МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
Декан факуньтета инженерных систем и
сооружений
С.А. Яременко

«систем у февраля 2024г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Ресурсосберегающие технологии»

Направление подготовки 08.04.01 Строительство

Профиль Техническая эксплуатация и реконструкция зданий и сооружений

Квалификация выпускника магистр

Нормативный период обучения <u>2 года / 2 года и 4 м.</u>

Форма обучения очная / заочная

Год начала подготовки <u>2024</u>

Автор программы / Кононова М.С./

/ Драпалюк Н.А./

Руководитель ОПОП

/ Кононова М.С./

Воронеж 2024

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Целью дисциплины является формирование у студентов систематизированной базы знаний об организационных, управленческих, технических, технологических и экономических мерах, направленных на эффективное использование энергетических ресурсов в жилищно-коммунальном хозяйстве.

1.2. Задачи освоения дисциплины

- знакомство с основными направлениями экономии энергии при выработке и транспортировке теплоты;
- изучение причин и методов устранения перерасхода энергии на отопление, вентиляцию, горячее и холодное водоснабжение зданий;
- освоение современных методов организации, контроля и учёта потребления энергоресурсов;
- изучение современной практики использования возобновляемых источников энергии и вторичных энергоресурсов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Ресурсосберегающие технологии» относится к дисциплинам блока ФТД.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Ресурсосберегающие технологии» направлен на формирование следующих компетенций:

ПК-4 - Способен разрабатывать и контролировать мероприятия по повышению уровня санитарного содержания, благоустройства, безопасности и энергоэффективности зданий и сооружений

Компетенция	Результаты обучения, характеризующие сформированность компетенции			
ПК-4	знать правовые, организационно-			
	управленческие, технические, технологические,			
	экономические, экологические основы			
	энергосбережения (ресурсосбережения);			
	уметь определять техническую суть энергосберегающих мероприятий для отдельных потребителей энергии в конкретных условиях			
	владеть навыками расчета потенциальной			
	экономии энергии при внедрении различных			
	энергосберегающих мероприятий.			

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Ресурсосберегающие технологии» составляет 2 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Виды учебной работы		Семестры
		1
Аудиторные занятия (всего)	36	36
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	18	18
Самостоятельная работа	36	36
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	72	72
зач.ед.	2	2

заочная форма обучения

Decree surveys and once	Всего	Семестры
Виды учебной работы	часов	2
Аудиторные занятия (всего)	8	8
В том числе:		
Лекции	4	4
Практические занятия (ПЗ)	4	4
Самостоятельная работа	60	60
Часы на контроль	4	4
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	72	72
зач.ед.	2	2

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	o man wopina ooy teninn					
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Нормативно-правовая база энергосбережения	Правовое обеспечение энергосбережения на федеральном и региональном уровнях. Закон об энергосбережении и подзаконные акты к нему.	2	1	4	6
2	Организация учёта энергопо- требления	Типы расходомеров: тахометрические, электромагнитные, ультразвуковые. Принцип их действия, область применения. Факторы, определяющие выбор типа расходомера. Схемы учёта теплопотребления на отопление и горячее водоснабжение. Характеристика необходимого оборудования, принцип его действия. Организация поквартирного учёта	2	2	4	8

-		Итого	18	18	36	72
		геотермальной энергии. Малая гидроэнергетика. Основные виды биомассы и их использование. Биогаз, свалочный и шахтный газ.				
		Использование энергии водных потоков и энергия морских приливов и волн. Применение высокопотенциальной				
		Энергетические ресурсы мирового океана: энергия приливов, течений, переработка водорослей.				
		ветродвигателей, принцип их действия. Достоинства и недостатки ветроэнергетических установок.				
		газы котельных и т. п.): способы утилизации. Использование энергии ветра. Типы	6	6	12	24
		действия, устройство, примеры применения в системах теплоснабжения. Вторичные энергоресурсы (производственные выбросы, уходящие			12	24
		теплоты (удаляемый вентиляционный воздух, сточные воды, теплота грунта, рек и т.д.). Тепловые насосы: принцип				
		(пассивные и активные системы). Фотоэлектрические преобразователи. Использование низкопотенциальной				
	энергоресурсов	принцип действия. Примеры использования солнечной энергии для нужд отопления и горячего водоснабжения жилых зданий				
65	Использование возобновляемых источников энергии и вторичных	вентиляционного воздуха. Использование солнечной энергии. Виды гелиоприёмников: конструкции и				
		газами, светопрозрачным гелями, с «тепловым зеркалом». Снижение воздухопроницаемости окон и меры по обеспечению нормируемого притока				
		Стёкла с теплоотражающими покрытиями, электрохромные, греющиеся и др. Стеклопакеты: вакуумные, с заполнением инертными				
		планировочного решения здания на его удельную тепловую характеристику. Энергосберегающие конструкции окон. Стёкла с теплоотражающими	4	4	8	16
		изоляции. Наружная отделка фасадов. Защита тепловой изоляции от увлажнения. Влияние объемно-				
	зданий	ограждений. Теплоизоляционные материалы: свойства, классификация. Конструкции крепления тепловой				
4	Тепловая защита	причин неоправданных энергопотерь и способы экономии энергии в городском хозяйстве. Способы утепления наружных				
		транспорт. Проблемы энергообеспечения и потенциал энергосбережения. Анализ	4	6	8	18
3	Энергосберегающие технологии в жилищно-коммунальном хозяйстве	Основные направления энергопотребления в жилом секторе: отопление, ГВ, электроприборы, газоснабжение и др.; промышленность;				
3	D	(пропорционаторы): принцип работы, место установки.				
		теплопотребления в вертикальных и горизонтальных системах отопления. Радиаторные распределители теплоты				

заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего,
1	Нормативно-правовая база энергосбережения	Правовое обеспечение энергосбережения на федеральном и региональном уровнях. Закон об энергосбережении и подзаконные акты к нему.	-	-	12	12
2	Организация учёта энергопо- требления	Типы расходомеров: тахометрические, электромагнитные, ультразвуковые. Принцип их действия, область применения. Факторы, определяющие выбор типа расходомера. Схемы учёта теплопотребления на отопление и горячее водоснабжение. Характеристика необходимого оборудования, принцип его действия. Организация поквартирного учёта теплопотребления в вертикальных и горизонтальных системах отопления. Радиаторные распределители теплоты (пропорционаторы): принцип работы, место установки.	1	1	12	14
3	Энергосберегающие технологии в жилищно-коммунальном хозяйстве	Основные направления энергопотребления в жилом секторе: отопление, ГВ, электроприборы, газоснабжение и др.; промышленность; транспорт. Проблемы энергообеспечения и потенциал энергосбережения. Анализ причин неоправданных энергопотерь и способы экономии энергии в городском хозяйстве.	1	1	12	14
4	Тепловая защита зданий	Способы утепления наружных ограждений. Теплоизоляционные материалы: свойства, классификация. Конструкции крепления тепловой изоляции. Наружная отделка фасадов. Защита тепловой изоляции от увлажнения. Влияние объемнопланировочного решения здания на его удельную тепловую характеристику. Энергосберегающие конструкции окон. Стёкла с теплоотражающими покрытиями, электрохромные, греющиеся и др. Стеклопакеты: вакуумные, с заполнением инертными газами, светопрозрачным гелями, с «тепловым зеркалом». Снижение воздухопроницаемости окон и меры по обеспечению нормируемого притока вентиляционного воздуха.	1	1	12	14
5	Использование возобновляемых источников энергии и вторичных энергоресурсов	Использование солнечной энергии. Виды гелиоприёмников: конструкции и принцип действия. Примеры использования солнечной энергии для нужд отопления и горячего водоснабжения жилых зданий (пассивные и активные системы). Фотоэлектрические преобразователи. Использование низкопотенциальной теплоты (удаляемый вентиляционный воздух, сточные воды, теплота грунта, рек и т.д.). Тепловые насосы: принцип действия, устройство, примеры применения в системах теплоснабжения. Вторичные энергоресурсы (производственные выбросы, уходящие газы котельных и т. п.): способы	1	1	12	14

Итого	1	1	60	68
шахтный газ.				
использование. Биогаз, свалочный п	[
Основные виды биомассы и и				
гидроэнергетика.				
геотермальной энергии. Мала	I			
Применение высокопотенциальной	İ			
и энергия морских приливов и волн				
Использование энергии водных потоко	3			
переработка водорослей.				
океана: энергия приливов, течений	,			
Энергетические ресурсы мирового)			
ветроэнергетических установок				
Достоинства и недостатк	[
ветродвигателей, принцип их действия				
Использование энергии ветра. Типн	[
утилизации.				

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-4	знать правовые, организационно-управленческие, технические, экологические экономические основы энергосбережения (ресурсосбережения);	использование учебного	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь определять техническую суть энергосберегающих мероприятий для отдельных потребителей энергии в конкретных условиях	умение использовать полученные знания в процессе выполнения учебных работ;	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками расчета потенциальной экономии энергии при внедрении	применение полученных знаний и умений	Выполнение работ в срок, предусмотренный в	Невыполнение работ в срок, предусмотренный

Ī	различных энергосберегающих	в рамках	рабочих	в рабочих
	мероприятий.	конкретных	программах	программах
		учебных заданий		

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 1 семестре для очной формы обучения, 2 семестре для заочной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе-	Результаты обучения, характеризующие	Критерии	Зачтено	Не зачтено
тенция	сформированность компетенции	оценивания	1.0	1.0
ПК-4	знать правовые,	знание учебного	1. Студент	1. Студент
	организационно-управленческие,	_	демонстрирует	демонстрирует
	технические, технологические,		полное или	незнание
	экономические, экологические	•	частичное знание	теоретического
	основы энергосбережения	*	теоретического	материала. 2. Не выполнены и
	(ресурсосбережения);	процессе	материала. 2. Выполнены и	
		выполнения заданий;	отчитаны все	не отчитаны
		задании,		практические задания
			задания, предусмотренные	предусмотренные
			рабочей	рабочей
			программой	программой
			При проведении	3. У студента нет
			зачёта в виде	ответа. Не было
			тестов:	попытки
			Выполнение теста с	выполнить
			количеством	задание
			правильных ответов	При проведении
			более 60%	зачёта в виде
				тестов:
				Выполнение теста
				с количеством
				правильных
				ответов менее
				60%
	уметь определять техническую	умение	1. Студент	1. Студент
	суть энергосберегающих	использовать	демонстрирует	демонстрирует
	мероприятий для отдельных	•	полное или	незнание
	потребителей энергии в	в процессе	частичное знание	теоретического
	конкретных условиях	выполнения	теоретического	материала.
		учебных работ;	материала.	2. Не выполнены и
			2. Выполнены и	не отчитаны
			отчитаны все	практические
			задания,	задания
			предусмотренные рабочей	предусмотренные рабочей
1			программой	программой
			При проведении	3. У студента нет
			зачёта в виде	ответа. Не было
			тестов:	попытки
			Выполнение теста с	выполнить
			количеством	задание
			правильных ответов	
			более 60%	зачёта в виде
				тестов:
				Выполнение теста
				с количеством
				правильных
				ответов менее

			60%
владеть навыками расчета	применение	1. Студент	1. Студент
потенциальной экономии	полученных знаний	демонстрирует	демонстрирует
энергии при внедрении	и умений	полное или	незнание
различных энергосберегающих	в рамках	частичное знание	теоретического
мероприятий.	конкретных	теоретического	материала.
	учебных заданий	материала.	2. Не выполнены и
		2. Выполнены и	не отчитаны
		отчитаны все	практические
		задания,	задания
		предусмотренные	предусмотренные
		рабочей	рабочей
		программой	программой
		При проведении	3. У студента нет
		зачёта в виде	ответа. Не было
		тестов:	попытки
		Выполнение теста с	выполнить
		количеством	задание
		правильных ответов	
		более 60%	зачёта в виде
			тестов:
			Выполнение теста
			с количеством
			правильных
			ответов менее
			60%

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
- 7.2.1 Примерный перечень заданий для подготовки к тестированию
 - 1. Энергосбережение это...
 - а) реализация правовых, организационных, научных, производственных технических и экономических мер, направленных на эффективное использование ТЭР и на вовлечение в хозяйственный оборот возобновляемых источников энергии;
 - б) баланс добычи, переработки, транспортировки, преобразования, распределения и потребления всех видов ресурсов;
 - в) правовое, организационное и финансово-экономическое регулирование деятельности в области энергосбережения;
 - г) мероприятия по увеличению энергопотребления.
- 2. Что не содержится в составе нормативно-правовой базы ресурсоэнергосбережения?
 - а) Федеральные Законы и Указы Президента РФ;
 - б) Документы Федеральных органов исполнительной власти;
 - в) Программы энергоресурсосбережения объектов культурного наследия;
 - г) Документы региональных органов власти в области энергосбережения.
- 3. Под энергоэкономичным зданием понимаем:
 - а) здание с улучшенным объемно-планировочным решением;

- б) здание с максимальной экономией энергоресурсов;
- в) здание с экономичным расходом строительных материалов;
- г) здание, в котором запроектировано экономичное расходование водных ресурсов.
- 4. Энергоактивное здание это ...
 - а) здание способное накапливать и передавать энергию возобновляемых источников;
 - б) здание с повышенным потреблением тепловых ресурсов;
 - в) здание с увеличенными тепловыми потерями;
 - г) здание, в котором главный фасад ориентирован на южную сторону горизонта.
- 5. К нормативным показателям теплозащиты здания относят:
 - а) требуемое сопротивление теплопередачи;
 - б) требуемая воздухопроницаемость ограждающих конструкций;
 - в) расчетное количество этажей;
 - г) показатель компактности здания.
- 6. Назовите наиболее энергоэффективную форму здания:
 - а) форма здания в виде куба;
 - б) форма здания в виде параллелепипеда;
 - в) форма здания в виде круга;
 - г) форма здания в виде эллипса.
- 7. Какие параметры (размеры) здания наиболее влияют на снижение теплопотерь:
 - а) длина здания;
 - б) ширина здания;
 - в) высота здания;
 - г) форма здания.
- 8. Выбор оптимальной площади окон с точки зрения энергосбережения влияет на:
 - а) экономию тепловой энергии;
 - б) освещение помещений;
 - в) удорожание стоимости здания;
 - г) увеличение площади ограждающих конструкций.
- 9. Как влияет ориентация здания на местности с точки зрения энергосбережения:
 - а) должна обеспечивать инсоляцию помещений;
 - б) должно обеспечивать улучшение планировки квартир;
 - в) должна ориентировать одно-двухкомнатные квартиры на северный сектор горизонта;

- г) должна обеспечивать экономию расходования топливно-энергетических ресурсов.
- 10. Частотно-регулируемый привод это...
 - а) система, позволяющая рассчитать потери электрической энергии в сети;
 - б) устройство, состоящее из асинхронного двигателя и лампы накаливания;
 - в) система уменьшения частоты вращения ротора асинхронного (синхронного) электродвигателя и уменьшения расхода теплоносителя;
 - г) система управления частотой вращения ротора асинхронного (синхронного) электродвигателя.
- 11. Энергетическая эффективность это..
 - а) это показатели, достижение которых обеспечивается в результате реализации региональной, муниципальной программ в области энергосбережения и повышения энергетической эффективности;
 - б) характеристики, отражающие отношение полезного эффекта от использования энергетических ресурсов к затратам энергетических ресурсов, произведенным в целях получения такого эффекта, применительно к продукции, технологическому процессу, юридическому лицу, индивидуальному предпринимателю;
 - в) измерение количества потребляемых энергоресурсов;
 - г) сопоставление полученных результатов и затраченных ресурсов.
- 12. Мероприятия по энергосбережению разделяются на:
 - а) проектные и строительные;
 - б) коммунальные и жилищные;
 - в) организационные, правовые, научные, производственные, технические и экономические;
 - г) с использованием энергии солнца и с использованием энергии ветра.
- 13. Виды солнечных коллекторов:
 - а) плоские, вакуумные, коллекторы-концентраторы;
 - б) струйные и матричные;
 - в) объёмные и плоские;
 - г) гидрофобные и гидрофильные.
- 14. Тепловой насос это...
 - а) устройство для выработки электрической энергии при использовании энергии ветра;
 - б) устройство для переноса электрической энергии от источника к потребителю;
 - в) устройство для перераспределения энергии между потребителями;
 - г) устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой.

7.2.3 Примерный перечень заданий для решения прикладных задач

Задание1. Для заданных климатических условий и конструкций стены определить соответствие сопротивления теплопередаче стены современным нормам [1] и рассчитать требуемую толщину утеплителя (при необходимости).

Исходные данные:

- район строительства (город);
- расчетная температура наружного воздуха, равная средней температуре наиболее холодной пятидневки, обеспеченностью 0,92, $t_{\rm ext}=t_{\rm 5}^{0.92}$, °C;
- средняя температура наружного воздуха, за отопительный период, $t_{_{ht}}$, °C ;
 - продолжительность отопительного периода Z_{ht} , сут;
- расчетная температура внутреннего воздуха для жилых зданий $t_{_{int}}$, °C ;
- толщина стены δ , м (для многослойной стены толщина отдельных слоёв δ_i , м);
- коэффициент теплопроводности материала из которого сделана стена λ (или отдельные её слои λ_i), $\mathit{Bm/(M\cdot {}^{\circ}C)};$

Задание 2. Выбрать один вариант из нескольких энергосберегающих мероприятий с различными капитальными затратами и ожидаемой экономией.

Исходные данные:

Для каждого из участвующих в выборе вариантов задаются следующие значения:

- Δ P_t − годовая экономия, р./год.;
- K_t капитальные затраты, р.;

Задание 3. Для заданной конструкции стены и климатических условий определить срок окупаемости дополнительного утепления стен за счёт снижения затрат на отопление.

Исходные денные:

- тариф на тепловую энергию, $S_{men\pi}$, р./ГДж;
- стоимость монтажа $1 \, \text{м}^2$ утеплителя, $S_{\text{монт}}$, $p./\text{м}^2$;
- сопротивление теплопередаче стены:
- до утепления R_w^I , $(M^2 \cdot {}^{\circ}C)/Bm$;
- после утепления R_w^{II} , $(M^2 \cdot {}^{\circ}C)/Bm$;
- климатические данные (см. задачу 1);
- толщина утеплителя δ_{vr} , м;
- стоимость утеплителя S_{vm} , р./м 3

Задание 4. Для заданного объёма здания и некоторых геометрических параметров определить оптимальную этажность здания, обеспечивающую наименьшие теплопотери через наружные ограждающие конструкции.

Исходные данные:

- наружный объём здания V, м 3 ;
- коэффициенты теплопередачи: стены k_w , окна k_f , покрытия верхнего этажа k_c , перекрытия подвала k_f , $Bm/(M^2 \cdot {}^{\circ}C)$;
 - коэффициент остекления фасада здания f;
 - высота этажа h, м;

ширина здания А, м.

Задание 5. Для заданных значений диаметра трубопровода и температуры теплоносителя рассчитать экономически целесообразную толщину теплоизоляции с учётом капитальных и эксплуатационных затрат.

Исходные данные:

- наружный диаметр трубопровода $d_{\scriptscriptstyle H}$, м;
- среднегодовая температура теплоносителя τ_{cp} , °C;
- коэффициент теплопроводности теплоизоляции λ_{u_3} , $\mathit{Bm/(M\cdot {}^{\circ}C)}$;
- стоимость теплоизоляционного материала S_{us} , $p./m^3$;
- стоимость защитного покрытия $S_{no\kappa}$, $p./m^2$;
- коэффициент теплоотдачи от поверхности трубопровода к наружному воздуху $\alpha_{_H}$, Bm/($M^2 \cdot {}^{\circ}C$);
 - стоимость теплоты $S_{men_{J}}$, $p./\Gamma Дж$;
 - среднегодовая температура окружающей среды t_O , °C.

Задание 6. Рассчитать срок окупаемости энергосберегающей лампы освещения за счёт экономии электроэнергии по сравнению с лампой накаливания.

Исходные данные:

- потребляемая мощность лампы накаливания N_{H} , Bm ;
- потребляемая мощность энергосберегающей лампы $N_{\Im} = N_H / 5$,

Bm;

- тариф на электрическую энергию $S_{\mathfrak{I},\mathfrak{I}}$, $p./\kappa Bm\cdot u$;
- среднее время работы освещения t, ч/сут.
- стоимость лампы накаливания K_{H} , p.
- стоимость энергосберегающей лампы $\,K_{\,\Im}$, р.

Задание 7. Рассчитать оплату за отопление для двух квартир в жилом доме, оборудованном радиаторными распределителями тепла.

Исходные данные:

- показания общедомового счётчика N_{cy} , $\Gamma \not\square \mathscr{H}$ /год;
- сумма показаний всех распределителей $E_{o ar{o} u u}$, ед.;
- -стоимость тепловой энергии S_{menn} , $p./\Gamma \not\square$ ж;
- оплата за отопление по нормативу $S_{\text{норм}}$, $p./(год \cdot m^2)$;
- -площадь квартир $F_{\kappa e1}$, M^2 , $F_{\kappa e2}$, M^2 ;
- -сумма единиц потребления, зафиксированных распределителями теплоты квартир, $E_{\kappa 61}$, ед., $E_{\kappa 61}$, ед.;
- площадь квартир, по которым отсутствуют показатели распределителей F_{omc} , м 2 ;

- общая отапливаемая площадь $F_{
ho ar{
ho} u}$, 22 .

Задание 8. Рассчитать предполагаемую экономию электрической энергии при установке частотно-регулируемого привода (ЧРП) у насосов системы водоснабжения, характеризующейся неравномерным водоразбором в течение суток.

Исходные данные:

- график подачи воды по часам суток;
- потребляемая электрическая мощность насоса $N_{
 m Hac}$, к ${\it Bm}$;
- стоимость электрической энергии $S_{\mathfrak{I},\mathfrak{I}}$, $p./\kappa Bm\cdot \mathfrak{A}$.

Задание 9. Рассчитать требуемую площадь солнечных коллекторов, предназначенную для нагрева горячей воды для заданного климатического района.

Исходные данные:

- район строительства;
- расчётная температура холодной воды t_{XB} , ${}^{\circ}C$;
- расчётная температура горячей воды $t_{\Gamma B}$, ${}^{\circ}C$;
- расход воды на одного человека q_{rs} , л /($cym \cdot чел$);
- количество человек т, чел.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Основные нормативные документы в области энергосбережения, используемые при проектировании, строительстве и эксплуатации зданий.
- 2. Нормативно-законодательная база по энергосбережению на региональном уровне.
- 3. Понятие о энергоэкономичных и энергоактивных зданиях.
- 4. Энергоресурсы, их физические характеристики и основы учета.
- 5. Методы и приборы измерения параметров и расхода энергетических ресурсов.
- 6. Основные направления экономии энергии при выработке и транспортировке теплоты.
- 7. Архитектурные приемы энергосбережения для разных климатических районов.
- 8. Тепловое зонирование помещений.
- 9. Энергоэффективное остекление зданий.
- 10. Газотурбинные установки: принцип действия, область применения.
- 11. Основные направления экономии энергии на отопление зданий.
- 12. Назначение и принцип действия термостатов, устанавливаемых на отопительных приборах.
- 13. Организация индивидуального учета теплопотребления в зданиях с вертикальными и горизонтальными системами отопления.
- 14. Основные направления экономии энергии в системе водоснабжения.
- 15. Экономически оценка энергосберегающих мероприятий.
- 16. Использование частотно-регулируемого привода в системах тепло-,

водоснабжения.

- 17. Причины перерасхода воды и способы его устранения при разноэтажной жилой застройке.
- 18. Использование энергии солнца при проектировании, строительстве и эксплуатации энергоэффективных зданий.
- 19. Использование энергии ветра при проектировании, строительстве и эксплуатации зданий.
- 20. Использование низконотенциальных источников энергии при проектировании, строительстве и эксплуатации энергоэффективных зданий.
- 21.Использование энергии водных потоков, биомассы и биогаза в качестве энергосберегающих мероприятий.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводиться с целью оценки качества усвоения студентами всего объёма содержания дисциплины и определения фактически достигнутых знаний, навыков и умений, а также компетенций, сформированных за время аудиторных занятий и самостоятельной работы студента.

Оценка «зачтено». Ответы на поставленные вопросы излагаются логично, последовательно и не требуют дополнительных пояснений. Полно раскрываются причинно-следственные связи между явлениями и событиями. Делаются обоснованные выводы. Демонстрируются глубокие знания базовых нормативно-правовых актов. Соблюдаются нормы литературной речи. (Тест: количество правильных ответов> 80 %).

Оценка «незачтено». Материал излагается непоследовательно, сбивчиво, не представляет определенной системы знаний по дисциплине. Не раскрываются причинно-следственные связи между явлениями и событиями. Не проводится анализ. Выводы отсутствуют. Ответы на дополнительные вопросы отсутствуют. Имеются заметные нарушения норм литературной речи. (Тест: количество правильных ответов <50 %).

7.2.6 Паспорт оценочных материалов

	1 '		
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Нормативно-правовая база энергосбережения	ПК-4	Тест, зачет, устный опрос
2	Организация учёта энергопотребления	ПК-4	Тест, зачет, устный опрос
3	Энергосберегающие технологии в жилищно-коммунальном хозяйстве	ПК-4	Тест, зачет, устный опрос

4	Тепловая защита	ПК-4	Тест, зачет, устный опрос
	зданий		
5	Использование возобновляемых	ПК-4	Тест, зачет, устный опрос
	источников энергии и вторичных		
	энергоресурсов		

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Зачет. Обязательным условием для получения зачета является выполнение практических заданий (и лабораторных работ) и отчет их преподавателю. Усвоение теоретического материала проверяется путем организации специального опроса, проводимого в устной и (или) письменной форме. (в форме теста)

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

1. Посашков, М. В. Энергосбережение в системах теплоснабжения: Учебное пособие / Посашков М. В. - Самара: Самарский государственный архитектурно-строительный университет, ЭБС АСВ, 2014. - 192 с. - ISBN 978-5-9585-0581-4.

URL: http://www.iprbookshop.ru/29799.html

- 2. Стрельников Н.А. **Энергосбережение** [Электронный ресурс] : учебник / Н.А. Стрельников. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2014. 174 с. 978-5-7782-2408-7. Режим доступа: ttp://www.iprbookshop.ru/47729.html
- 3.Дементьева М.Е. Разработка проекта управления энергосбережением и эксплуатацией инженерных систем в ЖКК [Электронный ресурс] : учебно-методическое пособие / М.Е. Дементьева. Электрон. текстовые данные. Саратов: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2017. 98 с. 978-5-7264-1786-8. Режим доступа: http://www.iprbookshop.ru/73762.html
- 4. Организация самостоятельной работы обучающихся: методические указания для студентов, осваивающих основные образовательные программы высшего образования бакалавриата, специалитета, магистратуры: методические указания / сост. В.Н. Почечихина, И.Н. Крючкова, Е.И. Головина, В.Р. Демидов; ФГБОУ ВО «Воронежский государственный

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное программное обеспечение:

- Windows Pro Dev UpLic A Each Academic Non-Specific Professional;
- Office Std Dev SL A Each Academic Non-Specific Standard;
- Windows Server Std Core 16 SL A Each Academic Non-Specific Standard;
- Acrobat Pro 2017 Multiple Platforms Russian AOO License TLP (1-4,999),

Ресурс информационно-телекоммуникационной сети «Интернет»

- 1. http://www.edu.ru/
- 2. Образовательный портал ВГТУ

Информационная справочная система

- 1. http://window.edu.ru
- 2. https://wiki.cchgeu.ru/

Современные профессиональные базы данных

- 1. СПС Консультант Бюджетные организации: Версия ПрофСпециальный выпуск
- 2. Сайт научной электронной библиотеки <u>www.elibrari.ru</u> доступ к полнотекстовым версиям научных публикаций широкого профиля изданий по естественным, техническим и гуманитарным наукам.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- 1. Учебные аудитории для лекционных и практических занятий, оснащенные оборудованием для демонстрации иллюстрированного материала.
- 2. Помещения для самостоятельной работы студентов, оснащенные компьютерной техникой с выходом в сеть "Интернет", и необходимым программным обеспечением.
- 3. Библиотечный электронный читальный зал с доступом к электронным ресурсам библиотеки и доступом в электронную информационнообразовательную среду.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Ресурсосберегающие технологии в строительстве и

жилищно-коммунальном хозяйстве» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета показателей надежности инженерных систем теплогазоснабжения. Занятия проводятся путем решения конкретных задач в аудитории.

аудитории.			
Вид учебных занятий	Деятельность студента		
Лекция	Написание конспекта лекций: кратко, схематично,		
	последовательно фиксировать основные положения, выводы,		
	формулировки, обобщения; помечать важные мысли, выделять		
	ключевые слова, термины. Проверка терминов, понятий с		
	помощью энциклопедий, словарей, справочников		
	выписыванием толкований в тетрадь. Обозначение вопросов,		
	терминов, материала, которые вызывают трудности, поиск		
	ответов в рекомендуемой литературе. Если самостоятельно не		
	удается разобраться в материале, необходимо сформулировать		
	вопрос и задать преподавателю на лекции или на практическом		
	занятии.		
Практическое	Конспектирование рекомендуемых источников. Работа с		
занятие	конспектом лекций, подготовка ответов к контрольным		
	вопросам, просмотр рекомендуемой литературы.		
	Прослушивание аудио- и видеозаписей по заданной теме,		
	выполнение расчетно-графических заданий, решение задач по		
	алгоритму.		
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому		
	усвоения учебного материала и развитию навыков		
	самообразования. Самостоятельная работа предполагает		
	следующие составляющие:		
	- работа с текстами: учебниками, справочниками,		
	дополнительной литературой, а также проработка конспектов		
	лекций;		
	- выполнение домашних заданий и расчетов;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций,		
	олимпиад;		
П	- подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует		
промежуточной	систематически, в течение всего семестра. Интенсивная		
аттестации	подготовка должна начаться не позднее, чем за месяц-полтора		
	до промежуточной аттестации. Данные перед зачетом три дня		
	эффективнее всего использовать для повторения и		
	систематизации материала.		

11 Лист регистрации изменений

			Подпись
No॒	Перечень вносимых изменений	Дата	заведующего
п/п		внесения	кафедрой,
11/11		изменений	ответственной за
			реализацию ОПОП