
В.Ю. Дубанин А.М. Наумов Д.А. Прутских

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА. ПРАКТИЧЕСКИЕ И ЛАБОРАТОРНЫЕ РАБОТЫ

Учебное пособие

Воронеж 2017

ФГБОУ ВО

«Воронежский государственный технический университет»

В.Ю. Дубанин А.М. Наумов Д.А. Прутских

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА. ПРАКТИЧЕСКИЕ И ЛАБОРАТОРНЫЕ РАБОТЫ

Утверждено учебно-методическим советом университета в качестве учебного пособия

Дубанин В.Ю. Техническая термодинамика. Практические и лабораторные работы: учеб. пособие / В.Ю. Дубанин, А.М. Наумов, Д.А. Прутских. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2017. 90 с.

Учебное пособие содержит описание лабораторных установок, ход выполнения работ, методику обработки полученных результатов, правила оформления отчета и необходимый справочный материал. Включает примеры решения задач и контрольные вопросы для проведения практических занятий.

Издание соответствует требованиям Федерального государственного образовательного стандарта высшего профессионального образования по направлению 13.03.01 «Теплоэнергетика и теплотехника» (направленность «Промышленная теплоэнергетика»), дисциплине «Техническая термодинамика».

Табл. 13. Ил. 12. Библиогр.: 8 назв.

Рецензенты: кафедра физики, теплотехники и теплоэнергетики и Воронежского государственного университета инженерных технологий (зав. каф. д-р физ.-мат. наук А.В. Буданов); д-р. техн. наук, проф. Н.В. Мозговой

© Дубанин В.Ю., Наумов А.М., Прутских Д.А., 2017 © Оформление. ФГБОУ ВО «Воронежский государственный технический университет», 2017

СОДЕРЖАНИЕ

1. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ	5
1.1. Основные понятия и законы идеальных газов	5
1.2. Первый закон термодинамики	10
1.3. Второй закон термодинамики	11
1.4. Основные термодинамические процессы	
1.5. Водяной пар	
1.6. Определение параметров влажного насыщенного	
пара	28
1.7. Определение параметров сухого насыщенного	
пара	28
1.8. Определение параметров перегретого пара	29
1.9. Истечение газов	31
2. ЛАБОРАТОРНЫЕ РАБОТЫ	37
2.1. Лабораторная работа № 1	37
2.2. Лабораторная работа № 2	45
2.3. Лабораторная работа № 3	51
2.4. Лабораторная работа № 4	60
ЗАКЛЮЧЕНИЕ	67
ПРИЛОЖЕНИЕ 1	
ПРИЛОЖЕНИЕ 2	68
ПРИЛОЖЕНИЕ 3	
ПРИЛОЖЕНИЕ 4	70
ПРИЛОЖЕНИЕ 5	70
ПРИЛОЖЕНИЕ 6	
ПРИЛОЖЕНИЕ 7	72
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	

ВВЕДЕНИЕ

В учебном пособии содержатся краткие теоретические сведения по некоторым разделам термодинамики и примеры решения некоторых задач, что способствует более глубокому усвоению материала и помогает при выполнении лабораторных работ, также представленных в данном пособии.

Лабораторные работы включают в себя: описание лабораторной установки, ход выполнения работы, методику обработки экспериментальных данных, правила оформления отчета, необходимые справочные материалы, контрольные вопросы.

По каждой работе студент оформляет письменный отчет, который должен включать цель работы, краткие теоретические сведения, принципиальную схему установки, протокол опытов, обработку опытных данных и выводы. По каждой работе студент сдает зачет преподавателю. Опрос производится по вопросам, представленным в конце каждой работы, а также по основным положениям изучаемого раздела курса. Студенты, не сдавшие зачет по двум работам, к выполнению следующих работ не допускаются.

1. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

1.1. Основные понятия и законы идеальных газов

Любое термодинамическое исследование начинается с выделения ограниченной области пространства, Содержимое этой области называется термодинамической системой.

Все, что находится вне системы, является внешней (или окружающей) средой. Система отделяется от внешней среды материальной или воображаемой ограничивающей поверхностью – границей системы.

Установление границ между системой и ее внешней средой является лишь необходимым элементом описания системы. Кроме того, система описывается рядом переменных, т.е. физических величин, характеризующих ее свойства. Если переменные принимают устойчивые значения, то говорят, что система находится в определенном состоянии. Таким образом, понятие "состояние" характеризуется с помощью переменных системы, которые и называют ее параметрами состояния.

Наиболее удобными и поэтому наиболее распространенными параметрами состояния являются абсолютная температура — Т, абсолютное давление — Р и удельный объем (или плотность) тела — 9. Температура характеризует тепловое состояние тела. Измерение температуры производится чаще всего с помощью термометров. Абсолютная температура в этом случае определяется из выражения

$$T = t + 273,15$$
,

где t – температура по шкале Цельсия, °С.

Абсолютное давление представляет собой силу, действующую по нормали к поверхности тела и отнесенную к единице площади этой поверхности. Для измерения давления применяются различные единицы, соотношения между которыми приведены в табл. 1.1.

Таблица 1.1 Соотношение между различными единицами измерения давления

Единицы измерения	Па	Бар	кгс/см2	мм.рт.ст.	мм.вод.ст.
1 Па	1	10-5	1,02·10 ⁻⁵	$7,5\cdot 10^{-3}$	0,102
1 Бар	10^{5}	1	1,02	$7,5\cdot10^2$	$1,02\cdot10^4$
1 кгс/см ²	$9,81\cdot10^4$	0,98	1	735	10^{4}
1 мм.рт.ст.	133	1,33.10-3	$1,36\cdot10^{-3}$	1	13,6
1 мм.вод.ст.	9,81	9,81·10 ⁻⁵	10-4	$7,35\cdot10^{-2}$	1

Объем, занимаемый единицей массы системы, называется удельным объемом v, $m^3/\kappa \Gamma$ и определяется по формуле

$$v = \frac{V}{m}$$
.

Удельный объем – величина, обратная плотности. При термодинамических исследованиях очень широко применяют законы идеального газа:

- Бойля-Мариотта pV=const (при T=const);
- Гей-Люссака $\frac{V}{T}$ = const (при P=const);
- Шарля $\frac{P}{T}$ = const (при V=const);
- Авогадро µv=const (при одинаковых давлениях и температурах произведение µv для всех газов одинаково),

где μ - молекулярная масса выражения в молях или киломолях (молем называется количество вещества в граммах, численно равное его молекулярной массе). Объем 1 киломоля газа при нормальных физических условиях (T=273 K, P=101325 Па) составляет 22,4 л.

Для любого состояния газа с параметрами P, T, V, подчиняющегося законам Бойля-Мариотта и Гей-Люссака, можно установить, что

$$\frac{PV}{T} = R = \text{const},$$

где R – газовая постоянная.

Мы получили уравнение, однозначно связывающее между собой параметры P, V и T газа, т.е. уравнение состояния идеального газа (уравнение Клапейрона-Менделеева).

Уравнение состояния идеального газа может быть представлено в следующих видах:

для 1 кг газа

Pv=RT;

для 1 кг газа Pv=RT; для G кг газа Pv=GRT;

для одного моля газа Puv=uRT,

где µR=8314 Дж/(кмоль·К) – универсальная газовая постоянная.

Таким образом, представление об идеальном газе основано на том, что идеальный газа строго подчиняется уравнению Клапейрона-Менделеева; идеальный газ – это предельное состояние реального газа при плотности близкой к нулю; идеальный газ – это газ, молекулы которого рассматриваются как материальные точки, взаимодействие которых между собой ограничено абсолютно упругими соударениями (силами молекулярного сцепления пренебрегаем).

Уравнение состояния реального газа чаще всего описывают уравнением Ван-дер-Ваальса

$$\left(P + \frac{a}{v^2}\right) \cdot \left(v - b\right) = RT,$$

где $\frac{a}{v^2}$ - величина, учитывающая силы взаимодействия между молекулами;

b – величина, учитывающая объем молекул в объеме газа.

Газовые смеси

По закону Дальтона давление смеси газов равно сумме парциальных давлений.

$$P = P_1 + P_2 + ... + P_n = \sum_{i=1}^{n} P_i$$
.

Смесь может задаваться массовыми долями g, а масса смеси определяется свойством аддитивности, т.е. масса смеси определяется по формуле

$$m = m_1 + m_2 + ... + m_n = \sum_{i=1}^n m_i;$$

$$g_1 = \frac{m_1}{m}, g_2 = \frac{m_2}{m}, g_n = \frac{m_n}{m}; g_1 + g_2 + g_3 + ... + g_n = 1;$$

Смесь может задаваться объемными долями г, а объем смеси определяется свойством аддитивности, т.е. объем смеси определяется по формуле

$$V = V_1 + V_2 + ... + V_n = \sum_{i=1}^{n} V_i ;$$

$$r_1 = \frac{V_1}{V}, r_2 = \frac{V_2}{V}, r_n = \frac{V_n}{V}; \qquad r_1 + r_2 + ... + r_n = 1.$$

Кажущаяся молекулярная масса смеси определяется по формуле

$$\mu = r_1 \mu_1 + r_2 \mu_2 + ... + r_n \mu_n$$
.

Газовая постоянная смеси определяется по формуле

$$R = \frac{8314}{\mu} = \frac{8314}{r_1\mu_1 + r_2\mu_2 + ... + r_n\mu_n},$$

$$R = g_1 R_1 + g_2 R_2 + ... + g_n R_n.$$

Парциальное давление определяется по формуле

$$P_i = g_i \frac{R_i}{R} P = g_i \frac{\mu}{\mu_i} P.$$

Теплоемкость

Теплоемкостью тела называется количество тепла, необходимое для нагрева тела на один градус. При изучении термодинамических процессов применяют несколько видов теплоемкости:

С – массовая теплоемкость, Дж/(кг \cdot °С);

 $C_{ob} = \rho c - obsembla теплоемкость, Дж/(м³·°C);$

 $c_m = \mu c - мольная теплоемкость, Дж/(моль. °C);$

 c_v – изохорная теплоемкость, Дж/(кг·°C);

 c_p – изобарная теплоемкость, Дж/(кг·°С);

$$c_{_{\rm H}} = \frac{\mathrm{dq}}{\mathrm{dT}}$$
 - истинная теплоемкость, Дж/(кг·°С);

$$c_{\rm cp} = \frac{q_{\rm 1-2}}{t_{\rm 2}-t_{\rm 1}}$$
 - средняя теплоемкость, Дж/(кг·°С),

где t_1 — начальная температура;

 t_2 – конечная температура;

 q_{1-2} — тепло, подведенное к 1 кг вещества в процессе нагрева от температуры t_1 до температуры t_2 .

Для идеальных газов между изобарной и изохорной теплоемкостями и газовой постоянной установлены следующие соотношения

$$C_{p} - C_{v} = R; C_{p} - C_{v} \approx \frac{2}{\mu}; C_{p} = kC_{v};$$

$$C_{p} = \frac{k}{k-1}R; C_{v} = \frac{R}{k-1}.$$

Зависимость теплоемкости газа от температуры обычно выражают эмпирическим уравнением вида (считая зависимость линейной)

$$C = a + bt$$
,

где a, b — числовые коэффициенты, зависящие от природы газа и характера процесса. Теплоемкость смеси газов при задании смеси относительными массовыми долями определяется по формуле

$$C = C_1g_1 + C_2g_2 + ... + C_ng_n$$
,

где C – теплоемкость смеси, Дж/(кг·°C);

 $C_1,\,C_2,\,C_3,\,\dots\,C_n$ – теплоемкости отельных газов, Дж/(кг·°C).

Объемная и мольная теплоемкости смеси определяются аналогично.

1.2. Первый закон термодинамики

Первый закон термодинамики отражает следующие закономерности:

- 1 постоянство энергии в изолированной системе;
- 2 эквивалентность различных форм энергии;
- 3 соотношение между изменением внутренней энергии системы, подведенной теплотой и совершенной внешней работой.

В дифференциальной форме первый закон термодинамики записывают так

$$dq = du + dl = du + Pd\theta = C_v dT + Pd\theta$$
,

ИЛИ

$$dq = dh - \vartheta dP = C_p dT - \vartheta dP,$$

где u — внутренняя энергия; l — работа, совершаемая газом; h — энтальпия (h=u+P9).

1.3. Второй закон термодинамики

Второй закон термодинамики устанавливает, что необратимые (самопроизвольные) процессы возможны в том случае, когда в системе нет равновесия. Тепловые двигатели с термодинамической точки зрения изучают с помощью круговых процессов или циклов.

Прямые циклы осуществляются в тепловых машинах (теплота в работу). Степень термодинамического совершенства прямого цикла характеризуется термическим коэффициентом полезного действия, который представляет собой отношение работы цикла $l_{\rm ц}$ к подводимой теплоте q_1

$$\eta_t = \frac{l_u}{q_1} = \frac{q_1 - q_2}{q_1} = 1 - \frac{q_2}{q_1},$$

где q_2 – теплота, отдаваемая холодному источнику. $\eta_t < 1$ всегда.

Степень совершенства обратного цикла характеризуется холодильным коэффициентом, который представляет собой отношение подводимой теплоты q_2 к работе цикла и обозначается буквой ϵ . Обычно $\epsilon > 1$.

$$\varepsilon = \frac{q_2}{l_{11}} = \frac{q_2}{q_1 - q_2}$$
.

Для цикла Карно:

$$\eta_t = 1 - \frac{T_2}{T_1} = \frac{T_1 - T_2}{T_1};$$

$$\varepsilon = \frac{T_1}{T_1 - T_2}.$$

Для анализа циклов применяют величину s, называемую энтропией (dS=dq/T). Энтропия – функция состояния, характеризующая направление протекания процесса теплообмена между системой и внешней средой, а также направление протекания самопроизвольных процессов в замкнутой системе. В системе Си энтропия выражается в Дж/(кг·К).

$$\begin{split} dS &= C_{v} \frac{dT}{T} + R \frac{dV}{V}; \ S_{2} - S_{1} = C_{v} \ln \frac{T_{2}}{T_{1}} + R \ln \frac{V_{2}}{V_{1}}; \\ dS &= C_{p} \frac{dV}{V} + C_{v} \frac{dP}{P}; \ S_{2} - S_{1} = C_{p} \ln \frac{V_{2}}{V_{1}} + C_{v} \ln \frac{P_{2}}{P_{1}}; \\ dS &= C_{p} \frac{dT}{T} - R \frac{dP}{P}; \ S_{2} - S_{1} = C_{p} \ln \frac{T_{2}}{T_{1}} - R \ln \frac{P_{2}}{P_{1}}. \end{split}$$

1.4. Основные термодинамические процессы

Изменение состояния тела при взаимодействии его с окружающей средой называется термодинамическим процессом. Уравнения основных процессов, играющих важную роль в термодинамике, получаются при следующих значениях показателя политропы:

изохорный процесс (V=const), $n=\infty$; изобарный процесс (P=const), n=0; изотермический процесс (T=const), n=1; адиабатический процесс (PV^k =const), n=k.

В таблице 1.3 представлены расчетные формулы для определения основных показателей процессов.

Все процессы по изменению показателя политропы можно разделить на три группы (рис.1.1):

Группа I ($-\infty$ <n<1). Графики процессов этой группы располагаются между изохорой и изотермой. Расширение осу-

ществляется с подводом теплоты, которая идет на увеличение внутренней энергии и на совершение работы. Теплоемкость положительна.

Группа II (1<n<k). Графики процессов располагаются между изотермой и адиабатой. Работа получается за счет подводимой теплоты и уменьшения внутренней энергии. Теплоемкость отрицательна. Это хорошо видно из формулы $C_n = C_v \frac{n-k}{n-1}$. Так как $C = \frac{dq}{dT}$, то отрицательная C_n означает, что dq и dT имеют противоположные знаки. Несмотря на подвод к газу теплоты, его температура падает. В таких процессах l>q, поскольку на совершение работы помимо подводимой теплоты расходуется часть внутренней энергии газа, и его температура понижается.

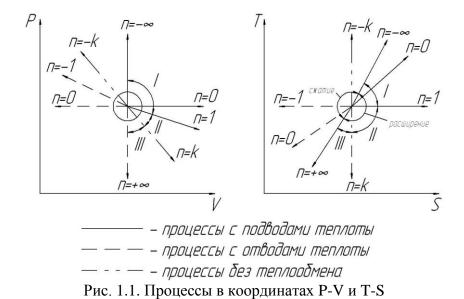

Группа III (∞>n>k). Графики этих процессов располагаются между адиабатой и изохорой. При расширении газа процесс осуществляется с уменьшением внутренней энергии, с совершением работы и отводом тепла в холодильник. Сводка характеристик процессов для случая расширения газа дана в табл. 1.2. При сжатии газов величины будут изменяться в противоположном направлении по сравнению с расширением.

Таблица 1.2 Изменение ΔU , q и C_n для газов в термодинамических процессах расширения

Группа	Схема энер- гобаланса	n	ΔU	q	Cn
I	U←q→l	n<1	>0	<0	>0
II	q→l←U	1 <n<k< td=""><td><0</td><td>>0</td><td><0</td></n<k<>	<0	>0	<0
III	q←U→l	k <n<∞< td=""><td><0</td><td><0</td><td>>0</td></n<∞<>	<0	<0	>0

Таблица 1.3 Сводка показателей термодинамических процессов

Наименование процесса	политропный	изобарный	изохорный	изотерми- ческий	адиабатиче- ский
Значение п	$[-\infty;+\infty]$	0	∞	1	k=C _p /C _v
Уравнение процесса	PV ⁿ =const	P=const	V=const	T=const PV=const	PV ^k =const
Связь меж- ду парамет- рами	$\begin{split} &P_2/P_1{=}(V_1/V_2)^n \\ &T_2/T_1{=}(V_1/V_2)^{n{-}1} \\ &T_2 \mathbin{/} T_1 = \left(P_2 \mathbin{/} P_1\right)^{\frac{n-1}{n}} \end{split}$	$\frac{V_1}{V_2} = \frac{T_1}{T_2}$	$\frac{P_1}{P_2} = \frac{T_1}{T_2}$	$\frac{P_1}{P_2} = \frac{V_2}{V_1}$	$\begin{aligned} &P_{2}/P_{1} = &(V_{1}/V_{2})^{k} \\ &T_{1}/T_{2} = &(V_{2}/V_{1})^{k-1} \\ &T_{1} / T_{2} = &(P_{1} / P_{2})^{\frac{k}{k}} \end{aligned}$
Работа, ℓ	$\frac{\frac{P_1V_1 - P_2V_2}{n-1}}{\frac{R(T_1 - T_2)}{n-1}} = \frac{R(T_1 - T_2)}{n-1}$	$P(V_2-V_1)=$ = $R(T_2-T_1)$	0	$RT \ln \frac{V_2}{V_1} =$ $= RT \ln \frac{P_1}{P_2}$ $1=q$	$\begin{aligned} &\frac{P_{1}V_{1}-P_{2}V_{2}}{k-1} = \\ &= \frac{R\left(T_{1}-T_{2}\right)}{k-1}; \\ &= -\Delta U \end{aligned}$
Изменение внутренней энергии, ΔU	$C_v(T_2 - T_1)$	=	=	0	$C_v(T_2-T_1)$
Изменение энтальпии, Δh	$C_p(T_2-T_1)$	=	=	0	$C_p(T_2-T_1)$
Теплоем- кость про- цесса, С _п	$C_v \frac{n-k}{n-1}$	C_p	$C_{\rm v}$	8	0
Изменение энтропии, ΔS	$C_{v} \frac{n-k}{n-1} \cdot ln \frac{T_{2}}{T_{1}}$	$C_p \ln \frac{T_2}{T_1} =$ $= C_p \ln \frac{P_2}{P_1}$	$C_v \ln \frac{T_2}{T_1} =$ $= C_v \ln \frac{P_2}{P_1}$	$\frac{q}{T} = R \ln \frac{P_1}{P_2}$	0
Количество тепла под- веденное (отведен- ное) в про- цессе, q	$C_{v} \frac{n-k}{n-1} (T_{2} - T_{1})$ $dq = du + \ell$	$C_p(T_2-T_1)$	$C_v(T_2-T_1)$	$RT \ln \frac{V_2}{V_1} =$ $kT \ln \frac{P_1}{P_2}$	0

адача 1. Смесь газов с начальной температурой t_1 =27 °C сжимается в одноступенчатом поршневом компрессоре от давления P_1 =0,1 МПа=0,1·10⁶ H/м² до давления P_2 =0,9·10⁶ H/м². Сжатие может проходить по изотерме, адиабате и политропе с показателем политропы n=1,23. Определить для каждого из трех процессов сжатия конечную температуру газа T_2 , отведенное от смеси тепло Q, кBт, изменение внутренней энергии, энтропии смеси и теоретическую мощность компрессора, если его производительность G=800 кг/ч. Смесь состоит из m_1 =2 кr азота (N_2) и m_2 =8 кr водорода (H_2). Дать сводную таблицу и изображение процессов сжатия в PV и TS-диаграммах. Расчет провести без учета зависимости теплоемкости от температуры.

<u>Решение.</u> Определяем массовые доли и газовую постоянную смеси $M=M_1+M_2=2+8=10$ кг.

$$q_1 = \frac{m_1}{m} = \frac{2}{10} = 0,2; \ q_2 = \frac{m_2}{m} = \frac{8}{10} = 0,8;$$

$$\begin{split} R_1 &= \frac{8314}{\mu_1} = \frac{8314}{28,09} = 296 \frac{\mbox{$\rlap/$\sc M$}\mbox{$\rlap/$\sc K}$}{\mbox{$\kappa\Gamma$} \cdot \mbox{$\if\sc K$}}; \\ R_2 &= \frac{8314}{\mu_2} = \frac{8314}{2,016} = 4124 \frac{\mbox{$\rlap/$\sc M$}\mbox{$\rlap/$\sc K}$}{\mbox{$\kappa\Gamma$} \cdot \mbox{$\if\sc K$}}; \\ R &= q_1 R_1 + q_2 R_2 = 0,2 \cdot 296 + 0,8 \cdot 4124 = 3358,4 \frac{\mbox{$\rlap/$\sc M$}\mbox{$\rlap/$\sc K$}}{\mbox{$\kappa\Gamma$} \cdot \mbox{$\if\sc K$}}. \end{split}$$

Определение всех остальных параметров газовой смеси при сжатии произведем для каждого из процессов в отдельности.

Изотермический процесс сжатия: PV=const, T=const. В изотермическом процессе конечная температура сжатия равна начальной T_2 = T_1 =const, изменение внутренней энергии равно нулю ΔU =0, а изменение энтропии определяется из выражения

$$\Delta S = R \ln \frac{P_1}{P_2} = 3358, 4 \cdot \ln \frac{0,1}{0,9} = -7379, 2 \frac{\text{Mm}}{\text{kg} \cdot \text{K}} \,.$$

Работа затрачиваемая на сжатие, есть

$$\ell_{\text{cx}} = \ell = \text{RT} \ln \frac{P_2}{P_1} = 3358, 4 \cdot \ln \frac{0,1}{0,9} = -2213748, 1 \frac{\text{Дж}}{\text{кг}}.$$

Так как q=1, то количество тепла, отводимое от сжимаемого газа, определяется из выражения

$$Q = qG = -2213748, 1 \cdot \frac{800}{3600} = -491944 \quad B_T = -492 \quad \kappa B_T.$$

Теоретическая мощность компрессора определяется по формуле

$$N_{\kappa} = P_1 V_1 \ln \frac{P_2}{P_1} = \frac{0.1 \cdot 10^6 \cdot 2.24 \cdot \ln \frac{0.9}{0.1}}{10^3} = 492 \,\text{kBt},$$

где V_1 — производительность компрессора при давлении всасывания, M^3/c .

Адиабатический процесс сжатия: PV^k =const, для двухатомных газов $k = \frac{C_p}{C_v} = 1,4$. Конечная температура процесса определяется из выражения

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}},$$

$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}} = 300 \cdot \left(\frac{0.9}{0.1}\right)^{\frac{1.4-1}{1.4}} = 562 \,^{\circ} \text{K}.$$

Изменение энтропии в адиабатном процессе равно нулю, а изменение внутренней энергии газа и работа равны по величине и противоположны по знаку, $\Delta U = -1$.

Работу сжатия определим по формуле

$$\begin{split} l_{_{\text{CJK}}} = -l = -\frac{k}{k-1} RT \Bigg[\Bigg(\frac{P_2}{P_1} \Bigg)^{\frac{k-1}{k}} - 1 \Bigg]. \\ l_{_{\text{CJK}}} = -\frac{1,4}{1,4-1} \cdot 3358, 4 \cdot 300 \cdot \Bigg[\Bigg(\frac{0,9}{0,1} \Bigg)^{\frac{1,4-1}{1,4}} - 1 \Bigg] = 3068026, 2 \frac{\cancel{1/3}}{\cancel{K} \Gamma}, \end{split}$$

значит $\Delta U = 3068026, 2\,\frac{\mbox{$\frac{\mbox{$\frac{\mbox{$\frac{1}{k}}}}{\mbox{$\kappa\Gamma$}}}}{\mbox{$\kappa\Gamma$}}$, а количество отводимого тепла в процессе сжатия равно нулю. Теоретическая мощность компрессора при адиабатном сжатии определяется по формуле

$$\begin{split} N_{_{A\!I\!I}} = & \frac{k-1}{k} \cdot \frac{P_1 V_1}{10^3} \cdot \left[\left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right]. \\ N_{_{A\!I\!I}} = & \frac{1,4}{1,4-1} \cdot \frac{0,1 \cdot 10^6 \cdot 2,24}{10^3} \cdot \left[\left(\frac{0,9}{0,1} \right)^{\frac{1,4-1}{1,4}} - 1 \right] = 666,4 \text{ kBt} \,. \end{split}$$

Политропный процесс сжатия. PVⁿ=const, n=1,23. Конечная температура процесса определяется из соотношения

$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}}.$$

$$T_2 = 300 \cdot \left(\frac{0.9}{0.1}\right)^{\frac{1.23-1}{1.23}} = 452 \, {}^{\circ}\text{K}.$$

Работа сжатия политропного процесса определяется по формуле

$$\begin{split} l_{_{\text{CK}}} = -l = -\frac{n}{n-1} RT_{_{1}} \left[\left(\frac{P_{_{2}}}{P_{_{1}}} \right)^{\frac{n-1}{n}} - 1 \right]. \\ l_{_{\text{CK}}} = \frac{1,23}{1,23-1} \cdot 3358, 4 \cdot 300 \cdot \left[\left(\frac{0,9}{0,1} \right)^{\frac{1,23-1}{1,23}} - 1 \right] = 2695200 \, \frac{\text{Дж}}{\text{кг}} \,. \end{split}$$

Количество отводимой теплоты от 1 кг газа определяется по формуле

$$q=1\frac{n-k}{1-k}$$
,

$$q = 2695200 \cdot \frac{1,23-1,4}{1-1,4} = -1145500 \frac{\text{Дж}}{\text{кг}}.$$

Количество отводимой теплоты от всей массы сжимаемого газа определяется по формуле

$$Q = qG,$$

$$Q = -\frac{1145500 \cdot 800}{3600} = -254555, 5 = -254, 6 \text{ kBt}.$$

Изменение внутренней энергии определяется по формуле

$$\Delta U = 1 \frac{n-1}{1-k},$$

$$\Delta U = -2695200 \cdot \frac{1,23-1}{1-1,4} = 1549740 \frac{\text{Дж}}{\text{кг}}.$$

Изменение энтропии определяется по формуле

$$\Delta S = C_v \frac{n-k}{n-1} \ln \frac{T_2}{T_1},$$

где
$$C_v = C_{v1}q_1 + C_{v2}q_2 = 0.743 \cdot 0.2 + 10.3 \cdot 0.8 = 8.4 \frac{\kappa \cancel{\square} \cancel{ж}}{\kappa \Gamma \cdot \mathbf{K}};$$

$$C_{v1} = \frac{\mu C_1}{\mu_1} = \frac{20.9}{28} = 0.743 \frac{\kappa \cancel{\square} \cancel{ж}}{\kappa \Gamma \cdot \mathbf{K}};$$

$$C_{v2} = \frac{\mu C_2}{\mu_2} = \frac{20.9}{2.016} = 10.3 \frac{\kappa \cancel{\square} \cancel{ж}}{\kappa \Gamma \cdot \mathbf{K}}.$$

$$\Delta S = 8.4 \cdot \frac{1.23 - 1.4}{1.23 - 1} \cdot \ln \frac{452.4}{300} = 2.55 \frac{\kappa \cancel{\square} \cancel{ж}}{\kappa \Gamma \cdot \mathbf{K}}.$$

Мольные теплоемкости двухатомных газов взяты из таблиц.

Теоретическая мощность компрессора при политропном процессе сжатия определяется по формуле

$$\begin{split} N_{_{\text{пол.}}} = & \frac{n}{n-1} \cdot \frac{P_1 V_1}{10^3} \cdot \left[\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right], \\ N_{_{\text{пол.}}} = & \frac{1,23}{1,23-1} \cdot \frac{0,1 \cdot 10^6 \cdot 2,24}{10^3} \cdot \left[\left(\frac{0,9}{0,1} \right)^{\frac{1,23-1}{1,23}} - 1 \right] = 599,2 \, \text{kBt} \,. \end{split}$$

Результаты проведенных расчетов сводим в табл. 1.4, а характер процессов показан на рис. 1.2.

Таблица 1.4 Показатели процессов сжатия

Наименование процесса	Т ₂ , °К	ΔS , $\frac{\kappa \mathcal{J} \times K}{\kappa_{\Gamma} \cdot K}$	Δh, <u>кДж</u> кг	q, <u>кДж</u> кг	l _{сж} , <u>кДж</u> кг	N, кВт
Изотермический, n = 1	300	-7,38	0	-2213,7	2213,7	492
Адиабатный, n=1,4	562	0	3068	0	3068	666,4
Политропный, n=1,23	452,4	-2,55	1549,7	-1145,5	2695,2	599,2

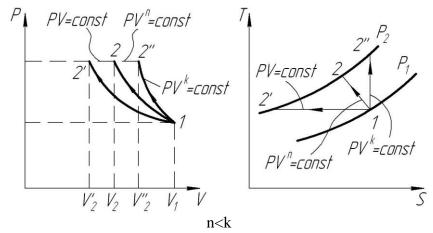


Рис. 1.2. Политропные процессы

Задача 2. Смесь, состоящая из M_1 =0,6 киломолей углекислого газа и M_2 =0,4 киломолей окиси углерода с начальными параметрами P_1 =5 МПа=5· 10^6 Н/м² и T_1 =2000 К, расширяется до конечного объема V_2 = ϵV_1 , ϵ =10. Расширение может осуществляться по изотерме, адиабате и политропе с показателем n=1,55. Определить газовую постоянную смеси, ее массу и начальный объем, конечные параметры смеси, работу расширения, тепло процесса, изменение внутренней энергии, энтальпии и энтропии. Дать сводную таблицу результатов и ее анализ. Показать процессы на PV- и TS-диаграммах. Показатель адиабаты, а следовательно, и теплоемкости C_p и C_v следует принимать не зависящими от температуры.

<u>Решение.</u> В соответствии с отмеченными выше положениями определим газовую постоянную смеси. Для этого прежде всего находим молекулярные массы составляющих смеси и ее массу.

$$\begin{split} \mu_{\text{CO}_2} &= 44,01 \text{ кг/моль}, \ \, \mu_{\text{CO}} = 28,01 \text{ кг/моль}, \\ m_1 &= \mu_{\text{CO}_2} M_1 = 44,01 \cdot 0,6 = 26,41 \text{ кг}, \\ m_2 &= \mu_{\text{CO}} M_2 = 28,01 \cdot 0,4 = 11,2 \text{ кг}, \\ m &= m_1 + m_2 = 26,41 + 11,2 = 37,61 \text{ кг}. \end{split}$$

Определяем массовые доли и газовые постоянные составляющих смеси.

$$\begin{split} g_1 &= \frac{m_1}{m} = \frac{26,41}{37,61} = 0,7, \ g_2 = \frac{m_2}{m} = \frac{11,2}{37,61} = 0,3 \\ R_1 &= \frac{8314}{\mu_{CO_2}} = \frac{8314}{44,01} = 188,91 \frac{\cancel{\mbox{J}\mbox{W}\mbox{K}\mbox{Γ}\mbox{\cdot}\mbox{K}\mbox{\cdot}\m$$

Найдем начальный объем смеси из уравнения состояния

$$V_{_{1}} = \frac{RT_{_{1}}}{P_{_{1}}} = \frac{221, 3 \cdot 2000}{5 \cdot 10^{6}} = 0,0885 \frac{\text{m}^{^{3}}}{\kappa_{\Gamma}} \; .$$

Конечный объем смеси определим следующим образом

$$V_2 = V_1 \varepsilon = 0.0885 \cdot 10 = 0.885 \frac{M^3}{K\Gamma}$$

Рассмотрим нахождение требуемых величин при расширении по изотерме, адиабате и политропе с показателем n=1,55.

Изотермическое расширение. PV=const, T=const. Так как T=const, то конечная температура равна начальной T_2 = T_1 , ΔU =0 и Δh =0.

Конечное давление определяется из уравнения состояния

$$P_2 = \frac{P_1 V_1}{V_2} = \frac{5 \cdot 0,085}{0,885} = 0,5 \,\text{M}\Pi\text{a} .$$

Работу расширения определяем из выражения

$$1 = P_{_{\! 1}} V_{_{\! 1}} \ln \frac{P_{_{\! 1}}}{P_{_{\! 2}}} = 5 \cdot 10^6 \cdot 0,0885 \cdot \ln \frac{5}{0,5} = 1019000 \frac{\text{Дж}}{\text{\tiny K}\Gamma} = 1019 \frac{\text{кДж}}{\text{\tiny K}\Gamma} \ .$$

Количество подведенной теплоты равно работе расширения

$$q = 1 = 1019 \frac{\kappa \prod \kappa}{\kappa \Gamma}$$
.

Изменение энтропии в изотермическом процессе

$$\Delta S = R \ln \frac{P_1}{P_2} = 221, 3 \cdot \ln \frac{5}{0,5} = 509, 6 \frac{\text{Mm}}{\text{kg} \cdot \text{K}} \; .$$

Адиабатическое расширение. PV^k =const. Конечная температура и давление определяются на основании уравнений

$$\begin{split} T_2 &= T_1 \Bigg(\frac{V_1}{V_2} \Bigg)^{k-1} = 2000 \cdot \Bigg(\frac{0,0885}{0,885} \Bigg)^{1,33-1} = 935,5 \, ^{\circ} \mathrm{K} \,, \\ P_2 &= P_1 \Bigg(\frac{V_1}{V_2} \Bigg)^{k} = 5 \cdot \Bigg(\frac{0,0885}{0,885} \Bigg)^{1,33} = 0,23 \, \mathrm{M} \Pi a \,. \\ k &= \frac{C_p}{C_v} = \frac{0,88}{0,66} = 1,335 \,. \\ C_p &= q_1 C_{p_{CO_2}} + q_2 C_{p_{CO}} = q_1 \, \frac{\mu C_p}{\mu_{CO_3}} + q_2 \, \frac{\mu C_p}{\mu_{CO}} \,, \end{split}$$

$$\begin{split} &C_{\mathrm{p}} = 0.7 \cdot \frac{37.4}{44.01} + 0.3 \cdot \frac{29.1}{28.01} = 0.88 \frac{\text{Дж}}{\text{кг} \cdot \text{K}} \,. \\ &C_{\mathrm{v}} = q_{\mathrm{l}} C_{\mathrm{v}_{\mathrm{Co}_{2}}} + q_{\mathrm{2}} C_{\mathrm{v}_{\mathrm{CO}}} = q_{\mathrm{l}} \frac{\mu C_{\mathrm{v}}}{\mu_{\mathrm{CO}_{2}}} + q_{\mathrm{2}} \frac{\mu C_{\mathrm{v}}}{\mu_{\mathrm{CO}}} \,, \\ &C_{\mathrm{v}} = 0.7 \cdot \frac{29.1}{44.01} + 0.3 \cdot \frac{20.8}{28.01} = 0.66 \frac{\text{кДж}}{\text{кг} \cdot \text{K}} \,. \end{split}$$

В адиабатном процессе q=0 и $\Delta S=0$, а изменение внутренней энергии и работа расширения равны по величине и противоположны по знаку

$$1 = \frac{R}{k-1} (T_2 - T_1).$$

$$\Delta U = C_v (T_2 - T_1) = 0.66 \cdot (935.5-2000) = -703.6 \frac{\kappa \cancel{\square} \times}{\kappa \Gamma}.$$

$$1 = 703.6 \frac{\kappa \cancel{\square} \times}{\kappa \Gamma}.$$

Изменение энтальпии определяется по формуле

$$\begin{split} \Delta h &= C_p \left(T_2 - T_1 \right), \\ \Delta h &= 0,66 \cdot \left(935,5\text{-}2000 \right) = -939,1 \frac{\kappa \text{Дж}}{\kappa \Gamma}. \end{split}$$

Политропное расширение. PV^n =const, n=1,55. Конечные температуру и давление определим из уравнений

$$T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{n-1}.$$

$$P_2 = P_1 \left(\frac{V_1}{V_2}\right)^n.$$

$$T_2 = 2000 \cdot \left(\frac{0,0885}{0,885}\right)^{1,55-1} = 563,7 \text{ °K},$$

$$P_2 = 5 \cdot \left(\frac{0,0885}{0,885}\right)^{1,55} = 0,14 \text{ M}\Pi\text{a}.$$

Работа расширения определяется по формуле

$$1 = \frac{R}{n-1} (T_1 - T_2),$$

$$1 = \frac{221.3}{1.55-1} \cdot (2000 - 563.7) = 577914.8 \frac{\text{Дж}}{\text{кг}}.$$

Изменение внутренней энергии и энтальпии определяем по формулам

$$\begin{split} \Delta U &= C_v \left(T_2 - T_1 \right), \\ \Delta h &= C_p \left(T_2 - T_1 \right). \\ \Delta U &= 0.66 \cdot \left(563.7 - 2000 \right) = -947.9 \frac{\kappa \cancel{\square} \times}{\kappa \Gamma}, \\ \Delta h &= 0.88 \cdot \left(563.7 - 2000 \right) = -1267.2 \frac{\kappa \cancel{\square} \times}{\kappa \Gamma}. \end{split}$$

Изменение энтропии в процессе расширение определяем по формуле

$$\Delta S = C_v \frac{n-k}{n-1} ln \frac{T_2}{T_1},$$

$$\Delta S = 0.6 \cdot \frac{1.55-1.33}{1.55-1} \cdot ln \frac{8.83}{2000} = -0.335 \frac{\kappa \text{Дж}}{\kappa \text{F} \cdot \text{K}}.$$

Количество подведенной теплоты определяем по формуле

$$\begin{split} q &= C_{\rm v} \frac{n-k}{n-1} \big(T_2 - T_1 \big) \quad \text{или} \quad q = \Delta U + 1 \,, \\ q &= 0,66 \cdot \frac{1,55 - 1,33}{1,55 - 1} \cdot \big(563,7 - 2000 \big) = -370 \frac{\kappa \text{Дж}}{\kappa \Gamma} \\ \text{или} \quad q &= -647,9 + 577,9 = -370 \frac{\kappa \text{Дж}}{\kappa \Gamma} \,. \end{split}$$

Результаты проведенных расчетов сводим в табл. 1.5, а графическое изображение изобразим на рис. 1.3.

Таблица 1.5

Процесс расширения	T ₂ , K	Р ₂ , МПа	ΔU, кДж кг	$\frac{\Delta S,}{\frac{\mathcal{J} \mathcal{K}}{\kappa_{\Gamma} \cdot K}}$	Δh, <u>кДж</u> кг	q, <u>кДж</u> кг	l, <u>кДж</u> кг
n=1 Изотермиче- ский	2000	0,5	0	509,6	0	1019	1019
n=1,3 Адиабатиче- ский	935,5	0,23	-703,6	0	-939,1	0	703,6
n=1,55 Политропный	563,7	0,14	-947,9	-335	-1267,2	-370	577,9

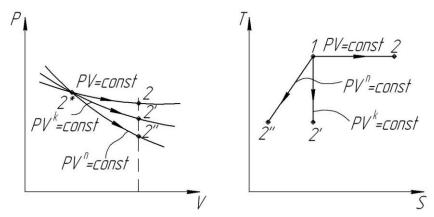


Рис. 1.3. Процессы расширения в диаграммах PV и TS

1.5. Водяной пар

Водяной пар, применяемый в качестве рабочего тела, может быть влажным насыщенным, сухим насыщенным и перегретым. Влажный насыщенный пар получается при неполном испарении жидкости, является смесью пара с мельчайшими капельками жидкости, распространенными равномерно во всей его массе и находящимся в нем во взвешенном состоянии. Сухой насыщенный пар получается при испарении всей жидкости.

Под перегретым – понимается пар, температура которого выше температуры насыщенного пара того же давления.

Массовая доля пара во влажном паре называется степенью сухости и обозначается через «х», а массовая доля жидкости обозначается через «у» и называется степенью влажности. Очевидно, y=1-x. Для сухого пара x=1, а для воды x=0. В процессе парообразования степень сухости пара постепенно увеличивается от нуля до единицы.

Таким образом, состояние влажного пара определяется двумя параметрами, например, давлением (или температурой) и степенью сухости. Состояние перегретого пара определяется

двумя любыми независимыми параметрами (например, давлением и температурой).

1.6. Определение параметров влажного насыщенного пара

Удельный объем, плотность, внутренняя энергия, энтальпия и энтропия влажного насыщенного пара обозначаются соответственно через V_x , ρ_x , U_x , h_x , S_x и вычисляются по следующим формулам

$$v_{x} = xv'' + (1-x)v',$$

$$\rho_{x} = \frac{1}{v_{x}} = \frac{1}{v''x} = \frac{\rho''}{x},$$

$$U_{x} = h_{x} - Pv_{x},$$

$$h_{x} = h' + rx,$$

$$S_{x} = \ln \frac{T_{H}}{273} + \frac{r}{T_{H}}x,$$

$$x = \frac{m_{H}}{m_{H} + m_{H}},$$

Величины с одним штрихом относятся к левой пограничной кривой (x=0), а с двумя штрихами к правой пограничной кривой (x=1). $T_{\rm H}$ — температура кипения, r — теплота фазового перехода.

1.7. Определение параметров сухого насыщенного пара

Состояние сухого насыщенного пара определяется одним параметром – давлением или температурой.

Удельный объем и плотность сухого насыщенного пара (при давлении до 20 бар) можно определять по формулам

$$V'' = 1,72P^{-\frac{15}{16}}$$

 $\rho'' \approx 0,5P$

При давлении пара свыше 20 бар V" и ρ " определяются по таблицам

$$h'' = h' + r,$$

 $u'' = h'' - Pv'',$
 $S \approx \ln \frac{T_{H}}{273} + \frac{r}{T_{H}}.$

1.8. Определение параметров перегретого пара

Значения величин V, ρ для перегретого пара определяют по таблицам

$$\begin{split} h &= h' + r + c_{pm} \left(T - T_{_{\! H}} \right), \\ S &= \ln \frac{T_{_{\! H}}}{273} + \frac{r}{T_{_{\! H}}} + c_{pm} \ln \frac{T}{T_{_{\! H}}}, \\ q &= q' + r + q_{_{\! \rm IMPD}}, \end{split}$$

где $q_{\text{nep}} = c_{\text{pm}} (T - T_{\kappa})$ - теплота перегрева пара, кДж/кг;

Т – температура перегретого пара, К;

 c_{pm} — средняя изобарная теплоемкость перегретого пара в интервале температур от $T_{\rm H}$ до $T_{\rm K}$ ж/(кг·К).

Расчеты термодинамических процессов с водяным паром производятся с помощью термодинамических таблиц и диаграмм состояний водяного пара.

Особое значение для расчета процессов с водяным паром имеет hS-диаграмма (рис. 1.4), каждая точка на которой соответствует определенным значениям параметров состояния P, V, T, h, S, на hS-диаграмме нанесены изобары, изотермы и изохоры. Адиабатный обратимый процесс изображается от-

резком вертикальной прямой, S=const. Изменение внутренней энергии ΔU и работы l в любом процессе определяется следующим образом

$$\Delta u = u_2 - u_1 = (h_2 - h_1) - (P_2 v_2 - P_1 v_1),$$

$$1 = q - \Delta u = q - (h_2 - h_1) + (P_2 v_2 - P_1 v_1).$$

Подведенная или отведенная теплота определяется: в изохорном процессе $q_V = \Delta u = (h_2 - h_1) - \nu (P_2 - P_1)$; в изобарном процессе $\Delta h = h_2 - h_1$; в изотермическом процессе $q_T = T\Delta S = T \left(S_2 - S_1 \right)$. В этих зависимостях индексы 1 и 2 относятся соответственно к начальному и конечному состоянию водяного пара.

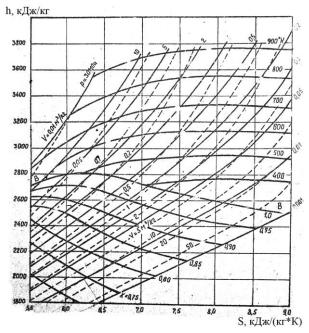


Рис. 1.4. hS-диаграмма для водяного пара

1.9. Истечение газов

При истечении газов применяют различные сопла. Суживающиеся сопла применяются для получения скоростей газа, меньших или равных скорости звука. Для получения скоростей газа, больших скорости звука, применяются комбинированные сопла (сопло Лаваля). Первая часть такого сопла работает как дозвуковая, а вторая — как сверхзвуковая. В наименьшем сечении этих сопел устанавливается скорость газа, равная местной скорости звука.

Скорость истечения газа, равная местной скорости звука (на выходе), называется критической скоростью $(w_{\kappa p})$, и отношение давлений P_2/P_1 в этом случае также будет критическим (β) .

При расчете истечения идеальных газов в простых соплах скорость газа на выходе из сопла (w_2) и массовый расход газа (M) можно определять по формулам

$$\begin{split} w_2 &= \sqrt{2\frac{k}{k-1}RT_1 \left[1 - \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}\right] + w_1^2}, \\ M &= \frac{f_2w_2}{V_2}, \\ M &= f_2\sqrt{2\frac{k}{k-1}\frac{P_1}{V_1} \left[\left(\frac{P_2}{P_1}\right)^{\frac{2}{k}} - \left(\frac{P_2}{P_1}\right)^{\frac{k+1}{k}}\right]}. \end{split}$$

Критическая скорость и критическое отношение давления равны

$$w_{_{\kappa p}}=\alpha=\sqrt{kRT_{_{\kappa p}}},$$

$$\beta = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}.$$

Для идеальных газов приближенно $P_{\kappa p}=0,5P_1$ и $T_{\kappa p}=\frac{2}{k+1}T_1$. Для одноатомных $P_{\kappa p}{=}0,487P_1$ при $k{=}1,67$. Для двухатомных $P_{\kappa p}{=}0,528P_1$ при $k{=}1,4$. Для трехатомных и многоатомных $P_{\kappa p}{=}0,546P_1$ при $k{=}1,29$.

Максимальный расход газа наступает при $w_{\kappa p}$ и β .

$$M_{\rm max} = f_2 \sqrt{2 \frac{k}{k+1} \!\! \left(\frac{2}{k+1} \right)^{\!\! \frac{2}{k-1}} \frac{P_1}{V_1}} \; . \label{eq:max}$$

Величины с индексом 1 относятся к параметрам газа на входе в сопло, а с индексом 2 на выходе из сопла.

 $\frac{3 a дача}{3}$. Водяной пар, имея начальные параметры $P_1=5$ МПа и $x_1{=}0,9$ нагревается при постоянном давлении до температуры $t_2{=}460\,$ °C, затем дросселируется до давления $P_3{=}0,9$ МПа. При давлении P_3 пар попадает в сопло Лаваля, где расширяется до давления $P_4{=}5$ кПа. Определить, используя hS-диаграмму водяного пара: количество тепла, подведенного к пару в процессе 1-2; изменение внутренней энергии и энтропии, а также конечную температуру в процессе дросселирования 2-3; конечные параметры и скорость на выходе из сопла Лаваля, параметры пара и скорость в минимальном сечении, а также расход пара в процессе изоэнтропного истечения 3-4, если известная площадь минимального сечения сопла $f_{\rm min}=60\,{\rm cm}^2$. Все процессы показать в hS-диаграмме.

<u>Решение.</u> Для определения требуемых величин изобразим рассматриваемый процесс расширения водяного пара в hS-диаграмме (рис. 1.5).

Используя hS-диаграмму, определяем

$$\begin{split} h_1 &= 2635 \, \frac{\kappa \text{ M} \text{ K}}{\text{ K} \Gamma}, \ \, V_1 = 0.035 \, \frac{\text{ M}^3}{\text{ K} \Gamma}, \ \, S_1 = 5.68 \, \frac{\kappa \text{ M} \text{ K}}{\text{ K} \Gamma \cdot \text{ K}} \\ \\ t_3 &= 435 \, ^{\circ}\text{C}, \ \, h_2 = h_3 = 3350 \, \frac{\kappa \text{ M} \text{ K}}{\text{ K} \Gamma}, \ \, V_2 = 0.062 \, \frac{\text{ M}^3}{\text{ K} \Gamma}, \\ S_2 &= 6.88 \, \frac{\kappa \text{ M} \text{ K}}{\text{ K} \Gamma \cdot \text{ K}}, \ \, h_4 = 2340 \, \frac{\kappa \text{ M} \text{ K}}{\text{ K} \Gamma}, \ \, V_3 = 0.35 \, \frac{\text{ M}^3}{\text{ K} \Gamma}, \ \, S_3 = 7.66 \, \frac{\kappa \text{ M} \text{ K}}{\text{ K} \Gamma}. \end{split}$$

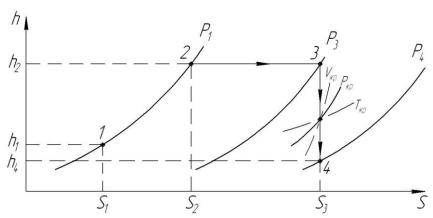


Рис. 1.5. Процесс расширения водяного пара в hS-диаграмме

Количество тепла, подведенного к пару в процессе 1-2

$$q_{1-2} = h_2 - h_1 = 3350 - 2635 = 715 \frac{\kappa \text{Дж}}{\kappa \Gamma}$$

Изменение внутренней энергии и энтропии в процессе дросселирования 2-3

$$\begin{split} \Delta U = & \left(h_3 - P_3 V_3 \right) - \left(h_2 - P_2 V_2 \right) = \left(3350 - 900 \cdot 0, 35 \right) - \\ - & \left(3350 - 5000 \cdot 0, 062 \right) = -5 \, \frac{\kappa \cancel{\square} \cancel{w}}{\kappa \Gamma} \,, \\ \Delta S = & S_3 - S_2 = 7, 66 - 6, 88 = 0, 78 \, \frac{\kappa \cancel{\square} \cancel{w}}{\kappa \Gamma \cdot K} \,. \end{split}$$

Скорость на выходе из сопла Лаваля

$$w = 44,72 \cdot \sqrt{h_3 - h_4} = 44,72 \cdot \sqrt{3350 - 2340} = 1421,2 \text{ m/c}.$$

Расход пара

$$M = 0,667 \cdot f_{\text{min}} \sqrt{\frac{P_3}{V_3}} = 0,667 \cdot 0,006 \cdot \sqrt{\frac{9 \cdot 10^5}{0,35}} = 6,4 \text{ kg/c} \, .$$

Задача 4. 1 кг водяного пара с начальным давлением P_1 =5,5 МПа и степенью сухости x_1 =0,92 изотермически расширяется, при этом к нему подводится тепло q=410 кДж/кг. Определить, пользуясь hS-диаграммой, параметры конечного состояния пара, работу расширения, изменение внутренней энергии, энтальпии и энтропии. Решить также данную задачу при изобарном расширении: изобразить процессы в PV, TS и hS-диаграммах.

<u>Решение.</u> С использованием hS-диаграммы определяем для изотермического расширения

$$S_1 = 5.7 \frac{\kappa \square \kappa}{\kappa \Gamma \cdot K}, \ T_2 = T_1 = 550 \text{ K},$$

$$V_1 = 0.04 \frac{M^3}{\kappa \Gamma}, \ h_1 = 2650 \frac{\kappa \Pi \kappa}{\kappa \Gamma}.$$

Из выражения подводимой теплоты в изотермическом процессе определяем S_2 , кДж/(кг·К)

$$S_2 = \frac{q}{T} + S_1 = \frac{410}{550} + 5,7 = 6,4 \frac{\kappa \cancel{\square} \cancel{ж}}{\kappa \Gamma \cdot K}.$$

Зная значения T_2 и S_2 по hS-диаграмме определяем параметры пара в точке 2

$$V_2 = 0.08 \frac{M^3}{K\Gamma}, h = 2920 \frac{K / J K}{K \Gamma}, P_2 = 3.5 M / I a.$$

Зная найденные параметры, определяем изменения внутренней энергии, значения работы расширения, изменение энтальпии и энтропии.

$$\begin{split} \Delta U = & \left(h_2 - P_2 V_2 \right) - \left(h_1 - P_1 V_1 \right) = \left(2920 - 3500 \cdot 0, 08 \right) - \\ - & \left(2650 - 5500 \cdot 0, 04 \right) = 210 \, \frac{\kappa \text{M}\text{m}}{\text{kg}}, \\ & 1 = q - \Delta U = 410 - 210 = 200 \, \frac{\kappa \text{M}\text{m}}{\text{kg}}, \\ & \Delta S = S_2 - S_1 = 6, 4 - 5, 7 = 0, 7 \, \frac{\kappa \text{M}\text{m}}{\text{kg} \cdot \text{K}}. \end{split}$$

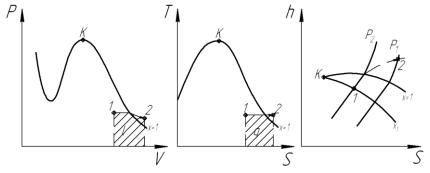


Рис. 1.6. Изотермический процесс расширения в PV, TS, hS-диаграммах

При изобарном расширении определяем h2, кДж/кг

$$h_2 = q_2 + h_1 = 410 + 2650 = 3060 \frac{\kappa \text{Дж}}{\kappa \Gamma},$$

 $P_2 = P_1 = 5,5 \text{ M}\Pi a,$

и с помощью hS-диаграммы определяем V_2 , T_2 , S_2

$$V_2 = 0.05 \frac{M^3}{\kappa \Gamma}, \ T_2 = 623 \ K, \ S_2 = 6.38 \frac{\kappa \cancel{\square} \cancel{m}}{\kappa \Gamma \cdot K}.$$

Определяем изменение внутренней энергии, энтальпии, энтропии и работы расширения в изобарном процессе.

$$\begin{split} \Delta h &= q = 410 \, \frac{\kappa \text{/J}\text{/m}}{\kappa \text{/}}, \\ \Delta U &= \left(h_2 - P_2 V_2\right) - \left(h_1 - P_1 V_1\right) = \left(3060 - 5500 \cdot 0, 05\right) - \\ - \left(2650 - 5500 \cdot 0, 04\right) &= 355 \, \frac{\kappa \text{/J}\text{/m}}{\kappa \text{/}}. \\ \Delta S &= S_2 - S_1 = 6,38 - 5,7 = 0,68 \, \frac{\kappa \text{/J}\text{/m}}{\kappa \text{/} \cdot \text{K}}, \\ 1 &= P \left(V_2 - V_1\right) = 3500 \cdot \left(0,05 - 0,04\right) = 55 \, \frac{\kappa \text{/J}\text{/m}}{\kappa \text{/}}. \end{split}$$

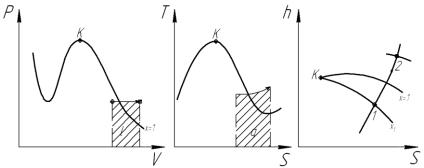


Рис. 1.7. Изобарный процесс расширения в PV, TS, hS-диаграммах

2. ЛАБОРАТОРНЫЕ РАБОТЫ 2.1. Лабораторная работа № 1

ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ОБЪЕМНОЙ ТЕПЛОЕМКОСТИ ВОЗДУХА ПРИ ПОСТОЯННОМ ДАВЛЕНИИ

ЦЕЛЬ РАБОТЫ

Закрепление знаний по разделу "Теплоемкость газов" и уяснение физического смысла теплоемкости, классификации видов теплоемкостей, связи между видами теплоемкостей и их размерности.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Количество теплоты, потребное для нагревания газа, зависит от количества нагреваемого газа и от того, на сколько градусов должна быть изменена его температура. Чем больше то и другое, тем больше потребное количество теплоты. Поэтому для характеристики тепловых свойств газа, как и всякого другого тела, пользуются особой величиной, которая называется теплоемкостью.

Теплоемкость тела — это количество тепла, которое нужно подвести κ нему или отнять от него для изменения его температуры на один градус.

Количество тепла dQ, подведенное к газу в каком либо процессе, можно выражать через приращение температуры dT этого тела

$$dQ = C \cdot dT, \qquad (2.1)$$

где С – теплоемкость газа, Дж/К.

Обычно теплоемкость относят к некоторой количественной единице газа и называют удельной теплоемкостью. В за-

висимости от вида этой количественной единицы различают удельные теплоемкости:

массовую – c, Дж/кг·К; объемную – c_0 , Дж/м³·К; мольную – c_μ , Дж/моль·К.

Связь между перечисленными теплоемкостями выражается следующими формулами:

$$c = \frac{C}{G}, \quad c_0 = \rho \cdot C, \quad c_{\mu} = \mu \cdot C,$$
 (2.2)

где G — масса газа, кг; ρ — плотность газа, кг/м³; μ — молекулярный вес кг/моль.

В различных процессах теплоемкость может принимать самые различные значения (от нуля до $\pm \infty$), то есть, может быть любой положительной или отрицательной величиной. Кроме того, теплоемкость в реальных процессах не остается постоянной, а зависит от температуры и давления газа. Особую роль в термодинамике играют значения теплоемкости для двух наиболее хорошо изученных процессов — изобарного (P = const) и изохорного (V = const).

Массовую теплоемкость тела для изобарного процесса обозначают через $c_{\rm p}$, а для изохорного — через $c_{\rm v}$. Соответственно объемные теплоемкости обозначают через $c_{\rm op}$, $c_{\rm ov}$ и мольные через $c_{\rm \mu p}$, $c_{\rm \mu v}$.

Все рассмотренные выше теплоемкости называют истинными теплоемкостями. Величина истинной теплоемкости для каждого состояния реального газа относится к бесконечно малому его значению. Значение каждой теплоемкости зависит не только от начального и конечного состояния тела, но и от характера процесса. Поэтому любая теплоемкость тела не является параметром его состояния.

Поскольку воздух при атмосферном давлении весьма близок к идеальному газу, то связь между теплоемкостями выражается формулой Майера

$$c_{p} - c_{v} = \frac{R_{\mu}}{u} = R,$$
 (2.3)

где R – газовая постоянная вещества.

Среднее значение показателя адиабаты для воздуха можно определить из выражения:

$$K = \frac{c_p}{c_p - R} = \frac{c_p}{c_v}, \qquad (2.4)$$

В теплотехнических расчетах часто пользуются средней теплоемкостью

$$c_{cp} = \frac{q_{1-2}}{t_2 - t_1}. (2.5)$$

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема установки для исследования теплоемкости воздуха представлена на рис. 2.1.

Установка состоит из стеклянного проточного калориметра 1, в котором помещен электрический нагреватель 2. Мощность нагревателя регулируется ЛАТРом (Л) и измеряется с помощью амперметра (А) и вольтметра (V).

Подача воздуха осуществляется вентилятором 3. Температура воздуха на входе и выходе из калориметра измеряется термометрами 4. Измерение объемного расхода воздуха, протекающего через калориметр, производится газовым счетчиком 5.

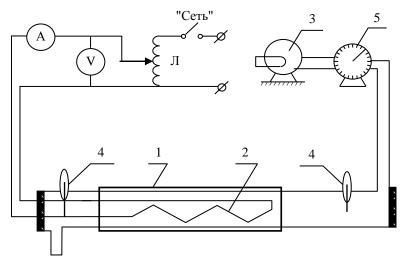


Рис. 2.1. Схема лабораторной установки

МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ

Ознакомившись со схемой установки и ее элементами, заготовив протокол наблюдений (см. табл. 2.1), включают тумблер "Сеть", при этом должна загореться контрольная лампочка. Включить вентилятор, для чего включают тумблер "Вентилятор" и одновременно нажимают кнопку. Регулируя латром напряжение, установить режим нагрева воздуха, заданный преподавателем. После установления стационарного режима занести показания приборов в протокол наблюдений. Затем повторяют исследования при следующих режимах нагрева. Объемный расход воздуха через рабочий элемент определяют с помощью газового счетчика. Для этого засекают время одного оборота стрелки счетчика (за один оборот прокачивается 5 дм³ воздуха). По окончании работы установить латр в нулевое положение, отключить нагреватель, вентилятор и обесточить стенд.

	t_1	t_2	J	U	Q
	°C	°C	A	В	Вт
1					
2					
3					

ОБРАБОТКА РЕЗУЛЬТАТОВ ОПЫТА

В работе определяется средняя объемная теплоемкость воздуха при постоянном давлении методом проточного калориметрирования. Суть метода заключается в том, что поток газа, протекающий через нагреватель, на выходе будет иметь большую температуру, чем на входе. При установившемся режиме работы установки расход воздуха в единицу времени, температура на входе в калориметр и количество подводимого к воздуху тепла остаются постоянными. Поэтому будет постоянной и температура воздуха на выходе из калориметра.

Газовый счетчик, установленный на входе в калориметр, измеряет объемный расход воздуха. Поэтому можно записать

$$Q = V_{H}c_{op}(t_2 - t_1), \qquad (2.6)$$

где t_1 , t_2 — температура воздуха на входе и выходе из калориметра, °C; $V_{\rm H}$ — объемный расход воздуха через калориметр, приведенный к нормальным условиям, м³/с; $c_{\rm op}$ — средняя объемная теплоемкость воздуха при постоянном давлении, Дж/(м³·К); Q — количество теплоты подведенное к воздуху электронагревателем калориметра, Вт.

1. По показаниям амперметра и вольтметра определяют количество теплоты, подведенное к воздуху для каждого режима нагрева

$$Q = \eta IU, BT \tag{2.7}$$

где η — коэффициент, зависящий от температуры воздуха и определятся по графику (приложение 1), I — сила тока A, U — напряжение, B.

2. Определяют объемный расход воздуха через калориметр:

$$V_{t} = \frac{5 \cdot 10^{-3}}{\tau}, \, M^{3}/c$$
 (2.8)

где т – время одного оборота стрелки газового счетчика, с.

- 3. Объемный расход воздуха при нормальных условиях: $P_0 = 1,013\cdot 10^5~\Pi a,~T_0 = 273~K;~P_t,~T_t$ давление и температура воздуха в реальных условиях ($T_t = t_1 + 273~K$).
- 4. Из уравнения (2.6) определяют значение с_{ор} для каждого режима.
- 5. Определяют массовую, объемную и мольную теплоемкости при постоянном давлении для каждого режима:

$$c_{p} = \frac{c_{op}}{\rho}, \quad c_{V} = c_{p} - R, \quad c_{\mu p} = \mu c_{p}, \quad (2.9)$$

где $\rho=1,29~{\rm кг/m^3}-$ плотность воздуха; $R=287~{\rm Дж/(кг\cdot K)}-$ газовая постоянная для воздуха; $\mu=29~{\rm кг/кмоль}-$ молекулярный вес воздуха.

6. Определяют мольную и объемную теплоемкости при постоянном объеме для каждого режима

$$c_{yy} = \mu c_y$$
, $c_{yy} = \rho c_y$. (2.10)

- 7. По формуле (2.4) вычисляют величину показателя адиабаты.
- 8. Используя приложение 4, значения теплоемкостей c_p , c_c , c_{op} , c_{ov} , $c_{\mu p}$, $c_{\mu v}$ в диапазоне температур от t_1 (температура воздуха на входе в калориметр) до t_2 (температура воздуха на выходе из калориметра) можно определить по формуле для каждого режима

$$c\Big|_{t_1}^{t_2} = \frac{c\Big|_0^{t_2} t_2 - c\Big|_0^{t_1} t_1}{t_2 - t_1},$$
(2.11)

где $c|_0^t$ – среднее значение теплоемкости в интервале температур от 0°C до t °C.

9. Абсолютную погрешность определяют по формуле для каждого режима

10. Относительная погрешность определяется по формуле для каждого режима

$$\left|\delta c\right|_{_{_{_{3KC}}}}^{_{_{7KO}}} = \frac{\left|\Delta c\right|_{_{_{_{3KC}}}}^{_{_{7KO}}}}{c_{_{_{75O}}}} \cdot 100\% . \tag{2.13}$$

Результаты расчетов сводят в табл. 2.2.

Протокол результатов

Способ оп	Способ опре-		я тепло-	Массова	я тепло-	Объемн	ая теп-
деления теп-		емкость		емкость		лоемкость	
лоемкост	М	кДж/км	моль•К	кДж	/кг∙К	кДж/м³∙К	
		$c_{\mu p}$	c_{μ_V}	c_p	$c_{\rm v}$	c_{op}	c_{ov}
Экспери- менталь- ный	1 2 3						
По табли- цам	1 2 3						
$\left \Delta c\right _{_{ m ЭКСП.}}^{ m Tабл.}$	1 2 3						
$\left \delta c\right _{_{ m ЭКСП.}}^{_{ m Табл.}}$	1 2 3						

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Дать определение удельной теплоемкости.
- 2. Определение массовой, объемной и мольной теплоемкости. Взаимосвязь между ними.
 - 3. В каких единицах измеряются теплоемкости.
 - 4. Что такое истинная теплоемкость?
- 5. Дать определение средней теплоемкости. Дать графическое представление в координатах q-t?
- 6. Написать уравнение количества теплоты через среднюю теплоемкость?
- 7. Чем отличаются теплоемкости идеальных и реальных газов?
- 8. Что такое теплоемкость при постоянном объеме и теплоемкость при постоянном давлении?

- 9. Почему теплоемкость газа при постоянном давлении всегда больше теплоемкости при постоянном объеме?
- 10. Объяснить смысл всех величин, входящих в уравнение Майера?
 - 11. Объяснить величину К. Как она определяется?
- 12. Напишите уравнение теплоемкости в дифференциальной форме?

2.2. Лабораторная работа № 2

ИССЛЕДОВАНИЕ ИСТЕЧЕНИЯ ГАЗА ИЗ ДОЗВУКОГО СОПЛА

ЦЕЛЬ РАБОТЫ

Изучение термодинамики процесса адиабатного истечения газа из дозвукового сопла и определение его энергетических и расходных характеристик.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Дозвуковое сопло представляет собой канал, суживающийся в направлении движения потока и предназначенный для увеличения его скорости.

Ускорение потока сопровождается понижением его давления P от начального P_1 до конечного P_2 , равного давлению среды P_c , в которую происходит истечение потока. Чем ниже давление P_c , тем больше скорость газа w на выходе из сопла. Однако в дозвуковом сопле увеличение скорости w не может быть беспредельным, и ограничено значением местной скорости звука a.

Для обратимого (изоэнтропного, адиабатного) процесса истечения газа давление $P_{2\kappa p}$, соответствующее условию

$$\omega = a \tag{2.14}$$

равно

$$P_{2kp} = P_1 \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}},$$
 (2.15)

Отношение давлений $P_{2\kappa p} / P_1 = \beta_{\kappa p}$ называется критическим перепадом давлений. При условии

$$P_c \le P_2$$

справедливо равенство

$$P_2 = P_{2\kappa p} \tag{2.16}$$

Температура потока T_{28} и скорость звука a_{28} при давлении P_{2kp} на срезе сопла определяется из выражений:

$$T_{2S} = T_1 \frac{2}{k+1}, \qquad (2.17)$$

$$a_{2S} = \sqrt{kRT_{2S}} = \sqrt{\frac{2}{k+1}kRT_1}$$
 (2.18)

В реальном адиабатном процессе истечения газа часть его кинетической энергии затрачивается на преодоление трения, обусловленного вязкостью газа, шероховатостью стенок канала, неравномерностью процесса истечения и т.д. Вследствие этого энтропия газа при его расширении возрастает, и действительная адиабата отклоняется вправо от изоэнтропы.

Допуская, что доля энергии газа, теряемая на трение, постоянна и равна $(1-\eta)$, уравнение процесса расширения запишем в виде

$$d_i = c_p dT = \eta \vartheta dP = \eta RT \frac{dP}{P}, \qquad (2.19)$$

где R — газовая постоянная, Дж/(кг-К); c_p — удельная изобарная теплоемкость газа, кДж/(кг-К); i, ϑ — энтальпия и объем газа, кДж/кг, m^3 ; k — показатель адиабаты.

Интегрируя (6), получим уравнение, определяющее параметры газа на выходе из сопла

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\eta \frac{k-1}{k}}.$$
 (2.20)

Наличие трения вызывает торможение потока. Поэтому его скорость $\omega_{_{\! I}}$ в реальном процессе расширения до давления P_2 всегда будет меньше скорости ω , которую имел бы поток при его обратимом расширении до того же давления. Величина $\phi = \omega_{_{\! I}}/\omega$ называется скоростным коэффициентом. Для хорошо обработанных и спрофилированных сопл, имеющих достаточно гладкую поверхность, последний составляет 0.95-0.98.

Очевидно, что для увеличения скорости потока $\omega_{\rm д}$ до максимального значения $a_{\rm 2д}$ конечное давление расширения $P_{\rm 2д}$ должно быть ниже значения $P_{\rm 2kp}$, определяемого по формуле (2.15). На основе уравнения (2.20) для расчета давления $P_{\rm 2g}$ может быть получено следующее выражение

$$P_{2\pi} = P_1 \left(\frac{2}{k+1}\right)^{\frac{k}{\eta(k-1)}}.$$
 (2.21)

Скорость $a_{2\pi}$ составит

$$a_{2\pi} = \sqrt{kRT_1 \left(\frac{2}{k+1}\right)^{\eta}}.$$
 (2.22)

Если известно давление $P_{2\pi}$, то из формулы (2.22) следует

$$\eta = \frac{k}{k-1} \frac{\ln \frac{2}{k+1}}{\ln \frac{P_{2\pi}}{P_1}}.$$
 (2.23)

При условии $P_2 = P_{2kp}$ величина ϕ составит

$$\varphi = \frac{\omega_{_{R}}}{a_{_{2s}}} = \frac{\sqrt{2c_{_{p}}(T_{_{1}} - T_{_{2}})}}{\sqrt{2RT_{_{1}}\frac{k}{k+1}}} = \sqrt{\frac{k+1}{k-1}\left(1 - \frac{T_{_{2}}}{T_{_{1}}}\right)}.$$
 (2.24)

Решая совместно уравнения (2.20), (2.21), (2.24), найдем

$$\phi = \sqrt{\frac{k+1}{k-1}} \left[1 - \left(\frac{2}{k+1} \right)^{\eta} \right]. \tag{2.25}$$

Снижение массового расхода газа через сопло, обусловленное наличием трения, оценивается по величине коэффициента расхода

$$\mu = G_{_{\rm I\!I}}/G_{_{\rm S}},$$

При $P_2 = P_{2\kappa p}$ расходы $G_{\scriptscriptstyle S}$ и $G_{\scriptscriptstyle \Pi}$ составят:

$$G_s = Fa_{2s}/v_{2s}$$
, (2.26)

$$G_{_{\mathcal{I}}} = F\omega_{_{\mathcal{I}}}/v_{_{\mathcal{I}}} = \theta_{_{S}} \varphi \frac{v_{_{2S}}}{v_{_{\mathcal{I}}}}. \qquad (2.27)$$

Используя уравнения (2.25) и (2.26) нетрудно установить зависимость между µ и ф

$$\mu = \phi \left(\frac{2}{k+1}\right)^{1-\eta}.\tag{2.28}$$

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Схема установки для исследования процесса истечения газа представлена на рисунке 2.2.

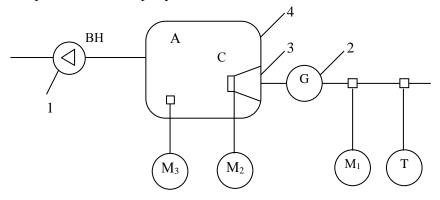


Рис. 2.2. Схема лабораторной установки

Воздух откачивается из системы вакуумным насосом 1 и поступает через газовый счетчик 2 к соплу 3. Для устранения колебаний воздуха, создаваемых вакуумным насосом, в систему включена демпфирующая емкость 4. Избыточное давление воздуха на входе и выходе из сопла и давление воздуха за соплом измеряется образцовыми вакуумметрами М₁ и М₂, М₃ соответственно. В установке используется суживающее сопло

с диаметром выходного сечения 0,92 мм. Атмосферное давление измеряется барометром-анероидом.

МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ

Ознакомившись со схемой установки и ее элементами, переключателем "Сеть" включают вакуумный насос, при этом должна загореться контрольная лампочка. Дождавшись, когда показания вакуумметров перестанут изменяться, произвести запись их показаний. После этого выключают установку.

Протокол наблюдений

M_1	M_2	Р _б , Па

ОБРАБОТКА РЕЗУЛЬТАТОВ ОПЫТОВ

1. Определяют абсолютное давление P_1

$$P_{1} = P_{6} - 0.981 \cdot M_{1}, \qquad (2.29)$$

Таблица 2.3

где P_{6} – атмосферное давление, определяемое по барометруанероиду, Πa .

2. Определяют давление $P_{2\pi}$

$$P_{2g} = P_6 - 0.981 \cdot M_2. \tag{2.30}$$

3. По формулам (2.23), (2.25), (2.27) определяют значения показателей η , φ и μ .

Результаты расчетов сводят в табл. 2.4.

Протокол результатов

Р1, Па	$P_{2\pi}$, Па	η	φ	μ

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Уравнение первого закона термодинамики для потока.
- 2. Уравнение неразрывности для потока.
- 3. Что такое критический перепад давлений?
- 4. Уравнение для расчета скорости звука.
- 5. Характеристика реального и идеального процессов истечения
 - 6. Дать характеристику сопла Лаваля.
 - 7. Какие каналы называются соплами и диффузорами?
- 8. Нарисовать процесс адиабатного истечения идеального газа в диаграммах T-s и h-s.
- 9. Нарисовать процесс адиабатического истечения реального газа в диаграммах T-s и h-s.

2.3. Лабораторная работа № 3

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ВО ВЛАЖНОМ ВОЗДУХЕ

ЦЕЛЬ РАБОТЫ

Углубление знаний по разделу "влажный воздух", изучение методики расчета параметров влажного воздуха, изучение методики экспериментального определения параметров влажного воздуха, усвоение основных понятий о влажном воздухе; умение проводить расчет параметров влажного воздуха с использованием h - d — диаграммы.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Влажный воздух представляет собой механическую смесь сухого воздуха и водяного пара. В основном влажный воздух используется при давлениях, близких к атмосферному, поэтому с достаточной точностью и сухой воздух и водяной пар, составляющие влажный воздух, можно считать идеальными газами. При расчетах с влажным воздухом применимо уравнение Менделеева—Клапейрона

$$PV = MRT, (2.31)$$

а также закон Дальтона

$$P = P_B + P_{\Pi},$$
 (2.32)

где P — давление смеси, $\Pi a; P_B, P_\Pi$ — парциальное давление сухого воздуха и водяного пара, Πa .

Количество водяного пара, содержащееся в 1 м^3 влажного воздуха, называется абсолютной влажностью воздуха; она равна плотности пара при его парциальном давлении

$$\rho_{\pi} = \frac{P_{\pi}}{RT}, \kappa \Gamma / M^3 \qquad (2.33)$$

где ρ_{π} , P_{π} , R — соответственно плотность, парциальное давление и газовая постоянная пара, кг/м³, Па, Дж/(кг·К); Т — температура влажного воздуха, К.

Отношение абсолютной влажности воздуха к абсолютной влажности насыщенного воздуха при той же температуре называется относительной влажностью

$$\varphi = \frac{\rho_{\pi}}{\rho_{H}} \cdot 100\% \ . \tag{2.34}$$

Если температура влажного воздуха меньше или равна температуре насыщенного водяного пара при давлении влажного воздуха, то $\rho_{\rm H}$ будет равна плотности насыщенного пара, при данной температуре. Относительная влажность может быть также приблизительно найдена из уравнения

$$\varphi = \frac{P_{\pi}}{P_{\pi}} \cdot 100\% \ . \tag{2.35}$$

Для характеристики влажного воздуха используются также понятием влагосодержание, под которым понимают отношение массы водяного пара, содержащегося в смеси, к массе сухого воздуха

$$d = \frac{M_{\pi}}{M_{\text{B}}} = \frac{\rho_{\pi}}{\rho_{\text{B}}}.$$
 (2.36)

Величину d обычно измеряют в граммах влаги на 1 кг сухого воздуха, содержащегося во влажном воздухе. Воспользовавшись уравнением идеального газа и законом Дальтона, выражение (2.36) можно записать в таком виде:

$$d = \frac{\mu_{\pi}}{\mu_{B}} \frac{P_{\pi}}{P_{B}} \cdot 1000 = \frac{622P_{\pi}}{P - P_{\pi}}, \qquad (2.37)$$

где $\mu_{_{\rm II}}$ и $\mu_{_{\rm B}}$ – молекулярные массы водяного пара ($\mu_{_{\rm II}}=18$ кг/К·моль) и сухого воздуха ($\mu_{_{\rm B}}=28{,}97$ кг/К·моль).

Газовая постоянная влажного воздуха (R) может быть определена по уравнению Клапейрона–Менделеева для газовой смеси

$$R = \frac{R_{_{B}}}{1 - 0,377 \frac{\phi P_{_{H}}}{P}},$$
 (2.38)

где R_B – газовая постоянная сухого воздуха (R_B = 287 Дж/кг·К).

Та температура, до которой надо охладить при постоянном давлении влажный воздух, чтобы он стал насыщенным ($\phi = 100 \%$), называется температурой точки росы (t_p).

На практике для определения относительной влажности пользуются психрометром. Прибор состоит из двух термометров, шарик одного из них обернут влажной тканью. За счет испарения влаги, температура воздуха возле ткани понижается, вследствие чего показания сухого и мокрого термометров различны. По показаниям психрометров величина ф может быть найдена из специальной психрометрической таблицы или по h - d диаграмме влажного воздуха. Применение h - d диаграммы существенно облегчают расчет процессов изменения состояния влажного воздуха. В этой диаграмме (см. приложение 3) по оси абсцисс отложено влагосодержание (d), а по оси ординат – энтальпия (h). Для более удобного расположения отдельных линий на диаграмме координатные оси расположены под углом 135°. Однако, в диаграммах наклонная ось не вычерчивается, а вместо нее из начала координат проводится горизонталь, на которую значения d спроектированы с наклонной оси. Кроме того, на диаграмме нанесены изотермы $t_c = const$, $t_M =$ const, линии ϕ = const и P_{π} = f(d).

Основные процессы, имеющие место при выполнении данной работы, показаны на рис. 2.3.

Точка 1 соответствует параметрам атмосферного воздуха, которая определяется по показаниям психрометра (T_{c1} , T_{m1}). Процесс нагрева воздуха до T_{c2} протекает при d=const (точка 2). В процессе сушки материала в сушилке (линия 2–3) происходит увеличение влагосодержания и понижение температуры сушильного агента. Параметры сушильного агента на выходе

из сушильной камеры (точка 3) определяются по показаниям психрометра (T_{c3} , $T_{м3}$). Если в процессе сушки вся теплота расходуется на удаление влаги, происходит теоретический (адиабатный) процесс (линия 2–4), который протекает при h= const. Параметры точки 4 определяются на пересечении изотермы T_{c3} и процесса 2–4 при $h_2=$ const.

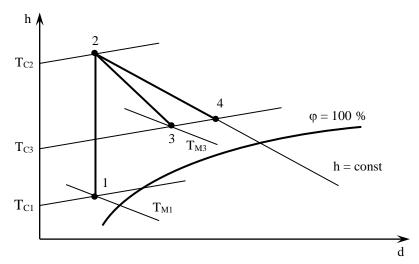


Рис. 2.3. Основные процессы, имеющие место при выполнении данной работы

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема установки для исследования процессов во влажном воздухе представлена на рис. 2.4.

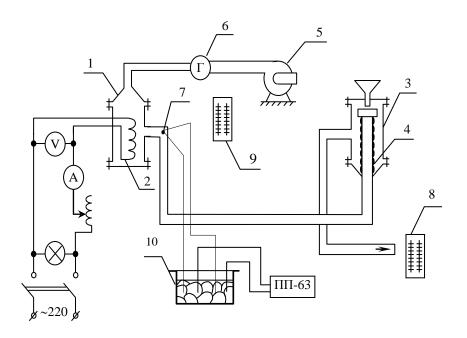


Рис. 2.4. Схема установки для исследования процессов во влажном воздухе

Установка представляет собой модель сушильной камеры, в которой сушильным агентом является воздух, а просушиваемым материалом — ткань, смоченная водой. Основными элементами установки являются калорифер 1 с нагревателем 2 и сушильной камерой 3, внутри которой находится увлажненный материал 4.

Мощность нагревателя регулируется латром (Л) и измеряется амперметром (А) и вольтметром (V). Воздух в калорифер подается вентилятором 5, а расход измеряется газовым счетчиком 6. Из калорифера горячий воздух направляется в сушильную камеру, проходя через влажную ткань, высушивает ее, а затем выходит в помещение. Параметры воздуха на входе и выходе из установки определяются психрометрами 8 и 9. Температура горячего воздуха после калорифера измеряется

термопарой 7 градуировки XK в комплексе с потенциометром ПП-63 в сосуд Дьюара 10 заполненный смесью льда и воды помещены холодные спаи термометра.

МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ

Ознакомившись со схемой установки и ее элементами, включить тумблер "Сеть", при этом должна загореться контрольная лампочка. После чего включить тумблер "Вентилятор" и одновременно нажать кнопку. Регулируя ЛАТРом напряжения, установить мощность нагревателя калорифера 50–55 Вт. При достижении установившегося режима (через 50–60 мин.) снимают показания амперметра, вольтметра, психрометров потенциометра ПП–63. Расход воздуха определяют с помощью газового счетчика. Для этого засекают время одного оборота стрелки счетчика (за один оборот прокачивается 5 дм³ воздуха). Все замеры повторяют три раза с интервалом в 2–3 мин. Результаты измерений заносят в протокол наблюдений (табл. 2.5).

Таблица 2.5

Номер опыта	T_{C1}	T_{M1}	To	22	T_{C3}	T_{M3}	В	U	I	τ
Опыта	K	K	мВ	К	К	К	Па	В	A	С
1										
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$										
Среднее										

ОБРАБОТКА РЕЗУЛЬТАТОВ ОПЫТОВ

1. С помощью градуировочной таблицы (приложение 2) переводят значение термо-э.д.с. в соответствующее значение температуры.

- 2. По h–d диаграмме (приложение 3) определяют энтальпию и влагосодержание воздуха в точках 1–4, а также P_{π} парциальное давление водяного пара в точке 1.
 - 3. Определяют расход воздуха:

$$V = \frac{5 \cdot 10^{-3}}{\tau}, \, \text{m}^3/\text{c}$$
 (2.39)

где τ – время одного оборота стрелки, с.

4. Определяют массовый расход сушильного агента:

$$L = \frac{P_{\rm B}V}{RT_{\rm Cl}}, \, \kappa \Gamma/c \tag{2.40}$$

где $P_{\scriptscriptstyle B}=B-P_{\scriptscriptstyle \Pi}$, Па; R=287 Дж/(кг-К) — газовая постоянная воздуха.

5. Определяют количество испарившейся влаги на 1 кг сухого воздуха

$$\Delta d = d_3 - d_1, \, \Gamma/\kappa\Gamma \tag{2.41}$$

6. Определяют количество теплоты, затраченное на испарение этой влаги (без учета потерь):

$$\mathbf{q}_{\text{исп}} = \mathbf{h}_3 - \mathbf{h}_2, \, \kappa \mathbf{Д} \mathbf{ж} / \kappa \Gamma \tag{2.42}$$

7. Определяют массу испаренной воды:

$$M = L(d_3 - d_1) = L \Delta d$$
, Γ/c (2.43)

8. Определяют расходы теплоты на нагрев сушильного агента

$$Q_{ca} = L(h_2 - h_1), \kappa BT$$
 (2.44)

9. Определяют общие потери теплоты в установке

$$Q_{\text{nor}} = I \cdot U \cdot 10^{-3} - Q_{\text{ca}}, \text{ kBT}$$
 (2.45)

Результаты расчетов сводят в табл. 2.6.

Таблина 2.6

Протокол результатов

h_1	d ₁	h ₂	d_2	h ₃	d ₃	h ₄	d ₄	L	M	Qca	$Q_{\text{пот}}$
кДж/кг	г/кг	кДж/кг	L/KL	кДж/кг	I/KI	кДж/кг	г/кг	кг/с	г/с	кВт	кВт

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется влажным воздухом?
- 2. Что называется насыщенным и ненасыщенным влажным воздухом?
 - 3. Закон Дальтона применительно к влажному воздуху.
 - 4. Что называется абсолютной влажностью?
 - 5. Что называется относительной влажностью воздуха?
 - 6. Что называется влагосодержанием влажного воздуха?
 - 7. В каких пределах может изменяться влагосодержание?
 - 8. Что называется температурой точки росы?
- 9. Как изображаются основные процессы воздуха в h-d диаграмме?
- 10. Каким образом определить параметры влажного воздуха, если известны показания сухого и мокрого термометров?

ОСОБЕННОСТИ СОБЛЮДЕНИЯ ПРАВИЛ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ ДАННОЙ РАБОТЫ

Категорически запрещается подавать напряжение на нагреватель калорифера при неработающем вентиляторе.

2.4. Лабораторная работа № 4

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ДЛЯ ВОДЫ

ЦЕЛЬ РАБОТЫ

Закрепление знаний по разделу "Водяной пар", исследование зависимости скрытой теплоты парообразования для воды от температуры, построение кривой насыщения для воды и определение значений удельного объема сухого насыщенного пара.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Любое реальное вещество в зависимости от его параметров может находиться в виде газообразной (паровой), жидкой и твердой фазы и при изменении параметров переходить из одной фазы в другую. Этот процесс носит название фазового перехода. Рассмотрим процесс перехода от жидкой к газообразной (паровой) фазе. Это процесс происходит за счет подвода тепла извне. Количество тепла, необходимое для превращения 1 кг кипящей воды в сухой насыщенный пар при P = const, называется скрытой теплотой парообразования. С ростом давления, при котором происходит фазовый переход, величина скрытой теплоты парообразования уменьшается и в критической точке обращается в ноль.

Процесс парообразования происходит при определенной температуре, которая называется температурой насыщения. Зависимость между давлением и температурой насыщения па-

ра может быть представлена в P-t- диаграмме в виде некоторой линии, называемой кривой насыщения. Каждой точке кривой насыщения соответствует состояние равновесия жидкой и паровой фаз. Выше кривой вещество находится в жидкой фазе, а ниже в состоянии паровой фазы. Оканчивается кривая насыщения критической точкой. Для фазовых переходов справедливо уравнение Клапейрона-Клаузиуса, которое для случая перехода жидкой фазы в газовую имеет вид

$$\frac{dP_{_{\rm H}}}{dT_{_{\rm H}}} = \frac{r}{T_{_{\rm H}} \left(\vartheta'' - \vartheta'\right)},\tag{2.46}$$

где $P_{\text{н}}$ и $T_{\text{н}}$ — давление и температура насыщения, Π a, K; r — скрытая теплота парообразования, кДж/кг; 9", 9'— удельные объемы сухого насыщенного пара и кипящей жидкости, $M^3/K\Gamma$.

Это уравнение широко используется для вычисления термодинамических свойств веществ в области фазовых переходов. В частности в области низких давлений уравнение (2.46) используется для определения удельных объемов сухого насыщенного пара т.к. непосредственное экспериментальное определение их крайне затруднительно

$$v'' = \frac{\tau}{T_{H}} + v', \qquad (2.47)$$

построив кривую насыщения и экспериментально определив величину скрытой теплоты парообразования для определенного давления, по уравнению (2.47) можно рассчитать значение θ ". Величиной θ ' в области низких давлений можно пренебречь в силу ее малости по сравнению с θ ".

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема установки для измерения скрытой теплоты парообразования воды при различных давлениях представлена на рис. 2.5.

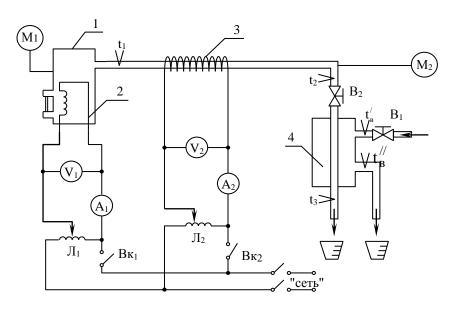


Рис. 2.5. Принципиальная схема установки

В паровом котле 1 с электрическим нагревателем 2 происходит испарение воды. Давление пара в котле определяется по манометру M_1 , а расход регулируется вентилем B_2 . Для подсушки и небольшого подогрева пара на выходе из котла имеется электрический пароперегреватель 3. Далее пар поступает в конденсатор 4, где он конденсируется за счет отвода теплоты к охлаждающей воде. Расход охлаждающей воды регулируется вентилем B_1 . Давление пара перед конденсатором измеряется манометром M_2 . Расходы охлаждающей воды и конденсата измеряются мерными стаканами. Измерение температуры

осуществляется термопарами градуировки XK в комплекте с потенциометром КСП–4 (на схеме не показан) или ПП–63.

МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ

Ознакомившись со схемой установки и ее элементами включить тумблер "Сеть", при этом должна загореться контрольная лампочка. Включить тумблер Bk_1 и латром J_1 подать напряжение на нагреватель котла. Открыть вентиль B_1 и отрегулировать и расход охлаждающей воды ≈ 200 г/мин. Включить тумблер Bk_2 и латром J_2 подать напряжение на пароперегреватель. При достижении давления в котле ≈ 2 атм. открыть вентиль B_2 . После того, как поток конденсата стабилизируется за 20 с набрать конденсат в мерный стакан и измерить температуру пара на выходе из котла (t_1) , перед конденсатором (t_2) , температуру конденсата (t_3) , температуру охлаждающей воды на входе (t_B^{\prime}) и выходе $(t_B^{\prime\prime})$ из конденсатора, давление пара перед конденсатором. Результаты измерений занести в протокол наблюдений (табл. 1).

Протокол наблюдений

Таблина 2.7

P ₂	t_1	t_2	t ₃	t _B	t _B ''
- 2	°C	°C	°C	°C	°C

ОБРАБОТКА РЕЗУЛЬТАТОВ ОПЫТОВ

1. Определяют расход охлаждающей воды

$$G_{\rm b} = \frac{m_{\rm b}}{\tau}, \, \text{kg/c} \tag{2.48}$$

где m_B – масса воды в мерном стакане, кг; τ – время, за которое набралась вода в стакан, с.

2. Определяют расход конденсата:

$$G_{\kappa} = \frac{m_{\kappa}}{\tau}, \, \kappa \Gamma/c \tag{2.49}$$

где m_{κ} — масса конденсата в мерном стакане, кг; τ — время, за которое набрался конденсат в стакан, с.

- 3. Определяют значение энтальпии перегретого пара из приложения 6 ($h_{\Pi\Pi} = f(P_2, t_2)$), а энтальпии сухого насыщенного пара и кипящей воды из приложения 5 ($h'' = f(P_2)$ и $h' = f(P_2)$).
 - 4. Определяют энтальпию конденсата

$$\mathbf{h}_{_{\mathbf{K}}} = \mathbf{c}_{_{\mathbf{B}}} \mathbf{t}_{_{\mathbf{3}}}, \, \mathbf{K} \mathbf{\square} \mathbf{ж} / \mathbf{K} \Gamma$$
 (2.50)

где $c_B = 4,19$ кДж/кг-К – теплоемкость воды.

5. Скрытая теплота парообразования определяется из уравнения теплового баланса установки

$$G_{K}r + G_{K}(h_{mn} - h'') + G_{K}(h' - h_{K}) - Q_{not} = G_{B}c_{B}(t_{B}^{//} - t_{B}^{/}),$$
 (2.51)

где G_{κ} , $G_{\text{в}}$ — расходы конденсата и охлаждающей воды, кг/с; $h_{\text{пп}}$, h'', h', h_{κ} — энтальпия перегретого пара, сухого насыщенного пара, кипящей воды и конденсата соответственно, кДж/кг; $Q_{\text{пот}}$ — потери теплоты в окружающую среду, кВт.

Следовательно,

$$r = \frac{G_{_{B}}}{G_{_{K}}} C_{_{B}} \left(t_{_{B}}^{''} - t_{_{B}}^{'} \right) - \left(h_{_{\Pi\Pi}} - h^{''} \right) - \left(h^{'} - h_{_{K}} \right), \, \kappa \text{Дж/кг}$$
 (2.52)

Величиной $Q_{\text{пот}}$ в пределах точности эксперимента можно пренебречь.

- 6. По уравнению (2.47) производят расчет удельных объемов сухого насыщенного пара.
 - 7. Определяют абсолютную погрешность

$$|\Delta \mathbf{r}| = |\mathbf{r}_{\text{sc}} - \mathbf{r}_{\text{tab}}|, \qquad (2.53)$$

8. Определяют относительную погрешность:

$$\left|\delta \mathbf{r}\right| = \frac{\left|\Delta \mathbf{r}\right|}{r_{\text{max}}} \cdot 100\,,\tag{2.54}$$

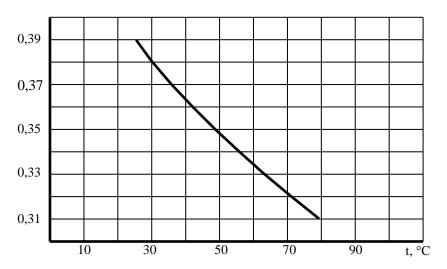
Результаты расчетов сводят в табл. 2.8.

Таблица 2.8 Протокол результатов

G _в	G_{κ}	hππ	h [/]	h//	h_{κ}	r	v"	$ \Delta r $	δr
кг/с	кг/с	кДж/кг	кДж/кг	кДж/кг	кДж/кг	кДж/кг	м ³ /кг	кДж/кг	%

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Чем отличается пар от газа?
- 2. Дайте определение сухого насыщенного пара, влажного насыщенного пара, перегретого пара.
- 3. Дайте определение степени сухости и степени влажности водяного пара.

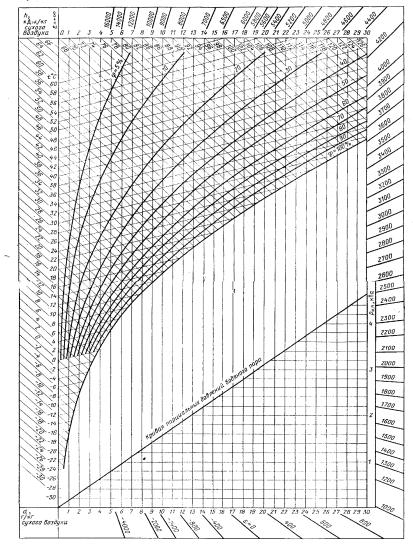

- 4. Как изображаются основные процессы водяного пара на P-v, T-s и h-s диаграммах?
 - 5. Что такое скрытая теплота парообразования?
- 6. Как определяются параметры сухого насыщенного пара?
- 7. Как определяются параметры влажного насыщенного пара?
 - 8. Как определяются параметры перегретого пара?
- 9. Покажите в диаграмме h—s процесс дросселирования водяного пара.
- 10. В чем преимущества диаграммы h—s водяного пара перед диаграммой T—s?

ЗАКЛЮЧЕНИЕ

Одним из обязательных элементов изучения курса «Техническая термодинамика» является выполнение практических занятий, которые включают в себя упражнения (решение примеров, задач) и лабораторные работы. Целью практических занятий является более прочное и глубокое усвоение студентом фактического материала и теоретических положений курса, а также приобретение им расчетных и экспериментальных навыков.

Накопленный опыт при изучении данного пособия и его дальнейшее использование при выполнении курсового проектирования способствует успешной подготовке бакалавров.

Зависимость коэффициента η от температуры воздуха



ПРИЛОЖЕНИЕ 2 ГРАДУИРОВОЧНАЯ ТАБЛИЦА термопары хромель-копель при температуре свободных концов 0°C по ГОСТу 3044-45 (градуировка ХК)

	0	1	2	3	4	5	6	7	8	9	
T, °C											
, -		1 – эдс в мВ									
+0	-0,00	0,07	0,13	0,20	0,26	0,33	0,39	0,46	0,52	0,59	
10	0,65	0,72	0,78	0,85	0,91	0,98	1,05	1,11	1,18	1,24	
20	1,31	1,38	1,44	1,51	1,57	1,64	1,70	1,77	1,84	1,91	
30	1,98	2,05	2,12	2,18	2,25	2,32	2,38	2,45	2,52	2,59	
40	2,66	2,73	2,80	2,87	2,94	3,00	3,07	3,14	3,21	3,28	
50	3,35	3,42	3,49	3,56	3,36	3,70	3,77	3,84	3,91	3,98	
60	4,05	4,12	4,19	4,26	4,33	4,21	4,48	4,55	4,62	4,69	
70	4,76	4,83	4,90	4,98	5,05	5,12	5,20	5,27	5,34	5,41	
80	5,48	5,56	5,63	5,70	5,78	5,85	5,92	5,99	6,07	6,14	
90	6,21	6,29	6,36	6,43	6,51	6,58	6,65	6,73	6,80	6,87	
100	6,95	7,03	7,10	7,17	7,25	7,32	7,40	7,47	7,54	7,62	
110	7,69	7,77	7,84	7,91	7,99	8,06	8,13	8,21	8,28	8,35	
120	8,43	8,50	8,58	8,65	8,73	8,80	8,88	8,95	9,03	9,10	

h - d - диаграмма влажного воздуха, B = 745 мм.рт.ст.

Приложение 4. h, d-диаграмма влажного воздуха.

Теплоемкость воздуха

Темпера-	Мольная	теплоем-	Массова	я тепло-	Объемная теплоем-		
тура, °С	кость, кДх	к/кмоль·К	емкость,	кДж/кг∙К	кость, кДж/м ³ ·К		
t	$C_{\mu p}$ CP $C_{\mu v}$ CP		C_p CP	$C_{v}^{\ CP}$	C_{op}^{CP}	C_{ov}^{CP}	
0	29,073	20,758	1,0036	0,7164	1,2971	0,9261	
100	29,152	20,838	1,0061	0,7193	1,3004	0,9296	
200	29,299	20,984	1,0115	0,7243	1,3071	0,9362	

ПРИЛОЖЕНИЕ 5

Насыщенный водяной пар (по давлению)

Р, МПа	t, °C	v',	v",	h',	h",	τ,
		$M^3/K\Gamma$	$M^3/K\Gamma$	кДж/кг	кДж/кг	кДж/кг
0,05	81,4	0,001030	3,240	340,6	2645	2304
0,10	99,6	0,001043	1,690	417,4	2675	2258
0,15	111,4	0,001053	1,160	467,2	2693	2226
0,20	120,2	0,001061	0,885	504,8	2707	2202
0,25	127,4	0,001067	0,719	535,4	2717	2182
0,30	133,5	0,001073	0,606	561,4	2725	2164
0,35	138,9	0,001079	0,524	584,5	2732	2148
0,40	143,6	0,001084	0,462	604,7	2738	2133
0,45	147,9	0,001088	0,414	623,4	2744	2121
0,50	151,8	0,001093	0,375	640,1	2749	2109
1,00	179,9	0,001127	0,195	762,7	2778	2015
1,50	198,3	0,001154	0,132	844,6	2792	1947
2,00	212,4	0,001177	0,100	908,5	2799	1891
2,50	223,9	0,001197	0,080	961,8	2802	1840
3,00	233,8	0,001216	0,067	1008,3	2804	1796
3,50	242,5	0,001235	0,057	1049,6	2803	1753
4,00	250,3	0,001252	0,050	1087,5	2801	1713

Вода и перегретый водяной пар

Р, МП	t a	80	100	120	140	160
	h	335,0	2676,5	2716,8	2756,6	2796,2
0,10	S	1,0752	7,3628	7,4681	7,5669	7,6605
	V	0,0010291	1,695	1,793	1,889	1,984
0,15	h	335,0	419,1	2711,7	2752,6	2792,9
	S	1,0752	1,3068	7,2708	7,3721	7,4675
	v	0,0010291	0,0010437	0,0010606	0,9353	0,9842
0,20	h	335,0	419,1	503,7	2748,4	2789,5
	S	1,0752	1,3068	1,5276	7,2314	7,3286
	V	0,0010291	0,0010436	0,0010606	0,7453	0,7842
0,25	h	335,1	419,2	503,8	2744,1	2783,0
	S	1,0751	1,3068	1,5275	7,1202	7,2193
	v	0,0010291	0,0010436	0,0010606	0,6170	0,6508
0,30	h	335,1	419,2	503,6	2739,6	2782,5
	S	1,0751	1,3067	1,5275	7,0275	7,1288

приложение 7

Вода и водяной пар (по температуре)

Boda ii Bodanion nap (no Tomnoparypo)									
$t_{\rm S}$	р	v'	v"	h'	h"	Γ	s'	s"	
°C	кПа	$M^3/\kappa\Gamma$	$M^3/\kappa\Gamma$	кДж/кг	кДж/кг	кДж/кг	кДж/(кг·К)	кДж/(кг·К)	
0	0,6108	0,0010002	206,32	-0,04	2501,0	2501,0	-0,0002	9,1565	
1	0,6566	0,0010002	192,61	4,17	2502,8	2498,6	0,0152	9,1298	
2	0,7054	0,0010001	179,94	8,39	2504,7	2496,3	0,0306	9,1035	
3	0,7575	0,0010001	168,17	12,60	2506,5	2493,9	0,0459	9,0773	
4	0,8129	0,0010000	157,27	16,80	2508,3	2491,5	0,0611	9,0514	
5	0,8718	0,0010000	147,17	21,01	2510,2	2489,2	0,0762	9,0258	
6	0,9346	0,0010000	137,768	25,21	2512,0	2486,8	0,0913	9,0003	
7	1,0012	0,0010001	129,061	29,41	2513,9	2484,5	0,1063	8,9751	
8	1,0721	0,0010001	120,952	33,60	2515,7	2482,1	0,1213	8,9501	
9	1,1473	0,0010002	113,423	37,80	2517,5	2479,7	0,1362	8,9254	
10	1,2271	0,0010003	106,419	41,99	2519,4	2477,4	0,1510	8,9009	
11	1,3118	0,0010003	99,896	46,19	2521,2	2475,0	0,1658	8,8766	
12	1,4015	0,0010004	93,828	50,38	2523,0	2472,6	0,1805	8,8525	
13	1,4967	0,0010006	88,165	54,57	2524,9	2470,2	0,1952	8,8286	
14	1,5974	0,0010007	82,893	58,75	2526,7	2467,9	0,2098	8,8050	
15	1,7041	0,0010008	77,970	62,94	2528,6	2465,7	0,2243	8,7815	
16	1,8170	0,0010010	73,376	67,13	2530,4	2463,3	0,2388	8,7583	
17	1,9364	0,0010012	69,087	71,31	2532,2	2460,9	0,2533	8,7353	

t_{S}	p	v'	v"	h'	h"	Γ	s'	s"
18	2,0626	0,0010013	65,080	75,50	2534,0	2458,5	0,2677	8,7125
19	2,1960	0,0010015	61,334	79,68	2535,9	2456,2	0,2820	8,6898
20	2,3368	0,0010017	57,833	83,86	2537,7	2453,8	0,2963	8,6674
21	2,4855	0,0010019	54,556	88,04	2539,5	2451,5	0,3105	8,6452
22	2,6424	0,0010022	51,488	92,22	2541,4	2449,2	0,3247	8,6232
23	2,8079	0,0010024	48,615	96,41	2543,2	2446,8	0,3389	8,6014
24	2,9824	0,0010026	45,923	100,59	2545,0	2444,4	0,3530	8,5797
25	3,1663	0,0010030	43,399	104,77	2546,8	2442,0	0,3670	8,5583
26	3,3600	0,0010032	41,031	108,95	2548,6	2439,6	0,3810	8,5370
27	3,5639	0,0010034	38,811	113,13	2550,4	2437,3	0,3949	8,5159
28	3,7785	0,0010037	36,726	117,31	2552,3	2435,0	0,4088	8,4950
29	4,0043	0,0010040	34,768	121,48	2554,1	2432,6	0,4227	8,4743
30	4,2417	0,0010043	32,929	125,66	2555,9	2430,2	0,4365	8,4537
31	4,4913	0,0010046	31,199	129,84	2557,7	2427,9	0,4503	8,4334
32	4,7536	0,0010049	29,572	134,02	2559,5	2425,5	0,4640	8,4132
33	5,0290	0,0010053	28,042	138,20	2561,4	2423,2	0,4777	8,3932
34	5,3182	0,0010056	26,602	142,38	2563,2	2420,8	0,4913	8,3733
35	5,6217	0,001060	25,246	146,56	2565,0	2418,4	0,5049	8,3536
36	5,9401	0,0010063	23,968	150,74	2566,8	2416,1	0,5184	8,3341
37	6,2740	0,0010067	22,764	154,92	2568,6	2413,7	0,5319	8,3147
38	6,6240	0,0010070	21,629	159,09	2570,4	2411,3	0,5453	8,2955
39	6,9907	0,0010074	20,558	163,27	2572,2	2408,9	0,5588	8,2765

t_{S}	р	v'	v"	h'	h"	Г	s'	s"
40	7,3749	0,0010078	19,548	167,45	2404,2	2406,5	0,5721	8,2389
41	7,7772	0,0010082	18,594	171,63	2575,8	2404,2	0,5854	8,2389
42	8,1983	0,0010086	17,694	175,81	2577,6	2401,8	0,5987	8,2203
43	8,6390	0,0010090	16,843	179,99	2579,4	2399,4	0,6120	8,2019
44	9,0998	0,0010094	16,039	184,17	2581,1	2396,9	0,6252	8,1836
45	9,5817	0,0010099	15,278	188,35	2394,5	2394,5	0,6383	8,1655
46	10,085	0,0010103	14,559	192,53	2584,7	2392,2	0,6514	8,1475
47	10,612	0,0010107	13,879	196,71	2586,5	2389,8	0,6645	8,1297
48	11,161	0,0010112	13,236	200,89	2588,3	2387,4	0,6776	8,1121
49	11,735	0,0010116	12,626	205,07	2590,1	2385,0	0,6906	8,0945
50	12,335	0,0010121	12,048	209,26	2382,5	2382,5	0,7035	8,0771
51	12,960	0,0010126	11,501	213,44	2593,6	2380,2	0,7164	8,0598
52	13,612	0,0010131	10,982	217,62	2595,4	2377,8	0,7293	8,0427
53	14,292	0,0010136	10,490	221,80	2597,2	2375,4	0,7422	8,0258
54	15,001	0,0010140	10,024	225,98	2598,9	2372,9	0,7550	8,0089
55	15,740	0,0010145	9,5812	230,17	2600,7	2370,5	0,7677	7,9922
56	16,510	0,0010150	9,1609	234,35	2602,4	2368,1	0,7804	7,9756
57	17,312	0,0010156	8,7618	238,54	2604,2	2365,7	0,7931	7,9591
58	18,146	0,0010161	8,3831	242,72	2606,0	2363,3	0,8058	7,9428
59	19,015	0,0010166	8,0229	246,91	2607,7	2360,8	0,8184	7,9266
60	19,919	0,00101712	7,6807	251,09	2609,5	2358,4	0,8310	7,9106
61	20,859	0,0010177	7,3554	255,28	2611,2	2355,9	0,8435	7,8946

t_S	p	v'	v"	h'	h"	Γ	s'	s"
62	21,837	0,001082	7,0458	259,46	2613,0	2353,5	0,8560	7,8788
63	22,854	0,0010188	6,7512	263,65	2614,7	2351,1	0,8685	7,8631
64	23,910	0,0010193	6,4711	267,84	2616,4	2348,6	0,8809	7,8475
65	25,008	0,0010199	6,2042	272,02	2618,2	2346,2	0,8933	7,8320
66	26,148	0,0010205	5,9502	276,21	2619,9	2343,7	0,9057	7,8167
67	27,332	0,0010211	5,7082	280,40	2621,6	2341,2	0,9180	7,8015
68	28,561	0,0010217	5,4775	284,59	2623,3	2338,7	0,9303	7,7864
69	29,837	0,0010222	5,2576	288,78	2625,1	2336,3	0,9426	7,7714
70	31,161	0,0010228	5,0479	292,97	2626,8	2333,8	0,9548	7,7565
71	31,161	0,0010228	5,0479	292,97	2626,8	2333,8	0,9548	7,7565
72	32,533	0,0010235	4,8481	297,16	2628,5	2331,3	0,9670	7,7417
73	33,957	0,0010241	4,6574	301,36	2630,2	2328,8	0,9792	7,7270
74	35,433	0,0010247	4,4753	305,55	2631,9	2326,3	0,9913	7,7125
75	36,963	0,0010253	4,3015	309,74	2633,6	2323,9	1,0034	7,6980
76	40,190	0,0010266	3,9771	318,13	2637,0	2318,9	1,0275	7,6694
77	41,890	0,0010272	3,8257	322,33	2638,7	2316,4	1,0395	7,6553
78	43,650	0,0010279	3,6811	326,52	2640,4	2313,9	1,0514	7,6413
79	45,473	0,0010285	3,5427	330,72	2642,1	2311,4	1,0634	7,6274
80	47,359	0,0010292	3,4104	334,92	2643,8	2308,9	1,0752	7,6135
81	49,310	0,0010299	3,2839	339,11	2645,4	2306,3	1,0871	7,5998
82	51,328	0,0010305	3,1629	343,31	2647,1	2303,8	1,0990	7,5862

				l		l		
t_{S}	p	v'	v"	h'	h"	Г	s'	s"
83	53,415	0,0010312	3,0471	347,51	2648,8	2301,3	1,1108	7,5726
84	55,572	0,0010319	2,9362	351,71	2650,4	2298,7	1,1225	7,5592
85	57,803	0,0010326	2,8300	355,92	2652,1	2296,2	1,1343	7,5459
86	60,107	0,0010333	2,7284	360,12	2653,7	2293,6	1,1460	7,5326
87	62,488	0,0010340	2,6309	364,32	2655,4	2291,1	1,1577	7,5195
88	64,947	0,0010347	2,5376	368,53	2657,0	2288,5	1,1693	7,5064
89	67,486	0,0010354	2,4482	372,73	2658,7	2286,0	1,1809	7,4934
90	70,,108	0,0010361	2,3624	376,94	2660,3	2283,4	1,1925	7,7805
91	72,814	0,0010369	2,2801	381,15	2661,9	2280,7	1,2041	7,4677
92	75,607	0,0010376	2,2012	385,36	2663,5	2278,1	1,2156	7,4550
93	78,488	0,0010384	2,1256	389,57	2665,2	2275,6	1,2271	7,4424
94	81,460	0,0010391	2,0529	393,78	2666,8	2273,0	1,2386	7,4299
95	84,525	0,0010398	1,9832	397,99	2668,4	2270,4	1,2500	7,4174
96	87,685	0,0010406	1,9163	402,20	2670,0	2267,8	1,2615	7,4051
97	90,943	0,0010414	1,8520	406,42	2671,6	2265,2	1,2729	7,3928
98	94,301	0,0010421	1,7902	410,63	2673,2	2262,6	1,2842	7,3806
99	97,760	0,0010429	1,7309	414,85	2674,8	2259,9	1,2956	7,3685
100	101,325	0,0010434	1,6738	419,06	2676,3	2257,2	1,3069	7,73564
101	105,00	0,0010445	1,6190	423,28	2677,9	2254,6	1,3182	7,3445
102	108,78	0,0010453	1,5664	427,50	2679,5	2252,0	1,3294	7,3326
103	112,67	0,0010461	1,5157	431,73	2681,0	2249,3	1,3406	7,3208

t_{S}	p	v'	v"	h'	h"	Γ	s'	s"
104	116,68	0,0010469	1,4669	435,95	2682,6	2246,6	1,3518	7,3090
105	120,80	0,0010477	1,4200	440,17	2684,1	2243,9	1,3630	7,2974
106	125,04	0,0010485	1,3749	444,40	2685,7	2241,3	1,3742	7,2858
107	129,41	0,0010494	1,3315	448,63	2687,2	2238,6	1,3853	7,2743
108	133,90	0,0010502	1,2897	452,85	2688,8	2235,9	1,3964	7,2629
109	138,52	0,0010510	1,2494	457,08	2690,3	2233,2	1,4074	7,2515
110	143,26	0,0010519	1,2106	461,32	2691,8	2230,5	1,4185	7,2402
111	148,14	0,0010527	1,1733	465,55	2693,3	2227,7	1,4295	7,2290
112	153,16	0,0010536	1,1373	469,78	2694,8	2225,0	1,4405	7,2179
113	158,32	0,0010544	1,1025	474,02	2696,3	2222,3	1,4515	7,2068
114	163,61	0,0010553	1,0691	478,26	2697,8	2219,5	1,4624	7,1958
115	169,05	0,0010562	1,0369	482,50	2699,3	2216,8	1,4733	7,1848
116	174,64	0,0010570	1,0058	486,74	2700,8	2214,1	1,4842	7,1739
117	180,38	0,0010579	0,97583	490,98	2702,2	2211,2	1,4951	7,1631
118	186,28	0,0010588	0,94687	495,22	2703,7	2208,5	1,5060	7,1524
119	192,33	0,0010597	0,91896	499,47	2705,2	2205,7	1,5168	7,1417
120	198,54	0,0010606	0,8920	503,7	2706,6	2209,9	1,5276	7,1310
121	204,91	0,0010615	0,86603	508,0	2708,1	2200,1	1,5384	7,1205
122	211,45	0,0010625	0,84092	512,2	2709,5	2197,3	1,5491	7,1100
123	218,15	0,0010634	0,81671	516,5	2710,9	2194,4	1,5599	7,0996
124	225,03	0,0010643	0,79330	520,7	2712,3	2191,6	1,5706	7,0892
125	232,09	0,0010652	0,77067	525,0	2713,8	2188,8	1,5813	7,0788

t_{S}	р	v'	v"	h'	h"	Γ	s'	s"
126	239,32	0,0010662	0,74884	529,2	2715,2	2186,0	1,5919	7,0686
127	246,74	0,0010671	0,72771	533,5	2716,6	2183,1	1,6026	7,0584
128	254,34	0,0010681	0,70732	537,8	2717,9	2180,1	1,6132	7,0482
129	262,13	0,0010690	0,68760	542,0	2719,3	2177,3	1,6238	7,0382
130	270,12	0,0010700	0,66851	546,3	2720,7	2174,4	1,6344	7,0281
131	278,30	0,0010710	0,65007	550,6	2722,1	2171,5	1,6449	7,0181
132	286,68	0,0010720	0,63223	554,8	2723,4	2168,6	1,6555	7,0082
133	295,27	0,0010730	0,61498	559,1	2724,8	2165,7	1,6660	6,9983
134	304,06	0,0010740	0,59827	563,4	2726,1	2162,7	1,6765	6,9885
135	313,06	0,0010750	0,58212	567,7	2727,4	2159,7	1,6869	6,9787
136	322,27	0,0010760	0,56649	572,0	2728,8	2156,8	1,6974	6,9690
137	331,71	0,0010770	0,55134	576,2	2730,1	2153,9	1,7078	6,9594
138	341,37	0,0010780	0,53670	580,5	2731,4	2150,9	1,7182	6,9498
139	351,25	0,0010790	0,52249	584,8	2732,7	2147,9	1,7286	6,9402
140	361,36	0,0010801	0,50875	589,1	2734,0	2144,9	1,7390	6,9307
141	371,70	0,0010811	0,49544	593,4	2735,2	2141,8	1,7493	6,9212
142	382,28	0,0010822	0,48255	597,7	2736,5	2138,8	1,7597	6,9118
143	393,11	0,0010832	0,47004	602,0	2737,8	2135,8	1,7700	6,9024
144	404,18	0,0010843	0,45792	606,3	2739,0	2132,7	1,7803	6,8931
145	415,50	0,0010853	0,44618	610,6	2740,3	2129,7	1,7906	6,8838
146	427,07	0,0010864	0,43480	614,9	2741,5	2126,6	1,8008	6,8746
147	438,90	0,0010875	0,42376	619,2	2742,7	2123,5	1,8110	6,8654

t_S	p	v'	v"	h′	h"	Γ	s'	s"
148	450,99	0,0010886	0,41306	623,5	2743,9	2120,4	1,8213	6,8563
149	463,34	0,0010897	0,40269	627,8	2745,1	2117,3	1,8315	6,8472
150	475,97	0,0010908	0,39261	632,2	2746,3	2114,1	1,8416	6,8381
151	488,87	0,0010919	0,38284	636,5	2747,5	2111,0	1,8518	6,8291
152	502,05	0,0010930	0,37337	640,8	2748,7	2107,9	1,8619	6,8201
153	515,52	0,0010941	0,36416	645,1	2749,8	2104,7	1,8721	6,8112
154	529,26	0,0010953	0,35524	649,5	2751,0	2101,5	1,8822	6,8023
155	543,31	0,0010964	0,34656	653,8	2752,1	2098,3	1,8923	6,7934
156	557,64	0,0010976	0,33815	658,1	2753,3	2095,2	1,9023	6,7846
157	572,28	0,0010987	0,32998	662,4	2754,4	2092,0	1,9124	6,7759
158	587,22	0,0010999	0,32205	666,8	2755,5	2088,7	1,9224	6,7671
159	602,48	0,0011010	0,31434	671,1	2756,6	2085,5	1,9325	6,7584
160	618,0	0,0011022	0,30685	675,5	2757,7	2082,2	1,9425	6,7498
161	633,93	0,0011034	0,29957	679,8	2758,8	2079,0	1,9525	6,7412
162	650,14	0,0011046	0,29250	684,2	2759,8	2075,6	1,9624	6,7326
163	666,68	0,0011058	0,28563	688,5	2760,9	2072,4	1,9724	6,7240
164	683,55	0,0011070	0,27896	692,9	2761,9	2069,0	1,9823	6,7155
165	700,75	0,0011082	0,27246	697,3	2763,0	2065,7	1,9922	6,7070
166	718,30	0,0011095	0,26615	701,6	2764,0	2062,4	2,0022	6,6986
167	736,20	0,0011107	0,26001	706,0	2765,0	2059,0	2,0120	6,6902
168	754,45	0,0011119	0,25404	710,4	2766,0	2055,6	2,0219	6,6818
169	773,05	0,0011132	0,24824	714,7	2767,0	2052,3	2,0318	6,6735

t_{S}	p	v'	v"	h'	h"	Γ	s'	s"
170	792,02	0,0011145	0,24259	719,1	2768,0	2048,9	2,0416	6,6652
171	811,36	0,0011157	0,23710	723,5	2768,9	2045,4	2,0515	6,6569
172	831,06	0,0011170	0,23176	727,9	2769,9	2042,0	2,0613	6,6486
173	851,14	0,0011183	0,22655	732,3	2770,8	2038,5	2,0711	6,6404
174	871,61	0,0011196	0,22149	736,7	2771,8	2035,1	2,0809	6,6322
175	892,46	0,0011209	0,21656	741,1	2772,7	2031,6	2,0906	6,6241
176	913,70	0,0011222	0,21177	745,5	2773,6	2028,1	2,1004	6,6160
177	935,34	0,0011235	0,20710	749,9	2774,5	2024,6	2,1101	6,6079
178	957,39	0,0011248	0,20255	754,3	2775,3	2021,0	2,1199	5,5998
179	979,84	0,0011262	0,19812	758,7	2776,2	2017,5	2,1296	6,5918
180	1002,7	0,0011275	0,19381	763,1	2777,1	2014,0	2,1393	6,5838
181	1026,0	0,0011289	0,18960	767,5	2777,9	2010,4	2,1490	6,5758
182	1049,7	0,0011302	0,18551	772,0	2778,7	2006,7	2,1586	6,5678
183	1073,8	0,0011316	0,18153	776,4	2779,6	2003,2	2,1683	6,5599
184	1098,4	0,0011330	0,17764	780,8	2780,4	1999,6	2,1780	6,5520
185	1123,4	0,0011344	0,17385	785,3	2781,2	1995,9	2,1876	6,5441
186	1148,8	0,0011358	0,17017	789,7	2781,9	1992,2	2,1972	6,5363
187	1174,8	0,0011372	0,16656	794,2	2782,7	1988,5	2,2068	6,5285
188	1201,1	0,0011386	0,16306	798,6	2783,5	1984,9	2,2164	6,5207
189	1227,9	0,0011401	0,15964	803,1	2784,2	1981,1	2,2260	6,5129
190	1255,2	0,00114	0,15631	807,5	2784,9	1977,4	2,2356	6,5052
191	1283,0	0,0011430	0,15305	812,0	2785,6	1973,6	2,2451	6,4974

$t_{\rm S}$	p	v'	v"	h'	h"	Γ	s'	s"
192	1311,2	0,0011444	0,14988	816,5	2786,3	1969,8	2,2547	6,4897
193	1340,0	0,0011459	0,14678	820,9	2787,0	1966,1	2,2642	6,4820
194	1369,2	0,0011474	0,14376	825,4	2787,7	1962,3	2,2738	6,4744
195	1398,9	0,0011489	0,14082	829,9	2788,3	1958,4	2,2833	6,4667
196	1429,1	0,0011504	0,13795	834,4	2789,0	1954,6	2,2928	6,4591
197	1459,8	0,0011519	0,13515	838,9	2789,6	1950,7	2,3023	6,4516
198	1491,0	0,0011534	0,13242	843,4	2790,2	1946,8	2,3117	6,4440
199	1522,8	0,0011549	0,12974	847,9	2790,8	1942,9	2,3212	6,4364
200	1555,1	0,0011565	0,12714	852,4	2791,4	1939,0	2,3307	6,4289
201	1587,9	0,0011580	0,12459	856,9	2792,0	1935,1	2,3401	6,4214
202	1621,2	0,0011596	0,12211	861,4	2792,5	1931,1	2,3496	6,4139
203	1655,1	0,0011612	0,11968	865,9	2793,1	1927,2	2,3590	6,4064
204	1689,5	0,0011628	0,11732	870,5	2793,6	1923,1	2,3684	6,3990
205	1724,5	0,0011644	0,11500	875,0	2794,1	1919,1	2,3778	6,3915
206	1760,1	0,0011660	0,11274	879,5	2794,6	1915,1	2,3872	6,3841
207	1796,2	0,0011676	0,11054	884,1	2795,1	1911,0	2,3966	6,3767
208	1832,9	0,0011693	0,10838	888,6	2795,6	1907,0	2,4060	6,3693
209	1870,1	0,0011709	0,10628	893,2	2796,0	1902,8	2,4153	6,3620
210	1907,9	0,0011726	0,10422	897,8	2796,4	1898,6	2,4247	6,3546
211	1946,4	0,0011743	0,10221	902,3	2796,9	1894,6	2,4341	6,3473
212	1985,5	0,0011760	0,10024	906,9	2797,3	1890,4	2,4434	6,3399
213	2025,1	0,0011777	0,09832	911,5	2797,7	1886,2	2,4527	6,3326

$t_{\rm S}$	p	v'	v"	h'	h"	Γ	s'	s"
214	2065,4	0,0011794	0,09644	916,0	2798,0	1882,0	2,4621	6,3253
215	2106,3	0,0011811	0,09460	920,6	2798,4	1877,8	2,4714	6,3181
216	2147,8	0,0011829	0,09281	925,2	2798,7	1873,5	2,4807	6,3108
217	2189,9	0,0011846	0,09105	929,8	2799,0	1869,2	2,4900	6,3036
218	2232,7	0,0011864	0,08934	934,5	2799,3	1864,8	2,4993	6,2963
219	2276,1	0,0011882	0,08766	939,1	2799,6	1880,5	2,5086	6,2891
220	2320,1	0,0011900	0,08602	943,7	2799,9	1856,2	2,5178	6,2819
221	2364,8	0,0011918	0,08441	948,3	2800,2	1851,9	2,5271	6,2747
222	2410,2	0,0011936	0,08284	953,0	2800,4	1847,4	2,5364	6,2675
223	2456,3	0,0011954	0,08130	957,6	2800,6	1843,0	2,5456	6,2603
224	2503,0	0,0011973	0,07980	962,2	2800,8	1838,6	2,5549	6,2532
225	2550,4	0,0011992	0,07833	966,9	2801,0	1834,1	2,5641	6,2460
226	2598,5	0,0012010	0,07689	971,6	2801,2	1829,6	2,5733	6,2388
227	2647,3	0,0012029	0,07548	976,2	2801,3	1825,1	2,5826	6,2317
228	2696,8	0,0012048	0,07410	980,9	2801,5	1820,6	2,5918	6,2246
229	2747,0	0,0012068	0,07275	985,6	2801,6	1816,0	2,6010	6,2175
230	2797,9	0,0012087	0,07143	990,3	2801,7	1811,4	2,6102	6,2104
231	2849,5	0,0012107	0,07014	995,0	2801,8	1806,8	2,6194	6,2033
232	2901,9	0,0012127	0,06887	999,7	2801,8	1802,1	2,6286	6,1962
233	2955,0	0,0012147	0,06764	1004,4	2801,9	1797,5	2,6378	6,1891
234	3008,9	0,0012167	0,06642	1009,1	2801,9	1792,8	2,6470	6,1820
235	3063,5	0,0012186	0,06523	1013,9	2801,9	1788,0	2,6562	6,1749

$t_{\rm S}$	p	v'	v"	h'	h"	Γ	s'	s"
236	3118,9	0,0012207	0,06407	1018,6	2801,9	1783,3	2,6654	6,1679
237	3175,0	0,0012228	0,06293	1023,4	2801,9	1778,5	2,6746	6,1608
238	3231,9	0,0012249	0,06181	1028,1	2801,8	1773,7	2,6838	6,1537
239	3289,6	0,0012270	0,06071	1032,9	2801,7	1768,8	2,6929	6,1467
240	3348,0	0,0012291	0,05964	1037,6	2801,6	1764,0	2,7021	6,1397
241	3407,3	0,0012312	0,05859	1042,4	2801,5	1759,1	2,7113	6,1326
242	3467,4	0,0012334	0,05756	1047,2	2801,4	1754,2	2,7204	6,1256
243	3528,2	0,0012355	0,05655	1052,0	2801,2	1749,2	2,7296	6,1185
244	3589,9	0,0012377	0,05556	1056,8	2801,0	1744,2	2,7387	6,1115
245	3652,4	0,0012399	0,05459	1061,6	2800,8	1739,2	2,7479	6,1045
246	3715,8	0,0012422	0,05364	1066,5	2800,6	1734,1	2,7570	6,0974
247	3780,0	0,0012444	0,05271	1071,3	2800,4	1729,1	2,7662	6,0904
248	3845,0	0,0012467	0,05180	1076,1	2800,1	1724,0	2,7753	6,0834
249	3910,9	0,0012490	0,05090	1081,0	2799,8	1718,8	2,7845	6,0763
250	3977,6	0,0012513	0,05002	1085,8	2799,5	1713,7	2,7936	6,0693
251	4045,2	0;0012536	0,04916	1090,7	2799,2	1708,5	2,8028	6.0623
252	4113,7	0,0012560	0,04832	1095,6	2798,9	1703,3	2,8119	6,0552
253	4183,0	0,0012584	0,04749	1100,5	2798,5	1698,0	2,8210	6,0482
254	4253,3	0,0012608	0,04668	1105,4	2798,1	1692,7	2,8302	6,0412
255	4324,5	0,0012632	0,04588	1110,3	2797,7	1687,4	2,8393	6,0341
256	4396,5	0,0012656	0,04510	1115,2	2797,2	1682,0	2,8485	6,0271
257	4469,5	0,0012681	0,04434	1120,2	2796,8	1676,6	2,8576	6,0201

	T	ı		1			ı	1
t_{S}	р	v'	v"	h'	h"	Γ	s'	s"
258	4543,4	0,0012706	0,04358	1125,1	2796,3	1671,2	2,8668	6,0130
259	4618,2	0,0012731	0,04284	1130,1	2795,7	1665,6	2,8759	6,0060
260	4694,0	0,0012756	0,04212	1135,0	2795,2	1660,2	2,8850	5,9989
261	4770,7	0,0012782	0,04141	1140,0	2794,6	1654,6	2,8942	5,9918
262	4848,4	0,0012808	0,04071	1145,0	2794,0	1649,0	2,9033	5,9847
263	4927,0	0,0012834	0,04003	1150,0	2793,4	1643,4	2,9125	5,9777
264	5006,6	0,0012861	0,03936	1155,0	2792,8	1637,8	2,9216	5,9706
265	5087,2	0,0012887	0,03870	1160,0	2792,1	1632,1	2,9308	5,9635
266	5168,8	0,0012914	0,03805	1165,1	2791,4	1626,3	2,9399	5,9564
267	5251,4	0,0012942	0,03741	1170,1	2790,7	1620,6	2,9491	5,9492
268	5334,9	0,0012969	0,03679	1175,2	2789,9	1614,7	2,9583	5,9421
269	5419,5	0,0012997	0,03617	1180,3	2789,1	1608,8	2,9675	5,9350
270	5505,1	0,0013025	0,03557	1185,4	2788,3	1602,9	2,9766	5,9278
271	5591,7	0,0013053	0,03498	1190,5	2787,5	1597,0	2,9858	5,9206
272	5679,4	0,0013082	0,03440	1195,6	2786,6	1591,0	2,9950	5,9135
273	5768,1	0,0013111	0,03383	1200,7	2785,7	1585,0	3.0042	5,9063
274	5857,9	0,0013141	0,03327	1205,9	2784,8	1578,9	3,0134	5,8991
275	5948,7	0,0013170	0,03272	1211,0	2783,8	1572,8	3,0226	5,8918
276	6040,6	0,0013200	0,03218	1216,2	2782,8	1566,6	3,0318	5,8846
277	6133,6	0,0013231	0,03164	1221,4	2781,8	1560,4	3,0410	5,8773
278	6227,7	0,0013261	0,03112	1226,6	2780,8	1554,2	3,0502	5,8701
279	6322,8	0,0013292	0,03061	1231,8	2779,7	1547,9	3,0594	5,8628

$t_{\rm S}$	p	v'	v"	h'	h"	Γ	s'	s"
280	6419,1	0,0013324	0,03010	1237,0	2778,6	1541,6	3,0687	5,8555
281	6516,5	0,0013356	0,02961	1242,3	2777,4	1535,1	3,0779	5,8481
282	6615,0	0,0013388	0,02912	1247,6	2776,2	1528,6	3,0872	5,8408
283	6714,7	0,0013420	0,02864	1252,8	2775,0	1522,2	3,0964	5,8334
284	6815,5	0,0013453	0,02817	1258,1	2773,7	1515,6	3,1057	5,8260
285	6917,4	0,0013487	0,02771	1263,4	2772,4	1509,0	3,1150	5,8186
286	7020,6	0,0013520	0,02725	1268,8	2771,1	1502,3	3,1243	5,8111
287	7124,9	0,0013554	0,02681	1274,1	2769,8	1495,7	3,1336	5,8036
288	7230,3	0,0013589	0,02637	1279,5	2768,4	1488,9	3,1429	5,7961
289	7337,0	0,0013624	0,02593	1284,9	2766,9	1482,0	3,1523	5,7886
290	7444,8	0,0013659	0,02551	1290,3	2765,4	1475,1	3,1616	5,7811
291	7553,9	0,0013695	0,02509	1295,7	2763,9	1468,2	3,1710	5,7735
292	7664,2	0,0013732	0,02467	1301,2	2762,3	1461,1	3,1803	5,7658
293	7775,7	0,0013769	0,02427	1306,6	2760,8	1454,1	3,1897	5,7582
294	7888,5	0,0013806	0,02387	1312,1	2759,1	1447,0	3,1991	5,7506
295	8002,5	0,0013844	0,02348	1317,6	2757,5	1439,9	3,2085	5,7428
296	8117,8	0,0013882	0,02310	1323,1	2755,7	1432,6	3,2180	5,7351
297	8234,3	0,0013921	0,02272	1328,7	2754,0	1425,3	3,2274	5,7273
298	8352,1	0,0013960	0,02234	1334,2	2752,2	1418,0	3,2369	5,7195
299	8471,2	0,0014000	0,02198	1339,8	2750,3	1410,5	3,2464	5,7117
300	8591,7	0,0014041	0,02162	1345,4	2748,4	1403,0	3,2559	5,7037
301	8713,4	0,0014082	0,02126	1351,1	2746,5	1395,4	3,2654	5,6958

$t_{\rm S}$	p	v'	v"	h'	h"	Γ	s'	s"
302	88364	0,0014123	0,02091	1356,7	2744,5	1387,8	3,2750	5,6879
303	8960,8	0,0014166	0,02056	1362,4	2742,5	1380,1	3,2845	5,6798
304	9086,5	0,0014208	0,02022	1368,1	2740,4	1372,3	3,2941	5,6718
305	9213,6	0,0014252	0,01989	1373,9	2738,3	1364,4	3,3037	5,6637
306	9342,0	0,0014296	0,01956	1379,6	2736,1	1356,5	3,3134	5,6555
307	9471,9	0,0014341	0,01924	1385,4	2733,8	1348,4	3,3230	5,6473
308	9603,1	0,0014386	0,01892	1391,2	2731,5	1340,3	3,3327	5,6390
309	9735,7	0,0014433	0,01860	1397,1	2729,2	1332,1	3,3424	5,6307
310	9869,7	0,0014480	0,01829	1402,9	2726,8	1323,9	3,3522	5,6224
311	10005	0,0014527	0,01799	1408,8	2724,4	1315,6	3,3619	5,6140
312	10142	0,0014576	0,01769	1414,8	2721,8	1307,0	3,3717	5,6055
313	10280	0,0014625	0,01739	1420,7	2719,3	1298,6	3,3816	5,5970
314	10420	0,0014675	0,01710	1426,7	2716,7	1290,0	3,3914	5,5884
315	10561	0,0014726	0,01681	1432,7	2714,0	1281,3	3,4013	5,5798
316	10704	0,0014778	0,01653	1438,8	2711,2	1272,4	3,4112	5,5711
317	10848	0,0014831	0,01625	1444,9	2708,4	1263,5	3,4212	5,5623
318	10994	0,0014885	0,01598	1451,0	2705,6	1254,6	3,4312	5,5535
319	11141	0,0014939	0,01571	1457,2	2702,6	1245,4	3,4412	5,5446
320	11290	0,0014995	0,01544	1463,4	2699,6	1236,2	3,4513	5,5356
321	11440	0,0015051	0,01518	1469,6	2696,6	1227,0	3,4614	5,5266
322	11592	0,0015109	0,01492	1475,9	2693,4	1217,5	3,4716	5,5174
323	11746	0,0015168	0,01466	1482,2	2690,2	1208,0	3,4818	5,5081

$t_{\rm S}$	p	v'	v"	h'	h"	Γ	s'	s"
324	11900	0,0015228	0,01441	1488,5	2686,9	1198,4	3,4920	5,4989
325	12057	0,0015289	0,01416	1494,9	2683,6	1188,7	3,5023	5,4896
326	12215	0,0015351	0,01391	1501,3	2680,1	1178,8	3,5127	5,4802
327	12375	0,0015415	0,01367	1507,8	2676,6	1168,8	3,5231	5,4706
328	12537	0,0015480	0,01343	1514,3	2673,0	1158,7	3,5335	5,4609
329	12700	0,0015546	0,01320	1520,9	2669,3	1148,4	3,5440	5,4512
330	12865	0,0015614	0,01296	1527,5	2665,5	1138,0	3,5546	5,4414
331	13031	0,0015683	0,01273	1534,2	2661,7	1127,5	3,5652	5,4315
332	13199	0,0015754	0,01251	1540,9	2657,8	1116,9	3,5759	5,4215
333	13369	0,0015827	0,01228	1547,7	2653,8	1106,1	3,5867	5,4114
334	13541	0,0015901	0,01206	1554,6	2649,6	1095,0	3,5975	5,4011
335	13714	0,0015977	0,01184	1561,4	2645,4	1084,0	3,6084	5,3908
336	13889	0,0016055	0,01163	1568,4	2641,1	1072,7	3,6193	5,3803
337	14066	0,0016134	0,01141	1575,4	2636,6	1061,2	3,6304	5,3697
338	14245	0,0016216	0,01120	1582,5	2632,1	1049,6	3,6415	5,3589
339	14426	0,0016300	0,01099	1589,6	2627,4	1037,8	3,6527	5,3479
340	14608	0,0016390	0,01078	1596,8	2622,3	1025,5	3,6638	5,3363
341	14792	0,0016479	0.0T058	1604,0	2617,3	1013,3	3,6750	6.3250
342	14978	0,0016570	0,01038	1611,3	2612,2	1000,9	3,6864	5,3336
343	15166	0,0016663	0,01017	1618,7	2607,0	988,3	3,6978	5,3020
344	15356	0,0016760	0,009975	1626,1	2601,7	975,6	3,7094	5,2902
345	15548	0,0016859	0,009779	1633,7	2596,2	962,5	3,7211	5,2782

t_{S}	р	v'	v"	h'	h"	Γ	s'	s"
346	15742	0,0016961	0,009584	1641,3	2590,5	949,2	3,7329	5,2660
347	15937	0,0017067	0,009391	1649,0	2584,6	935,6	3,7448	5,2536
348	16135	0,0017176	0,009200	1656,9	2578,6	921,7	3,7569	5,2410
349	16335	0,0017290	0,009010	1664,8	2572,5	907,7	3,7692	5,2281
350	16537	0,0017407	0,00882	1672,9	2566,1	893,2	3,7816	5,2149
351	16741	0,0017529	0,008635	1681,1	2559,1	878,4	3,7942	5,2015
352	16947	0,0017656	0,008449	1689,5	2552,6	863,1	3,8070	5,1877
353	77155	0,0017789	0,008264	1698,0	2545,5	847,5	3,8200	5,1736
354	17365	0,0017928	0,008079	1706,7	2538,2	831.5	3,8332	5,1591
355	17577	0,0018073	0,007895	1715,5	2530,5	815,0	3,8467	5,1442
356	17792	0,0018226	0,007711	1724,5	2522,5	798,0	3,8604	5,1288
357	18009	0,0018387	0,007527	1733,8	2514,0	780,2	3,8745	5,1128
358	18228	0,0018557	0,007342	1743,3	2505,2	761,9	3,8889	5,0961
359	18450	0,0018737	0,007157	1753,0	2495,7	742,7	3,9037	5,0786
360	18674	0,0018930	0,006970	1763,1	2485,7	722,6	3,9189	5,0603
361	18900	0,0019136	0,006782	1773,5	2475,0	701,5	3,9346	5,0409
362	19129	0,0019357	0,006593	1784,3	2463,5	679,2	3,9509	5,0204
363	19360	0,0019598	0,006402	1795,5	2451,2	655,7	3,9678	4,9987
364	19594	0,0019861	0,006209	1807,2	2438,1	630,9	3,9856	4,9758
365	19830	0,002015	0,006013	1819,5	2424,2	604,7	4,0041	4,9517
370	21053	0,002231	0,004958	1896,2	2335,7	439,5	4,1198	4,8031
374,12	22115	0,003147	0,003147	2095,2	2095,2	0	4,4237	4,4237

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Кириллин В.А., Сычев В.В., Шейндлин А.Е. Техническая термодинамика: Учебник. 4-е изд., перераб. М.: Энергоатомиздат, 1983.-416 с.
- 2. Андрющенко А.И. Основы термодинамики циклов теплоэнергетических установок: Учеб. пособие. 3-е изд., перераб. М.: Высш. шк., 1985. 319 с.
- 3. Зубарев В.Н., Александров А.А., Охотин В.С. Практикум по технической термодинамике: Учеб. пособие. 3-е изд., перераб. М.: Энергоатомиздат, 1986. 304 с.
- 4. Ривкин С.Л. Термодинамические свойства газов: Справочник. 4-е изд. М.: Энергоатомиздат, 1987. 288 с.
- 5. Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара: Справочник. М.: Энергоатомиздат, 1984. 80 с.
- 6. Рабинович О.М. Сборник задач по технической термодинамике. М.: Машиностроение, 1973. 344 с.
- 7. Зубарев В.Н., Практикум по технической термодинамике / В.Н. Зубарев, А.А. Александров. М.: Энергия, 1971. 352 с.
- 8. Вукалович М.П., Таблицы теплофизических свойств воды и водяного пара / М.П. Вукалович, С.Л. Ривкин, А.А. Александров. М.: Энергия. 1969. 408 с.

Учебное издание

Дубанин Владимир Юрьевич Наумов Александр Михайлович Прутских Дмитрий Александрович

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА. ПРАКТИЧЕСКИЕ И ЛАБОРАТОРНЫЕ РАБОТЫ

В авторской редакции

Компьютерный набор Д.А. Прутских

Подписано в печать 30.03.2017. Формат 60x84/16. Бумага для множительных аппаратов. Усл. печ. л. Уч.-изд. л. . Тираж 250 экз. 3ак. №

ФГБОУ ВО «Воронежский государственный технический университет» 394026 Воронеж, Московский просп., 14