов и сплавов. Рассматриваются закономерности формирования отливок с момента приготовления жидкого расплава до охлаждения твердой заготовки; литейные свойства, проявляющихся при течении жидкого металла, его кристаллизации, затвердевании и охлаждения; взаимосвязи технологических параметров и показателей качества литой заготовки.

1.2. Задачи освоения дисциплины

Овладение студентами принципами и практическими навыками управления процессами формирования отливок с учетом особенностей различных технологий и отдельных производственных операций.

В результате изучения дисциплины обучающийся должен знать физическую сущность процессов формирования структуры и свойств отливок; литейные свойства металлов и сплавов; влияние технологических режимов и параметров на показатели качества литых заготовок; причины возникновения литейных дефектов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теория литейных процессов» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1 учебного плана..

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Теория литейных процессов» направлен на формирование следующих компетенций:

ПК-4 — Способен обосновывать выбор оборудования для обеспечения технологических процессов

Компетенция	Результаты обучения, характеризующие сформированность компетенции			
ПК-4	знать			
	- основные теоретические положения и базовые			
	понятия литейных процессов и технологий;			
	- теоретические основы теплофизического, физико-			
	химического взаимодействия расплава и формы;			
	- гидравлические и газодинамические закономерности			
	и явления, протекающие с момента приготовления			
	жидкого металла до охлаждения твердой заготовки;			
	- взаимосвязи технологических параметров и			
	показателей качества литой продукции.			
	уметь			
	- описывать литейный процесс на основе			

комплексного знания и понимания теории
кристаллизации, теплофизических, физико-
химических и гидравлических процессов,
протекающих в литейной форме
- выполнять основные расчеты основного и
вспомогательного технологического оборудования;
- осуществлять оптимальный выбор оборудования для
реализации технологических процессов в литейных
цехах;
владеть
- навыками управления процессами формирования
отливок;
- методиками расчета технологических процессов и
конструктивных элементов литейной формы;
- навыками выбора рациональных технологических
процессов литейного производства
I I

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Теория литейных процессов» составляет 4 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Puru vuoduor nodomu	Всего	Семестры
Виды учебной работы	часов	5
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	36	36
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	72	72
Виды промежуточной аттестации – зачет с	+	+
оценкой		·
Общая трудоемкость:		
академические часы	144	144
зач.ед.	4	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Литейные процессы и особенности перехода металла из жидкого состояния в твердое	Возникновение и задачи теории литейных процессов. Основные особенности перехода металла из жидкого состояния в твердое.	4	-	10	14
2	Гидравлические процессы	Классификация способов заливки форм и типов литниковых систем.	8	6	10	24

		Свойства расплавленных металлов как				
		жидкостей.				
		Структура потоков жидких металлов.				
		Расчет истечения металла из ковша и				
		заполнения формы.				
		Движение неметаллических частиц в потоке				
		сплава и их задержание.				
		Охлаждение металла при разливке.				
		Жидкотекучесть сплавов.				
		Заполняемость форм.				
		Проектирование и расчет литниковых систем.				
3	Кристаллизационные	Предкристаллизационное состояние				
3	-	* *				
	процессы	расплавленных металлов и сплавов.				
		Термодинамическая теория кристаллизации.				
		Формирование структуры металла.				
		Типы кристаллических структур сплавов в				
		отливках.	8	6	10	24
		Расчет распределения примеси в структуре;				
		дендритная ликвация.				
		Неметаллические включения.				
		Газы.				
		Зональная ликвация в отливках.				
		Регулирование кристаллизационных процессов.				
4	Тепловые процессы	Методы исследования затвердевания отливок и				
		классификация литейных форм.				
		Тепловые свойства литейных сплавов и				
		материалов форм.				
		Строение области затвердевания.				
		Расчет затвердевания полупространства.				
		Влияние конфигурации отливки и	4	6	16	26
		технологических факторов на затвердевание.				
		Инженерные методы расчета затвердеваний				
		отливок.				
		Охлаждение отливки в форме.				
		Взаимодействие отливки с формой.				
		Регулирование тепловых процессов.				
5	Усадочные процессы	Физическая природа усадки.				
	з садочные процессы	Усадочная пористость.				
		Расчет усадочных раковин в цилиндрических				
		отливках.				
		Влияние технологических факторов и состава				
		сплава на формирование усадочных раковин.				
		Прибыли и их классификация.				
			8	12	20	40
		Инженерные методы расчета усадочных раковин и прибылей.				
		и приоылеи. Регулирование работы прибылей и организация				
		питания.				
		Усадочные деформации.				
		Трещины.				
		Временное и остаточные напряжения.				
6	Качество отливки и выбор	Качество и надежность отливки.	4	6	6	16
<u> </u>	состава сплава	Выбор состава литейного сплава.	•			
		Итого	36	36	72	144

5.2 Перечень лабораторных работ

- 1. Исследование жидкотекучести литейных сплавов
- 2. Исследование формирования усадочных раковин в отливках
- 3. Исследование и определение величины усадки металлов и сплавов
- 4. Исследование напряжений в отливках
- 5. Металлографическое исследование отливок

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ)

И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-4	знать - основные теоретические положения и базовые понятия литейных процессов и технологий; - теоретические основы теплофизического, физико-химического взаимодействия расплава и формы; - гидравлические и газодинамические закономерности и явления, протекающие с момента приготовления жидкого металла до охлаждения твердой заготовки; - взаимосвязи технологических параметров и показателей качества литой продукции.	Тестирование Отчет по лабораторным работам Контрольная работа	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь - описывать литейный процесс на основе комплексного знания и понимания теории кристаллизации, теплофизических, физико-химических и гидравлических процессов, протекающих в литейной форме - выполнять основные расчеты основного и	Тестирование Отчет по лабораторным работам Контрольная работа	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

вспомогательного технологического оборудования; - осуществлять оптимальный выбор оборудования для реализации технологических процессов в литейных цехах;			
владеть	Тестирование	Выполнение работ в	Невыполнение
- навыками управления	Отчет по лабораторным	срок,	работ в срок,
процессами	работам	предусмотренный в	предусмотренный
формирования отливок;	Контрольная работа	рабочих программах	в рабочих
- методиками расчета			программах
технологических			
процессов и			
конструктивных			
элементов литейной			
формы;			
- навыками выбора			
рациональных			
технологических			
процессов литейного			
производства			

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 5 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-4	знать	Тест	Выполнение	Выполнение	Выполнение	В тесте
	- основные		теста на 90-	теста на 80-	теста на 70-	менее 70%
	теоретические		100%	90%	80%	правильных
	положения и базовые					ответов
	понятия литейных					
	процессов и					
	технологий;					
	- теоретические					
	основы					
	теплофизического,					
	физико-химического					
	взаимодействия					
	расплава и формы;					
	- гидравлические и					
	газодинамические					
	закономерности и					
	явления,					
	протекающие с					
	момента					
	приготовления					
	жидкого металла до					
	охлаждения твердой					
	заготовки;					
1	- взаимосвязи					
	технологических					

	параметров и			I		1
	показателей качества					
	показателей качества литой продукции.					
ľ	• •	Решение	Задачи	Проделено	Проделенет	Задачи не
	уметь - описывать			Продемонстр	Продемонстр	
		стандартных	решены в	ирован	ирован верный	решены
	литейный процесс на	_	полном	верный ход	ход решения в	
	основе комплексного	задач	объеме и	решения	большинстве	
	знания и понимания		получены	всех, но не	задач	
	теории		верные	получен		
	кристаллизации,		ответы	верный ответ		
	теплофизических,			во всех		
	физико-химических			задачах		
	и гидравлических					
	процессов,					
	протекающих в					
	литейной форме					
	- ВЫПОЛНЯТЬ					
	основные расчеты					
	основного и					
	вспомогательного					
I	технологического					
	оборудования;					
	- осуществлять					
	оптимальный выбор					
	оборудования для					
	реализации					
	технологических					
	процессов в					
	литейных цехах;					
ſ	владеть	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	- навыками	прикладных	решены в	ирован	ирован верный	решены
	управления	задач в	полном	верный ход	ход решения в	*
	процессами	конкретной	объеме и	решения	большинстве	
	формирования	предметной	получены	всех, но не	задач	
	отливок;	области	верные	получен	7*** -	
	- методиками расчета		ответы	верный ответ		
	технологических			во всех		
	процессов и			задачах		
	конструктивных			34,44.1		
	элементов литейной					
	формы;					
	- навыками выбора					
	рациональных					
	рациональных технологических					
	процессов литейного					
	•					
	производства					

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
- 7.2.1 Примерный перечень заданий для подготовки к тестированию
 - 1. Жидкое состояние является или отличается:
 - а. промежуточным между твердым и газообразным состояниями.
 - б. близким к газообразному состоянию.
 - в. близким к твердому состоянию.
 - г. особым состоянием, не похожим на твердое и жидкое состояния.

2. Ближний порядок:

- **а.** закономерности в расположении атомов на расстояниях, сравнимых с радиусом первой координационной сферы.
 - б. беспорядочное расположение атомов в жидком металле.
- в. закономерное расположение атомов во всем объеме жидкого металла.
 - г. ничем не отличается от дальнего порядка.
- 3. Наличие ближнего порядка и отсутствие дальнего порядка характерно:
 - а. только для жидкостей;
 - б. только для кристаллических твердых тел;
 - в. для жидкостей и газов;
 - г. для жидкостей и аморфных твердых тел;
 - д. только для аморфных твердых тел.

4. Дальний порядок:

- а. характеризует жидкое состояние.
- **б.** закономерное расположение частиц на расстояниях, во много раз превышающих радиус первой координационной сферы.
 - в. беспорядочное расположение атомов в жидком состоянии.
 - г. закономерное расположение атомов в микрообъеме жидкого металла.
- 5. При температурах, не слишком отличающихся от температур плавления, жидкая фаза по своим свойствам и структуре существенно ближе к:
 - а. твердым телам.
 - б. газам.
 - в. твердым телам и газам.
 - г. жидкому состоянию.
 - д. аморфному состоянию.
 - 6. Объем большинства металлов при плавлении:
 - а. возрастает на 3-6%.
 - б. не изменяется.
 - в. возрастает на 50-60%.
 - г. возрастает на 100%.
 - д. уменьшается на 3-6%.
 - 7. Плотность металлов в твердом и жидком состояниях:

- **а**. близки друг к другу из-за смещения атомов на не большие расстояния.
 - б. резко отличаются.
 - в. не отличается из-за малого смещения атомов при плавлении;
- г. уменьшаются существебнно из-за увеличения межатомного расстояния в жидком состоянии;
 - д. возрастает из-за сближения атомов в жидком состоянии.
- 8. <u>Из –за смещения атомов на не большие расстояния процесс плавления существенно:</u>
- а. влияет на энергию взаимодействия между частицами в жидком и твердом состояниях.
- б. не влияет на энергию взаимодействия между частицами в жидком и твердом состояниях.
- в. мало влияет, на что указывают малые величины теплот плавления $\Delta H_{\text{пл}}$, которые значительно выше величины теплоты испарения $\Delta H_{\text{исп}}$.
 - 9. О близости строения жидких и твердых металлов говорят:
- **а.** малые энтропии плавления $\Delta S_{\text{пл}}$, которая, согласно правилу Ричардса, приблизительно равна 8,4 Дж/(моль·К).
- б. большие величины энтропии плавления $\Delta S_{\text{пл}}$, которая равна $88\mbox{Дж/(моль}\cdot\mbox{K}).$
 - в. равенство энтропии плавления $\Delta S_{\text{пл}}$.
- 10. <u>Электрическое сопротивление при плавлении металлов</u> увеличивается в 1,5-2,0 раза. При этом тип проводимости в жидких металлах:
- **а**. не изменяется и обуславливается наличием коллективизированных электронов.
- б. изменяется из-за увеличения количества коллективизированных электронов.
- в. уменьшается из-за уменьшения количества коллективизированных электронов.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Как изменяется вязкость при увеличении температуры:
- а. вязкость жидких металлов повышается с повышением температуры:
- $\mathfrak{g}=A\cdot \exp$ (Е \mathfrak{g}/RT), где A постоянная величина, зависящая от природы металла. Е \mathfrak{g} энергия активации вязкого течения. R газовая постоянная. T абсолютная температура, K.
 - б. вязкость жидких металлов снижается с повышением температуры по

вышеуказанной формуле.

- в. вязкость не изменяется от температуры.
- 2. Какова зависимость между динамической и кинематической вязкостью:
- **а**. кинематическая вязкость υ представляет собой отношение $\upsilon = \mathfrak{g}/d$, где \mathfrak{g} динамическая вязкость, Па \cdot с (МПа \cdot с). υ кинематическая вязкость, м2/с. d плотность.
 - σ. υ = η · d.
 - B. $\eta = v/d$.
 - 3. Какие существуют методы определения поверхностного натяжения?
 - а. метод отрывающейся капли.
 - б. метод капиллярного поднятия.
 - в. метод максимального давления.
 - г. совокупность всех вышеуказанных методов.
- 4. Что такое теплота образования жидких сплавов ΔH и что означает + ΔH и ΔH :
- **а**. теплота образования жидких сплавов измеряется той энергией, которая поглощается или выделяется при взаимном растворении двух или более жидких металлов, взятых при одинаковой температуре.

Положительная энергия, поглощаемая системой, приписывается знаком «+». Энергия, выделившаяся из системы, считается отрицательной и обозначается знаком «-».

- б. количество энергии, поглощенное или выделенное при образовании сплавов, относится к 1 молю сплава, называют его интегральной молярной теплотой смещения или образования. Положительная энергия, поглащаемая системой, приписывается знаком «-», а энергия, выделившаяся из системы «+».
 - в. совокупность всех ответов.
 - 5. Область заполняемости это
- а. Область значений параметров, при которых отливка не может быть получена без литейных дефектов;
- **б.** Автомодельная область значений параметров в пределах, которых отливка может быть получена без литейных дефектов;
- в. Область значений параметров, при которых возможно образование усадочной пористости;
- г. Область значений параметров в пределах которых возможно возникновение спаев.
- 6. Выбор температуры нагрева литейной формы перед заливкой осуществляется на основании анализа

- а. химического состава заливаемого сплава;
- б. толщины стенки отливки
- в. конфигурации отливки;
- г. все вышеперечисленное
- 8. Для обеспечения одинаковых условий формирования отливок 3 и 4 типов целесообразнее использовать верхние литниковые системы
 - а. с литниковым ходом в форме параллелепипеда;
 - б. с кольцевым или цилиндрическим литниковым ходом;
 - в. с крестообразным литниковым ходом;
 - г. с литниковыми ходами по пунктам 2 и 3
 - 9. Математическая модель процесса кристаллизации базируется на:
 - а. решении уравнения теплоотдачи;
- **б.** балансовом уравнении, составленном на основании закона сохранении энергии;
 - в. решении уравнения Фурье-Кирхгофа;
 - г. решении уравнения Навье-Стокса.
- 10. Оценку процесса заполнения полости формы расплавом для ЛВМ осуществляют по
 - а. величине расхода расплава из ковша;
 - б. скорости течения расплава в питателях;
 - в. скорости подъема расплава в литейной форме;
 - г. времени заполнения полости формы расплавом.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. В печи находится 1000 кг латуни ЛЦ15 (Cu + 15% Zn). Сколько следует добавить в расплав двойного сплава Zn + 22 % Al, чтобы содержание алюминия в расплаве оказалось равным 2 %?. Определить массу полученного расплава и содержание в нем меди и цинка.
- 2. Приготовлен сплав из 82 кг чистой меди и 18 кг соединения Cu₃Sn. Масса полученного сплава 100 кг. Вычислить состав сплава в % мол. и % масс. Определить, сколько литейных форм объемом 1000 см³ можно заполнить, используя 100 кг приготовленного жидкого расплава. Плотность расплава принять равной 0,9 от плотности сплава при температуре 20 °C.
- 3. Плотность сплава железа с углеродом оказалась равной 7,1 г/см³. По результатам металлографического анализа установлено, что весь углерод присутствует в свободном виде (в виде графита). Определить содержание цементита Fe₃C в данном сплаве, если весь углерод будет связан в это соединение.
- 4. Вычислить мощность индукционной канальной электропечи, необходимую для выдачи 6 т/ч расплава меди с температурой 1250 °C.

Температура загружаемой шихты 20 °C, общий КПД печи 50 %.

5. При газовом анализе пробы чугуна массой 1 г в измерительном сосуде емкостью 500 мл при температуре 27 °C обнаружены газы: водород H_2 , азот N_2 , аммиак NH_3 . Парциальные давления этих газов оказались равными 15, 5 и 1 Па соответственно. Вычислить содержание водорода и азота в чугуне в % масс., % мол.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Возникновение и задачи теории литейных процессов.
- 2. Основные особенности перехода металла из жидкого состояния в твердое.
- 3. Классификация способов заливки форм и типов литниковых систем.
- 4. Свойства расплавленных металлов как жидкостей.
- 5. Структура потоков жидких металлов.
- 6. Расчет истечения металла из ковша и заполнения формы.
- 7. Движение неметаллических частиц в потоке сплава и их задержание.
- 8. Охлаждение металла при разливке.
- 9. Жидкотекучесть сплавов.
- 10. Заполняемость форм.
- 11. Проектирование и расчет литниковых систем.
- 12. Предкристаллизационное состояние расплавленных металлов и сплавов.
- 13. Термодинамическая теория кристаллизации.
- 14. Формирование структуры металла.
- 15. Типы кристаллических структур сплавов в отливках.
- 16. Расчет распределения примеси в структуре; дендритная ликвация.
- 17. Неметаллические включения.
- 18. Газы.
- 19. Зональная ликвация в отливках.
- 20. Регулирование кристаллизационных процессов.
- 21. Методы исследования затвердевания отливок и классификация литейных форм.
- 22. Тепловые свойства литейных сплавов и материалов форм.
- 23. Строение области затвердевания.
- 24. Расчет затвердевания полупространства.
- 25. Влияние конфигурации отливки и технологических факторов на затвердевание.
- 26. Инженерные методы расчета затвердеваний отливок.
- 27. Охлаждение отливки в форме.
- 28. Взаимодействие отливки с формой.
- 29. Регулирование тепловых процессов.
- 30. Физическая природа усадки.
- 31. Усадочная пористость.
- 32. Расчет усадочных раковин в цилиндрических отливках.
- 33. Влияние технологических факторов и состава сплава на формирование усадочных раковин. Прибыли и их классификация.

- 34. Инженерные методы расчета усадочных раковин и прибылей.
- 35. Регулирование работы прибылей и организация питания.
- 36. Усадочные деформации.
- 37. Трещины.
- 38. Временное и остаточные напряжения.
- 39. Качество и надежность отливки.
- 40. Выбор состава литейного сплава.

7.2.5 Примерный перечень заданий для подготовке к экзамену Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы дисциплины	контролируемой компетенции	Наименование оценочного средства
1	Литейные процессы и особенности переход металла из жидкого состояния в твердое	а ПК-4	Тест защита лабораторных работ.
2	Гидравлические процессы	ПК-4	Тест, защита лабораторных работ.
3	Кристаллизационные процессы	ПК-4	Тест, защита лабораторных работ.
4	Тепловые процессы	ПК-4	Тест, защита лабораторных работ.
5	Усадочные процессы	ПК-4	Тест, защита лабораторных работ.
6	Качество отливки и выбор состава сплава	ПК-4	Тест, защита лабораторных работ.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется

проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
- 1. Трухов А.П., Маляров А.И. Литейные сплавы и плавка: учебник для студентов высших учебных заведений М.: Издательский центр «Академия», 2004. 336 с.
- 2. Лукина З.С.Получение и обработка металлов и соединений: учеб. пособие. Воронеж: ВГТУ, 2004. 201 с.
- 3 Аммер В.А. Теория литейных процессов. Затвердевание из расплава учеб. пособие. Воронеж : ВГТУ, 2008
- 4. Аммер В.А. Лабораторный практикум по теории литейных процессов: учеб. пособие. Воронеж: ВГТУ, 2004.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное ПО

LibreOffice

Ресурс информационно-телекоммуникационной сети «Интернет» http://www.edu.ru/

Образовательный портал ВГТУ

Информационная справочная система

http://window.edu.ru

https://wiki.cchgeu.ru/

eLIBRARY.RU, доступ свободный www.elibrary.ru

Современные профессиональные базы данных

Электронно-библиотечная система ЛАНЬ, доступ свободный

https://e.lanbook.com/

Библиотека Машиностроителя

Адрес pecypca: https://lib-bkm.ru/14518

CKM LVM Flow, http://otlivka.info/, http://www.ruscastings.ru

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой

Учебные лаборатории:

«Материаловедения»

«Металлографическая»

«Термической обработки»

«Прочности»

231/1 аудитория для самостоятельной подготовки студентов

Лабораторная база: металлографические микроскопы МИМ-7 и МИМ-8, биологические микроскопы, инструментальные микроскопы, твердомеры, печи нагревательные муфельные, шахтные, трубчатые, термопары, испытательные машины Р10, Р20, МК30, приспособления для приготовления металлографических шлифов, стенды с характерными видами изломов и типами испытательных образцов, комплекты металлографических шлифов черных и цветных металлов и сплавов, печи, диапроектор, эпидиаскоп, компьютеры персональные, ксероксы, принтеры, цифровой фотоаппарат.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Теория литейных процессов» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
	Написание конспекта лекций: кратко, схематично, последовательно
	фиксировать основные положения, выводы, формулировки,
	обобщения; помечать важные мысли, выделять ключевые слова,
	термины. Проверка терминов, понятий с помощью энциклопедий,
	словарей, справочников с выписыванием толкований в тетрадь.
	Обозначение вопросов, терминов, материала, которые вызывают
	трудности, поиск ответов в рекомендуемой литературе. Если
	самостоятельно не удается разобраться в материале, необходимо

	сформулировать вопрос и задать преподавателю на лекции или на			
	практическом занятии.			
Лабораторная работа	Лабораторные работы позволяют научиться применять			
	теоретические знания, полученные на лекции при решении			
	конкретных задач. Чтобы наиболее рационально и полно			
	использовать все возможности лабораторных для подготовки к ним			
	необходимо: следует разобрать лекцию по соответствующей теме,			
	ознакомится с соответствующим разделом учебника, проработать			
	дополнительную литературу и источники, решить задачи и			
	выполнить другие письменные задания.			
Самостоятельная	Самостоятельная работа студентов способствует глубокому			
работа	усвоения учебного материала и развитию навыков самообразования.			
	Самостоятельная работа предполагает следующие составляющие:			
	- работа с текстами: учебниками, справочниками, дополнительной			
	литературой, а также проработка конспектов лекций;			
	- выполнение домашних заданий и расчетов;			
	- работа над темами для самостоятельного изучения;			
	- участие в работе студенческих научных конференций, олимпиад;			
	- подготовка к промежуточной аттестации.			
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в			
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться			
аттестации	не позднее, чем за месяц-полтора до промежуточной аттестации.			
	Данные перед экзаменом три дня эффективнее всего использовать			
	для повторения и систематизации материала.			

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

			Подпись
No		Дата	заведующего
	Перечень вносимых изменений	внесения	кафедрой,
п/п		изменений	ответственной за
			реализацию ОПОП