МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ Факультета алекторунки ВА. Небольсин 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля) «Системы передачи и обработки данных»

Направление подготовки (специальность) 12.03.01 «Приборостроение» Профиль (специализация) Приборостроение Квалификация выпускника Бакалавр Нормативный период обучения 4 года / 4 года 11 месяцев Форма обучения Очная / Заочная Год начала подготовки 2021 г.

Автор программы	14/-	/ Астахов Н.В./
Заведующий кафедрой конструирования и проирадиоаппаратуры _	изводства ДД	/БашкировА.В./
Руководитель ОПОП _	A	/Турецкий А.В./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цель дисциплины

Состоит вполучение студентами знаний о структуре, принципах работы и особенностях систем передачи и обработки данных

1.2. Задачи освоения дисциплины

Теоретическое изучение устройств обмена информации между двумя и более точками, изучение назначения и принципов действия основных устройств используемых для преобразования информации в удобную форму для передачи, способах ее хранения и обработки, приобретение навыков проектирования приборов для передачи и обработки данных с применением современных САПР.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Системы передачи и обработки данных» относится к дисциплинам части, формируемой участниками образовательных отношений (дисциплина по выбору) блока Б.1 учебного плана.

В рамках дисциплины студенты изучают системы проводной и беспроводной передачи информации, основные компоненты сети, системы обработки данных.

Важное место в курсе занимают лабораторные и практические работы студентов, в ходе которых исследуются блоки и узлы систем передачи и обработки данных, модели распределенных линий связи вычислительных систем.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Системы передачи и обработки данных» направлен на формирование следующих компетенций:

ПК-4 – способность осуществлять технический контроль производства приборов, включая внедрение систем менеджмента качества;

ПК-5 – способность выполнять математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований.

Компе-	Результаты обучения, характеризующие					
тенция	сформированность компетенции					
ПК-4	Знать: методы, средства и технологии обеспечения достоверной					
	передачи информации; современные виды информационного					
	взаимодействия, методы анализа исходных данных и их обработ-					
	ки для проектирования подсистем обеспечения					
	Уметь: проводить анализ переданной и полученной информации					
	на соответствие требованиям стандартов; поддерживать выпол-					

	нение комплекса мер по обеспечению передачи и получения достоверной информации с учетом решаемых задач и внешних воздействий.
	Владеть: компьютерными технологиями в приборостроении; ме-
	тодами решения проектно-конструкторских и технологических
	задач с использованием современных программных продуктов.
ПК-5	Знать: программные средства системного, прикладного и специ-
	ального назначения, инструментальные средства, языки и систе-
	мы программирования для решения профессиональных задач; ме-
	тодическое обеспечение проведения экспериментальных исследо-
	ваний обеспечения передачи и обработки данных
	Уметь: выполнять работы по установке, настройке, обслужива-
	нию и защите программных, программно-аппаратных и техниче-
	ских средств передачи информации; проводить контроль работо-
	способности и эффективности применяемых программных, про-
	граммно-аппаратных и технических; оформлять проектную и экс-
	плуатационную документацию с учетом действующих норматив-
	ных и методических документов в области систем передачи дан-
	ных.
	Владеть: методами математического описания физических явле-
	ний и процессов, определяющих принципы работы различных
	технических устройств; основными методами работы на ПЭВМ с
	прикладными программными средствами.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Системы передачи и обработки данных» составляет 5 зачетныхединиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего	Семестры
y	часов	6
Аудиторные занятия (всего)	90	90
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	63	63
Курсовая работа	+	+
Контроль	27	27
Вид промежуточной аттестации – экзамен	+	+
Общая трудоемкость час	180	180
зач. ед	5	5

Заочная форма обучения

Вид учебной работы		Всего	Семестры
		часов	10
Аудиторные занятия (всего)		14	14
В том числе:			
Лекции		4	4
Практические занятия (ПЗ)		2	2
Лабораторные работы (ЛР)		8	8
Самостоятельная работа		157	157
Курсовая работа		+	+
Контроль		9	9
Вид промежуточной аттестации – экзамен	H	+	+
Общая трудоемкость ча	ac	180	180
	зач. ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование раздела	Содержание раздела	Лекц	Прак-	Лаб.	CPC	Всего,
11/11	дисциплины	C	4	зан. 2	зан. 4	7	час 17
1	Цель и задачи кур-	Система передачи и обработки данных со-	4	2	4	/	1/
	са. Основные поня-	стоит из трех компонент: устройство переда-					
	тия и определения.	чи; среда, по которой передается информа-					
		ция; устройство приема и обработки данных.					
		Среда передачи как правило бывает провод-					
		ной и беспроводной. История телеграфной					
		связи. Телефонная связь. Принципы по-					
		строения телефонных сетей. Общегосудар-					
		ственная телефонная. Радиосвязь. Длинные					
		волны. Средние волны. Короткие волны.					
		Ультракороткие волны.					
2	Радиоволны	Распространение радиоволн. Использова-	4	2	4	7	17
		ние широковещательной потоковой переда-					
		чи. Радиолюбительская связь.					
3	Локальные, регио-	Функции компьютерных сетей. Основные	4	2	4	7	17
	нальные и глобаль-	характеристики компьютерных сетей. Дос-					
	ные сети, сетевые	тоинства и недостатки одноранговых сетей.					
	технологии обра-	Иерархические сети. Достоинства и недос-					
	ботки данных	татки иерархической сети. Архитектуры се-					
		тей. Топологии сетей: Общая шина; Звезда;					
		Кольцо; Ячеистая топология; Смешанная					
		топология					
4	Модель взаимосвязи	Уровни пограммного обеспечения и их	4	2	4	7	17
	открытых систем	функции (Физический, канальный, сетевой,					
		транспортный, сеансовый, представитель-					
		ский, прикладной). OSI (модель взаимодейст-					
		вия открытых систем). Протоколы. Специа-					
		лизация услуг; Спецификация протокола.					
5	Основные компо-	Рабочие станции, серверы, передающие	4	2	4	7	17
	ненты сети	среды (кабели, радиоволны. Типы кабелей.					

	T	Tr. v c o					
		Коаксиальный кабель. Оптововолоконный					
		кабель. Безпроводные локальные сети. Не-					
		достатки проводных и беспроводных ло-					
		кальных сетей.					
6	Виды сетевого обо-	Сетевые карты. Терминаторы. Концентра-	4	2	4	7	17
	рудования	торы. Активные концетраторы. Пассивные					
		концетраторы. Повторители. Коммутаторы.					
		Маршрутизаторы. Мосты. Шлюзы. Межсе-					
		тевые. Способы защиты межсетевых экранов					
		корпоративной сети от проникновения в нее					
		извне.					
7	Методы многока-	Множественный доступ с временным, час-	4	2	4	7	17
'	нальной передачи и	тотным и кодовым разделением. Особенности	•	_	•	,	
	распределения ин-	уплотнения и разделения сигналов в многока-					
	формации	нальных системах связи. Многоканальная					
		связь с временным, частотным и кодовым уп-					
		лотнением сигналов. Принципы многостанци-					
		онного доступа. Особенности формирования					
		сигналов в асинхронно-адресных и сотовых					
		каналах связи. Общие принципы распределе-					
		ния информации в коммутируемых телеком-					
		муникационных сетях.				<u> </u>	
8	Методы помехо-	Основные принципы помехоустойчивого	4	2	4	7	17
	устойчивого коди-	кодирования. Блочное и непрерывное кодиро-					
	рования дискретной	вание. Применение корректирующего коди-					
	информации	рования в системах связи помехоустойчивых					
	T of the second	кодов. Общие принципы обнаружения и ис-					
		правления ошибок. Линейные блочные коды.					
		Принципы построения линейных блочных					
		кодов в векторном представлении. Способ-					
		ность линейного блочного кода обнаруживать					
		и исправлять ошибки. Полиномиальные ли-					
		нейные блочные коды (ПК). Синдромное де-					
		кодирование. Циклические полиномиальные					
		коды (ЦК). Неалгебраические методы декоди-					
		рования ЦК. Сверточные коды. Принципы					
		кодирования с использованием сверточных					
		кодов. Сверточные коды с синдромной кор-					
		рекцией. Сверточные коды с использованием					
		последовательного декодирования.					
9	Методы представ-	Физическое кодирование сигналов в кана-	4	2	4	7	17
	ления информаци-	лах связи. Классификация методов физиче-					
	онных сообщений в	ского кодирования: NRZ-код, биполярный код					
	каналах связи	с альтернативной инверсией, биполярный им-					
		пульсный код, манчестерский код. Понятие о					
		скремблировании. Модуляция дискретными					
		сигналами: амплитудная частотная и фазовая					
		манипуляции. Импульсно-кодовая модуляция.					
		Дельта-модуляция. Квадратурная амплитуд-					
		нофазовая модуляция (QAM) и относительная					
		фазовая модуляция (QAM) и относительная фазовая модуляция (OFM). Временное, спек-					
		тральное и векторное представление сигналов					
		с импульсной модуляцией. Квантование и					
		уплотнение сигналов. Основные принципы					
		цифровой полосовой модуляции. Регенерация					
		зашумленного ИКМ сигнала; расчет вероят-					
		ностей ошибок и оптимального порога.	2.	- 10			
		Итого:	36	18	36	63	153

заочная форма обучения

_			1 1					
	$N_{\underline{0}}$	Наименование раздела	Содержание раздела	Лекц	Прак-	Лаб.	CPC	Всего,
	п/п	дисциплины			зан.	зан.		час
	1	Цель и задачи кур-	Система передачи и обработки данных со-	1	1	2	18	22

	са. Основные поня-	стоит из трех компонент: устройство переда-					
	тия и определения.	чи; среда, по которой передается информа-					
		ция; устройство приема и обработки данных.					
		Среда передачи как правило бывает провод-					
		ной и беспроводной. История телеграфной					
		связи. Телефонная связь. Принципы по-					
		строения телефонных сетей. Общегосудар-					
		ственная телефонная. Радиосвязь. Длинные					
		волны. Средние волны. Короткие волны.					
_		Ультракороткие волны.				1.0	1.0
2	Радиоволны	Распространение радиоволн. Использова-	0	0	0	18	18
		ние широковещательной потоковой переда-					
		чи. Радиолюбительская связь.					
3	Локальные, регио-	Функции компьютерных сетей. Основные	0	0	0	18	18
	нальные и глобаль-	характеристики компьютерных сетей. Дос-					
	ные сети, сетевые	тоинства и недостатки одноранговых сетей.					
	технологии обра-	Иерархические сети. Достоинства и недос-					
	ботки данных	татки иерархической сети. Архитектуры се-					
	do ikii gaiiibix	тей. Топологии сетей: Общая шина; Звезда;					
		Кольцо; Ячеистая топология; Смешанная					
		· ·					
4	Молон россилост	топология	0	0	0	18	18
4	Модель взаимосвязи	Уровни пограммного обеспечения и их	U	U	U	10	10
	открытых систем	функции (Физический, канальный, сетевой,					
		транспортный, сеансовый, представитель-					
		ский, прикладной). OSI (модель взаимодейст-					
		вия открытых систем). Протоколы. Специа-					
		лизация услуг; Спецификация протокола.					
5	Основные компо-	Рабочие станции, серверы, передающие	1	1	2	18	22
	ненты сети	среды (кабели, радиоволны. Типы кабелей.					
		Коаксиальный кабель. Оптововолоконный					
		кабель. Безпроводные локальные сети. Не-					
		достатки проводных и беспроводных ло-					
		кальных сетей.					
6	Виды сетевого обо-	Сетевые карты. Терминаторы. Концентра-	0	0	0	18	18
0			U	U	0	10	16
	рудования	торы. Активные концетраторы. Пассивные					
		концетраторы. Повторители. Коммутаторы.					
		Маршрутизаторы. Мосты. Шлюзы. Межсе-					
		тевые. Способы защиты межсетевых экранов					
		корпоративной сети от проникновения в нее					
		извне.					
7	Методы многока-	Множественный доступ с временным, час-	1	0	2	18	21
	нальной передачи и	тотным и кодовым разделением. Особенности					
	распределения ин-	уплотнения и разделения сигналов в многока-					
	формации	нальных системах связи. Многоканальная					
	T - F	связь с временным, частотным и кодовым уп-					
		лотнением сигналов. Принципы многостанци-					
		онного доступа. Особенности формирования					
		сигналов в асинхронно-адресных и сотовых					
		каналах связи. Общие принципы распределе-					
		ния информации в коммутируемых телеком-					
	1.6	муникационных сетях.				1.0	10
8	Методы помехо-	Основные принципы помехоустойчивого	0	0	0	13	13
	устойчивого коди-	кодирования. Блочное и непрерывное кодиро-					
	рования дискретной	вание. Применение корректирующего коди-					
	информации	рования в системах связи.помехоустойчивых					
		кодов. Общие принципы обнаружения и ис-					
		правления ошибок. Линейные блочные коды.					
		Принципы построения линейных блочных					
		кодов в векторном представлении. Способ-					
		ность линейного блочного кода обнаруживать					
		и исправлять ошибки. Полиномиальные ли-					
		нейные блочные коды (ПК). Синдромное де-					

1		Итого:	4	2	8	157	171
-	<u> </u>	1				4	
		ностей ошибок и оптимального порога.					
		зашумленного ИКМ сигнала; расчет вероят-					
		цифровой полосовой модуляции. Регенерация					
		с импульсной модуляцией. Квантование и уплотнение сигналов. Основные принципы					
		тральное и векторное представление сигналов					
		фазовая модуляция (ОГМ). Временное, спек-					
		нофазовая модуляция (QAM) и относительная					
		Дельта-модуляция. Квадратурная амплитуд-					
		манипуляции. Импульсно-кодовая модуляция.					
		сигналами: амплитудная частотная и фазовая					
		скремблировании. Модуляция дискретными					
		пульсный код, манчестерский код. Понятие о					
	каналах связи	с альтернативной инверсией, биполярный им-					
	онных сообщений в	ского кодирования: NRZ-код, биполярный код					
	ления информаци-	лах связи. Классификация методов физиче-					
9	Методы представ-	Физическое кодирование сигналов в кана-	1	0	2	18	21
		последовательного декодирования.					
		рекцией. Сверточные коды с использованием					
		кодов. Сверточные коды с синдромной кор-					
		кодирования с использованием сверточных					
		рования ЦК. Сверточные коды. Принципы					
		коды (ЦК). Неалгебраические методы декоди-					
		кодирование. Циклические полиномиальные					

5.2 Перечень лабораторных работ

- Л.Р. №1. Схемотехническое моделирование блоков и узлов систем передачи и обработки данных
- Л.Р.№2. Исследование моделей распределенных линий связи вычислительных систем
- Л.Р.№3. Исследование устройств частотного преобразования информационных сигналов вычислительных систем
- Л.Р.№4. Исследование устройств логического преобразования информационных сигналов вычислительных систем
 - Л.Р.№5. Изучение системы обмена данными между удаленными ПК
- Л.Р. №6.Исследование параметров модулятора передатчика с применением программы схемотехнического моделирования
- Л.Р. №7. Моделирование релаксационного генератора передатчика с положительной обратной связью

5.3 Перечень практических работ

- Пр.р. №1. Основные понятия теории информации
- Пр.р.№2. Каналы связи
- Пр.р.№3. Методы помехоустойчивого кодирования дискретной информации
- Пр.р.№4. Методы представления информационных сообщений в каналах связи
- Пр.р.№5. Методы многоканальной передачи и распределения информации

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы в 6 семестре для очной формы обучения и 10 семестре для заочной формы обучения.

Примерная тематика курсовой работы:

- 1. Разработка алгоритмов работы и компьютерной имитационной модели системы скрытной передачи данных.
- Разработка макета системы скрытной передачи данных по оптическому каналу.
- 3. Разработка макета системы скрытной передачи данных по акустическому каналу (посредством звука).
- 4. Разработка алгоритмов работы и компьютерной имитационной модели системы низкоскоростной низкоэнергетической передачи данных.
- 5. Разработка макета системы низкоскоростной низкоэнергетической передачи данных.
- 6. Разработка алгоритмов работы и компьютерной имитационной модели высокоскоростного КВ-радиомодема.
 - 7. Исследование турбокодов и их программная реализация.
- 8. Исследование OFDM модуляторов/демодуляторов и их программная реализация.
- 9. Исследование систем синхронизации по времени и частоте высокоскоростных радиомодемов, их программная реализация.
- 10. Исследование модулятора/демодулятора частотно-временных сигналов и его программная реализация.
- 11. Исследование алгоритмов множественного разнесенного приема и их программная реализация.
- 12. Разработка устройства цифровой обработки сигналов на х86 архитектуре.
- 13. Разработка устройства цифровой обработки сигналов на цифровом сигнальном процессоре (DSP).
- 14. Разработка алгоритмов работы и программная реализация адаптивного шумоподавителя.
- 15. Разработка алгоритмов работы и программная реализация адаптивного фильтра.
- 16. Исследование алгоритмов работы и программная реализация статистических обнаружителей сигналов с заранее неизвестной структурой.
- 17. Разработка высокочастотного генератора, управляемого напряжением (ГУН).
 - 18. Разработка малогабаритного УКВ радиоприемника.
 - 19. Разработка малогабаритного КВ радиопередатчика.
 - 20. Разработка малогабаритного УКВ радиопередатчика.

При выполнении курсовой работы студенты должны научиться правильно и творчески использовать знания, полученные ими при прохождении теоретических и практических дисциплин.

Задачи, решаемые при выполнении курсового проекта:

- осуществлять обзор литературных источников по заданной теме;
- осуществлять поиск необходимой справочной информации по теме работы;
- выбрать наиболее подходящий принцип измерения исходя из требований технического задания;
 - выбирать необходимые измерительный преобразователи;
 - проводить необходимые при проектировании расчеты;
- разрабатывать конструкцию узла для коммутации измерительного преобразователя;
- подготовить комплект конструкторской документации на коммутационный узел.

Курсовая работа включат в себя графическую часть и расчетно-пояснительную записку.

Контрольные работы по данной дисциплине не предусмотрены.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУ-ТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетенция	Результаты обучения,, харак-	Критерии	Аттестован	Не аттестован
	теризующие	оценивания		
	сформированность компетен-			
	ции			
ПК-4	Знать: методы, средства и техно-	Активная работа на	Выполнение	Невыполнение
	логии обеспечения достоверной	лабораторных, ответ	работ в срок,	работ в срок,
	передачи информации; совре-	не менее чем на поло-	предусмотрен-	предусмотрен-
	менные виды информационного	вину заданных в про-	ный в рабочих	ный в рабочих
	взаимодействия, методы анализа	цессе опроса вопро-	программах	программах
	исходных данных и их обработки	сов		
	для проектирования подсистем			
	обеспечения			
	<u>Уметь:</u> проводить анализ пере-	Решение не менее	Выполнение	Невыполнение
	данной и полученной информа-	половины приклад-	работ в срок,	работ в срок,
	ции на соответствие требовани-	ных задач в конкрет-	предусмотрен-	предусмотрен-
	ям стандартов; поддерживать	ной предметной об-	ный в рабочих	ный в рабочих
	выполнение комплекса мер по	ласти	программах	программах
	обеспечению передачи и полу-			

	чения достоверной информации с учетом решаемых задач и внешних воздействий. Владеть: компьютерными технологиями в приборостроении; методами решения проектноконструкторских и технологических задач с использованием современных программных продуктов.	Решение стандартных прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-5	Знать: программные средства системного, прикладного и специального назначения, инструментальные средства, языки и системы программирования для решения профессиональных задач; методическое обеспечение проведения экспериментальных исследований обеспечения передачи и обработки данных	Активная работа на лабораторных, ответ не менее чем на половину заданных в процессе опроса вопросов	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: выполнять работы по установке, настройке, обслуживанию и защите программных, программно-аппаратных и технических средств передачи информации; проводить контроль работоспособности и эффективности применяемых программных, программно-аппаратных и технических; оформлять проектную и эксплуатационную документацию с учетом действующих нормативных и методических документов в области систем передачи данных.	Решение не менее половины приклад- ных задач в конкрет- ной предметной об- ласти	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: методами математического описания физических явлений и процессов, определяющих принципы работы различных технических устройств; основными методами работы на ПЭВМ с прикладными программными средствами.	Решение стандартных прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 6 и 10 семестрах для очной и заочной форм обучения по системе:

«отлично»; «хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компетенция	Результаты обучения, характеризующиесформиро- ванность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл	Неудовл
ПК-4	Знать: методы, средства и технологии обеспечения	Тест	Выполнение теста	Выполне- ние теста	Выполне- ние теста на	В тесте менее

	достоверной передачи ин-		на 90-100%	на 80-90%	70-80%	70% пра-
	формации; современные ви-		на 90-100%	на 80-90%	70-80%	7076 пра- вильных
	ды информационного взаи-					ответов
	модействия, методы анализа					отыстов
	исходных данных и их обра-					
	ботки для проектирования					
	подсистем обеспечения					
	Уметь: проводить анализ	Тест	Выполнение	Выпол-	Выполне-	В тесте
	переданной и полученной	1 001	теста на 90-	нение	ние теста на	менее
	информации на соответствие		100%	теста на	70-80%	70% пра-
	± , ±		100%	80-90%	70-80%	_
	требованиям стандартов;			80-90%		вильных
	поддерживать выполнение					ответов
	комплекса мер по обеспече-					
	нию передачи и получения					
	достоверной информации с					
	учетом решаемых задач и					
	внешних воздействий.	TD.	D.	D.	D	D
	Владеть: компьютерными	Тест	Выполнение	Выпол-	Выполне-	В тесте
	технологиями в приборо-		теста на 90-	нение	ние теста на	менее
	строении; методами решения		100%	теста на	70-80%	70% пра-
	проектно-конструкторских и			80-90%		вильных
	технологических задач с ис-					ответов
	пользованием современных					
	программных продуктов.		<u> </u>			
ПК-5	<u>Знать:</u> программные средст-	Тест	Выполнение	Выполне-	Выполне-	В тесте
	ва системного, прикладного		теста	ние теста	ние теста на	менее
	и специального назначения,		на 90-100%	на 80-90%	70-80%	70% пра-
	инструментальные средства,					вильных
	языки и системы програм-					ответов
	мирования для решения					
	профессиональных задач;					
	методическое обеспечение					
	проведения эксперименталь-					
	ных исследований обеспече-					
	ния передачи и обработки					
	данных					
	Уметь: выполнять работы по	Тест	Выполнение	Выпол-	Выполне-	В тесте
	установке, настройке, об-		теста на 90-	нение	ние теста на	менее
	служиванию и защите про-		100%	теста на	70-80%	70% пра-
	граммных, программно-			80-90%		вильных
	аппаратных и технических					ответов
	средств передачи информа-					
	ции; проводить контроль					
	работоспособности и эффек-					
	тивности применяемых про-					
	граммных, программно-					
	аппаратных и технических;					
	оформлять проектную и экс-					
	плуатационную документа-					
	цию с учетом действующих					
	-					
	нормативных и методиче-					
	ских документов в области					
	систем передачи данных.	Тааж	Drimomica	D	Drimonica	D ======
	Владеть: методами матема-	Тест	Выполнение	Выпол-	Выполне-	В тесте
	тического описания физиче-		теста на 90-	нение	ние теста на	менее
	ских явлений и процессов,		100%	теста на	70-80%	70% пра-
	определяющих принципы			80-90%		вильных
	работы различных техниче-					ответов
	ских устройств; основными					
	методами работы на ПЭВМ с					

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
- 7.2.1 Примерный перечень заданий для подготовки к тестированию
- 1. Какое минимальное количество раз необходимо передать кодовую комбинацию в системах с мажоритарной логикой?
- а) один раз;
- б) два раза;
- в) три раза;
- г) пять раз.
- 2. Какова цена повышения верности в системах передачи дискретных сообщений с многократнымповторением кодовой комбинации?
- а) значительное снижение скорости передачи информации;
- б) значительное усложнение системы;
- в) значительное снижение надежности системы;
- г) значительное удорожание системы.
- 3. Какова цена повышения верности в системах передачи дискретных сообщений с одновременной передачей по нескольким параллельным каналам связи?
- а) значительное усложнение и удорожание системы;
- б) значительное снижение скорости передачи информации;
- в) значительное снижение стоимости обслуживания системы;
- г) упрощение обслуживания системы.
 - 4. В простом коде любая ошибка приема символа приводит к...
- а) искажению информации;
- б) искажению или потере информации;
- в) потере информации;
- г) все ответы правильные;
- д) все ответы неправильные.
- 5. К чему приводит увеличение избыточности кода? Укажите все правильные ответы.
- а) уменьшение скорости передачи информации;
- б) усложнение кодера и декодера;
- в) увеличение скорости передачи информации;
- г) снижение корректирующей способности кода.
 - 6. Оптимальным считается код, который...
- а) полностью реализует возможности по исправлению (обнаружению) ошибок при минимальной избыточности:
- б) частично реализует возможности по исправлению (обнаружению) ошибок при минимальной избыточности;
- в) полностью реализует возможности по исправлению (обнаружению) ошибок при максимальной избыточности;
- г) нет правильного ответа.
 - 7. Что такое краевые искажения?
- а) смещение единичного элемента относительно идеального положения, приводящее к изменению длительности кодовойкомбинации
- б) изменение значащей позиции внутри единичного интервала
- в) смещение значащего момента относительно его идеального положения, приводящее к изменениюдлительности единичного элемента
- г) смещение кодовой комбинации, приводящее к неправильному приему сообщения

- 8. В каких системах с обратной связью (ОС) по обратному каналу передаются квитанции?
- а) в системах с решающей обратной связью (РОС)
- б) в системах с информационной обратной связью (ИОС)
- в) в системах с решающей обратной связью и ожиданием (РОС-ОЖ)
- г) в системах с решающей обратной связью и последовательной передачей комбинаций (РОС-ПП)
- 9. Какой протокол является дуплексным протоколом модуляции, предусматривающим использованиеотносительной фазовой модуляции при частотном разделении каналов передачи взаимодействующихмодемов, скорость модуляции равна 600 Бод.
- a) V.21
- б) V.22
- в) V.23
- г) V.32
- 10. Какой протокол основывается на модифицированной КАМ и предполагает полнодуплексную передачу подвухпроводным телефонным каналам со скоростью модуляции 2400 Бод.
- a) V.22
- б) V.23
- в) V.32
- г) V.34
 - 11. Какой протокол передачи фалов используется модемом по умолчанию?
- a) MNP 4
- б) Zmodem
- в) Xmodem
- г) V.42
 - 12. Дать понятие интерфейса
- а) интерфейс это набор правил, обеспечивающих логическое и процедурное сопряжение одноименных уровней
- б) интерфейс представляет собой совокупность устройств и процедур на границе между двумя соседнимиуровнями одной системы
- в) интерфейс это комплекс средств, обеспечивающий предоставление пользователям услуг
- г) интерфейс определяет расположение узлов сети и их взаимодействие
- 13. Какой способ коммутации наиболее распространен сегодня в сетях передачи данных?
- 1) коммутации каналов
- 2) коммутации пакетов
- 3) коммутации сообщений
- 4) коммутации кадров
 - 14. Какие свойства относятся к сетям с коммутацией пакетов?
- а) гарантированная пропускная способность (полоса) для взаимодействующих абонентов
- б) трафик реального времени передается без задержек
- в) каждая порция данных снабжается адресом
- г) сеть может отказать абоненту в установлении соединения
 - 15. Какие свойства характерны для сетей с коммутацией каналов?
- а) адрес используется только на этапе установления соединения
- б) каждая порция данных снабжается адресом
- в) сеть может отказать абоненту в установлении соединения
- г) пропускная способность сети для абонентов неизвестна, задержки передачи носят случайный характер

- 16. Какие сети обеспечивают временное разделение канала между узлами (канал простаивает, если узлунечего передавать)
- а) статические
- б) динамические
- в) одноранговые
- г) распределенные
- 17. Какие сети обеспечивают централизованные и распределенные механизмы выделения канала по запросу.
- а) статические
- б) динамические
- в) одноранговые
- г) широкополосные
- 18. Для чего предназначена многоуровневая эталонная модель взаимодействия открытых систем?
- а) для обеспечения обмена информацией между прикладными процессами указанных типов, различными посвоей топологии, ПО и методам доступа и для реализации общей задачи распределенной обработки информации
- б) для предоставления пользователям услуг электросвязи
- в) для обеспечения транспортировки, коммутации сигналов в службах электросвязи
- г) для обеспечения обмена информацией между прикладными процессами разных компьютерных сетей

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Выражение R = 1 (k/n) = r/n определяет...
- а) коэффициент избыточности;
- б) коэффициент скорости;
- в) коэффициент сложности;
- г) коэффициент надежности.
- 2. Код характеризуется $d\min = 2$. Ошибки какой кратности включительно способен обнаруживать такой код?
- а) все однократные ошибки;
- б) все двукратные ошибки;
- в) все трехкратные ошибки;
- г) все ошибки нечетной кратности.
- 3. Код характеризуется $d\min = 5$. Ошибки какой кратности включительно способен исправлять такой код?
- а) все однократные ошибки;
- б) все двукратные ошибки;
- в) все трехкратные ошибки;
- г) все ошибки нечетной кратности.
- 4. Если в каналах связи число ошибок в кодовой комбинации данной длины уменьшается с увеличениемкратности ошибки, то эффективными являются коды, ...
- а) исправляющие все ошибки низкой кратности;
- б) исправляющие все ошибки высокой кратности;
- в) исправляющие часть ошибок низкой и высокой кратности;
- г) исправляющие все ошибки любой кратности.
- 5. Если для каналов связи характерны пакеты ошибок, то эффективными являются коды, ...
- а) исправляющие все ошибки низкой кратности;
- б) способные исправлять ошибки высокой кратности;
- в) исправляющие часть ошибок низкой и высокой кратности;
- г) исправляющие все ошибки любой кратности.

- 6. В коде с проверкой на четность минимальное кодовое расстояние равно...
- a) 1;
- б) 2;
- в) 3;
- г) 5.
- 7. Дать определение скорости передачи информации R.
- а) скорость передачи определяется числом единичных элементов, передаваемых в единицу времени
- б) скорость передачи это среднее количество информации, выдаваемое источником в единицу времени
- в) скорость передачи это скорость модуляции, при которой один единичный элемент передается в одну секунду
- г) скорость передачи определяется количеством информации, переданной за единицу времени
 - 8. Дать понятие коэффициента ошибок
- а) отношение числа ошибочно принятых элементов, к общему числу переданных элементов за интервал времени
- б) отношение правильно переданных элементов к общему числу ошибочно принятых элементов за интервал времени
- в) отношение правильно переданных элементов к общему числу ошибочно принятых элементов за 1 час
- г) отношение числа ошибочно принятых элементов к общему числу переданных элементов за 2 часа
 - 9. Дать определение скорости модуляции В
- а) скорость модуляции определяется числом единичных элементов, передаваемых устройством за единицувремени
- б) скорость модуляции определяется количеством информации, переданной в единицу времени
- в) скорость модуляции это среднее количество информации, создаваемое источником в единицу времени
- г) скорость модуляции это среднее количество информации, приходящееся на одно сообщение или на его элемент
 - 10. Дать определение производительности источника Н/(А)
- а) определяется числом единичных элементов, передаваемых в единицу времени
- б) это среднее количество информации, приходящееся на одно сообщение или на его элементы
- в) это среднее количество информации, создаваемое источником в единицу времени
- г) определяется количеством информации, переданной в единицу времени
- 11. Определить длительность единичного элемента, если скорость телеграфирования В=200 Бод
- а) 200 мс
- б) 20 мс
- в) 10 мс
- г) 5 мс
 - 12. Фиксируемое значение состояния параметра сигнала называется.
- а) значащая позиция
- б) единичный элемент
- в) значащий интервал
- г) единичный интервал
 - 13. Что такое время синхронизации?
- а) время, необходимое для корректирования первоначального отклонения синхроимпульсов относительнограниц принимаемых элементов

- б) время, в течение которого отклонение синхроимпульсов от границ единиц элементов не выйдет за допустимый пределрассогласования при прекращении работы устройства синхронизации по подстройке фазы
- в) время, при котором из-за действия помех возможно отклонение импульсов от границ единичных элементов
- г) время, в течение которого происходит сдвиг синхросигнала в сторону отставания от единичного элемента
 - 14. Что такое время поддержания синхронизма?
- а) время, необходимое для корректирования первоначального отклонения синхроимпульсов относительно границпринимаемых элементов
- б) время, в течение которого отклонение синхроимпульсов от границ единиц элементов не выйдет за допустимыйпредел рассогласования при прекращении работы устройства синхронизации по подстройке фазы
- в) время, при котором из-за действия помех возможно отклонение импульсов от границ единичных элементов
- г) время, в течение которого происходит сдвиг синхросигнала в сторону отставания от единичного элемента
 - 15. Какая из проблем может быть легко устранена с помощью повторителя?
- а) слишком много типов несовместимого оборудования в сети
- б) слишком большой трафик в сети
- в) слишком низкая скорость передачи данных
- г) слишком много узлов и/или недостаточно кабеля
 - 16. Какой недостаток имеет использование концентратора?
- а) не может увеличить рабочие расстояния в сети
- б) не может фильтровать сетевой трафик
- в) не может посылать ослабленный сигнал через сеть
- г) не может усиливать ослабленные сигналы
 - 17. Для чего служит маршрутизатор?
- а) сравнивает информацию из таблицы маршрутизации с IP-адресом пункта назначения, содержащимся в пакетеданных, и переправляет пакет в нужную подсеть и узел
- б) сравнивает информацию из таблицы маршрутизации с IP-адресом пункта назначения, содержащимся в пакете данных,и переправляет пакет в нужную подсеть
- в) сравнивает информацию из таблицы маршрутизации с IP-адресом пункта назначения, содержащимся в пакете данных,и переправляет пакет в нужную сеть
- г) сравнивает информацию из таблицы маршрутизации с IP-адресом пункта назначения, содержащимся в пакете данных,и переправляет пакет в нужный сегмент сети
- 18. Какое сетевое устройство способно решить проблему чрезмерного широковещательного трафика?
- а) мост
- б) маршрутизатор
- в) концентратор
- г) фильтр
- 19. Что происходит с сигналом, если длина отрезка горизонтальной кабельной системы превышает размер, устанавливаемый стандартом EIA/TIA-568B?
- а) сигнал прерывается
- б) сигнал ослабевает
- в) сигнал движется только на установленное максимальное расстояние, а затем останавливается
- г) рабочие станции не посылают сообщения узлам, которые находятся на расстоянии больше максимально допустимого

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Какие из перечисленных методов относятся к методам повышения верности передачи информации?
- а) улучшение качественных показателей;
- б) внесение избыточности;
- в) увеличение надежности;
- г) все перечисленные методы.
 - 2. Как реализуется сигнальная избыточность? Укажите все правильные варианты.
- а) увеличением мощности сигнала;
- б) увеличением ширины спектра сигнала;
- в) увеличением длительности сигнала (единичных элементов сигнала);
- г) уменьшением мощности сигнала;
- д) сужением ширины спектра сигнала;
- е) уменьшением длительности сигнала.
- 3. На какие подмножества делится множество всех кодовых комбинаций в помехоустойчивых (корректирующих) кодах? Укажите все правильные варианты.
- а) разрешенные комбинации;
- б) запрещенные комбинации;
- в) усеченные комбинации;
- г) безызбыточные комбинации.
- 4. Какие методы повышения верности передачи информации чаще всего используют на практике? Укажитевсе правильные ответы.
- а) применение корректирующих кодов;
- б) применение систем с обратной связью;
- в) увеличение надежности каналов связи;
- г) улучшение качественных показателей каналов связи.
- 5. Какие методы повышения верности передачи информации используют в системах без обратной связи?
- а) применение корректирующих кодов;
- б) многократная передача кодовых комбинаций по одному каналу связи;
- в) одновременная передача кодовых комбинаций по нескольким параллельным каналам связи;
- г) все перечисленные методы.
- 6. Корректирующими (помехоустойчивыми, избыточными) кодами называют коды, способные...
- а) обнаруживать и(или) исправлять ошибки;
- б) повышать скорость передачи информации;
- в) упрощать кодообразующую аппаратуру.
- 7. Коды, в которых последовательности символов разбивают на кодовые комбинации, называют...
- а) блочными;
- б) непрерывными;
- в) разделимыми;
- г) неразделимыми;
- д) линейными;
- е) нелинейными.
 - 8. Коды, в которых кодовые комбинации имеют одну и ту же длину, называют...
- а) блочными;
- б) равномерными;
- в) разделимыми;
- г) неразделимыми;
- д) линейными.

- 9. Коды, в которых кодовые комбинации имеют разную длину, называют...
- а) блочными;
- б) неравномерными;
- в) разделимыми;
- г) неразделимыми;
- д) линейными.
- 10. Как называется число позиций, в которых две кодовые комбинации одинаковой длины отличаются другот друга?
- а) кодовое расстояние Хэмминга;
- б) кодовое расстояние Хаффмана;
- в) минимальное кодовое расстояние Хэмминга;
- г) нет правильного ответа.
 - 11. Чем характеризуется корректирующая способность кода?
- а) кодовым расстоянием Хэмминга;
- б) кодовым расстоянием Хаффмана;
- в) минимальным кодовым расстоянием Хэмминга;
- г) нет правильного ответа.
 - 12. Код с проверкой на четность позволяет...
- а) исправлять все однократные ошибки;
- б) обнаруживать все ошибки нечетной кратности;
- в) обнаруживать все ошибки четной кратности;
- г) исправлять ошибки нечетной кратности.
 - 13. В двоичных линейных кодах в качестве линейной операции используют...
- а) логическое умножение;
- б) логическое сложение;
- в) сложение по модулю 2;
- г) инверсию.
 - 14. Линейный корректирующий код полностью определяется...
- а) порождающей матрицей;
- б) проверочной матрицей;
- в) единичной матрицей;
- г) матрицей-дополнением.
 - 15. Что понимается под кратностью ошибки?
- а) число ошибок принятых единичных элементов в кодовой комбинации
- б) отличие между двумя или несколькими кодовыми комбинациями по единичному элементу
- в) наименьшее кодовое расстояние между кодовыми комбинациями
- г) количество ошибочных элементов в нескольких кодовых комбинациях
 - 16. Укажите какие методы регистрации единичных элементов вам известны?
- а) стробированием и интегральный
- б) синхронный асинхронный
- в) стартстопный и интегральный
- г) стробирования и стартстопный
 - 17. Что называется расстоянием Хемминга?
- а) количество ошибочных элементов в кодовой комбинации
- б) отличие между двумя или несколькими кодовыми комбинациями по единичному элементу
- в) наименьшее кодовое расстояние между кодовыми комбинациями
- г) количество единиц в кодовой комбинации1
- 18. Сколько ячеек будет содержать регистр сдвига кодирующего устройства при циклическом кодировании, если образующий полином P(x)=x3+x2+1?
- а) 1 ячейку

б) 2 ячейки

- в) 3 ячейки
- г) 5 ячеек
 - 19. Сколько проверочных элементов содержит линейный код G(9,5)?
- а) 4 элемента
- б) 5 элементов
- в) 9 элементов
- г) 14 элементов
 - 20. Определите кодовое расстояние d между комбинациями 10101 и 01001
- a) d=1
- б) d=2
- $^{\rm B}) d=3$
- Γ) d=4
 - 21. С какой целью осуществляется скремблирование цифрового потока в модемах?
- а) с целью выравнивания сигнала при передаче по каналу связи
- б) с целью обеспечения надежного выделения тактовой частоты непосредственно из принимаемого сигнала и снижениявзаимного влияния каналов
- в) с целью устранения избыточности в канале связи и для выделения из принятой последовательности исходную информационную последовательность.
- г) с целью обеспечения заданной скорости передачи и преобразования структуры цифрового потока для получения случайной последовательности

7.2.4 Примерный перечень вопросов для подготовки к зачету

Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

1.	Схемотехническое моделирование блоков и узлов систем передачи и обработки дан-			
	ных			
2.	Исследование моделей распределенных линий связи вычислительных систем			
3.	Исследование устройств частотного преобразования информационных сигналов вы-			
	числительных систем			
4.	Исследование устройств логического преобразования информационных сигналов вы-			
	числительных систем			
5.	Исследование параметров модулятора передатчика с применением программы схемо-			
	технического моделирования			
6.	Моделирование релаксационного генератора передатчика с положительной обратной			
	СВЯЗЬЮ			
7.	Исследование многоканальных систем связи с разделением по времени, по частоте, с			
	фазовым и кодовым разделением			
8.	Исследование непрерывных каналов связи			
9.	Измерение пропускной способности непрерывного канала с аддитивным белым гаус-			
	совым шумом. Модели гауссова и релеевского каналов связи. Спектральная и энерге-			
	тическая эффективность. Условия согласования сигналов и каналов связи. Уравнения			
	состояния и наблюдения.			
10.	Принципы построения линейных блочных кодов в векторном представлении.			
11.	Построение порождающей и проверочной матрицы. Вектор синдрома. Способность			
	линейного блочного кода обнаруживать и исправлять ошибки			
12.	Исследование спектральной и энергетической эффективности. Условия согласования			
	сигналов и каналов связи. Уравнения состояния и наблюдения			
13.	Импульсно-кодовая модуляция. Дельта-модуляция. Квадратурная амплитуднофазовая			

модуляция (QAM) и относительная фазовая модуляция (OFM).

- 14. Временное, спектральное и векторное представление сигналов с импульсной модуляцией. Квантование и уплотнение сигналов.
- 15. Основные принципы цифровой полосовой модуляции. Регенерация зашумленного ИКМ сигнала; расчет вероятностей ошибок и оптимального порога

7.2.6Методика выставления оценки при проведении промежуточной аттестации

Итоговой формой контроля знаний, умений и навыков в 6/10 семестре по дисциплине является экзамен. Вопросы предполагают контроль общих методических знаний и умений, способность студентов проиллюстрировать их примерами, индивидуальными материалами, составленными студентами в течение семестра. Каждый студент имеет право воспользоваться лекционными материалами, методическими разработками.

Критерии оценки по дисциплине

При выявлении уровня знаний, умений, навыков, опыта деятельности по дисциплине применяется рейтинговая технология:

- по виду деятельности студента учебный рейтинг;
- по периоду семестровый рейтинг;
- по объёму учебной информации рейтинг освоения ООП по учебной дисциплине;
 - по способу расчёта накопительный рейтинг.

Оценка знаний студентов производится по следующим критериям.

- участие в лекциях и лабораторных занятиях 18 баллов;
- -оценка по результатам тестирования, 12 баллов
- своевременная защита лабораторных работ, 12 баллов

Всего: 42 балла

Оценка при проведении зачета выставляется согласно следующей таблице.

Итоговый балл	0÷19	20÷29	30÷34	35÷42
Оценка	Неудовл	Удовл	Хорошо	Отлично

7.2.7 Паспорт оценочных материалов

$N_{\underline{0}}$	Контролируемые разделы (темы)	Код контролируе-	Наименование
п/п	дисциплины	мой компетен-	оценочного
		ции(или ее части)	средства
1	Цель и задачи курса. Основные	ПК-4	Тест,
	понятия и определения.		устный опрос
2	Радиоволны		Тест,
			устный опрос
3	Локальные, региональные и гло-	ПК-5	Тест,
	бальные сети, сетевые техноло-		устный опрос
	гии обработки данных		
4	Модель взаимосвязи открытых		Тест,
	систем		устный опрос

5	Основные компоненты сети		Тест,
			устный опрос
6	Виды сетевого оборудования		Тест,
			устный опрос
7	Методы многоканальной переда-	ПК-4	Тест, экзамен
	чи и распределения информации		
8	Методы помехоустойчивого ко-	ПК-5	Тест, экзамен
	дирования дискретной информа-		
	ции		
9	Методы представления инфор-		Тест, экзамен
	мационных сообщений в каналах		
	связи		

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1Перечень учебной литературы, необходимой для освоения дисциплины

8.1.1. Основная литература

- 1. Косарев В.П. Компьютерные сети и системы./В.П.Косарев, Л.В.Еремин-М.: Финансы и статистика, 1999.-464 с.
- 2. Никитин Л.Н. Современные технологии передачи и обработки данных: Уч. пособие. Воронеж. Воронеж гос. тех. ун. т 2015.-146с.

8.1.2. Дополнительная литература

1. Олифер В.Г. Базовые технологии локальных сетей / В.Г.Олифер, Н.А. Олифер.- Интернет-университет информационных технологий 1999

2. Лачин В.И., Савелов Н.С. Электроника: Учеб. пособие. 7-е изд., перераб и доп. – Ростов н/Д: изд-во «Феникс», 2009. 576 с.

8.1.3 Программное обеспечение и интернет ресурсы

- 1. **GoogleScholar**[Электронный ресурс].- Режим доступа: http://scholar.google.com, свободный. –Загл. с экрана. (поисковая система, разработанная специально для студентов, ученых и исследователей, предназначена для поиска информации в онлайновых академических журналах и материалах, прошедших экспертную оценку).
- 2. Библиофонд/[Электронный ресурс].- Режим доступа: http://www.bibliofond.ru свободный. Загл. с экрана. (Электронная библиотека).
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсовинформационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Программный комплекс лабораторного практикума, программа схемотехнического моделирования PSpice системы OrCAD 9.2

Современная профессиональная база данных

Бесплатная база данных ГОСТ https://docplan.ru/

Электронная библиотека www.elibrary.ru/

Электронная библиотечные системы https://e.lanbook.com/

Информационные справочные системы и сайты

ChipFindДокументацияhttp://www.allcomponents.ru/

Группа компаний «Промэлектроника» https://www.promelec.ru/

«Чип-Дип» https://www.chipdip.ru/

Электронная информационно-обучающая система ВГТУ https://old.education.cchgeu.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная видеопроектором с экраном и пособиями по профилю.

Компьютерный класс, оснащенная ПЭВМ с установленным программным обеспечением и видеопроектор с экраном, ауд. 226/3.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Системы передачи и обработки данных» читаются лекции, проводятся лабораторные и практические занятия.

Лекции представляет собой систематическое, последовательное изложение учебного материала. Это – одна из важнейших форм учебного процесса и один из основных методов преподавания в вузе. На лекциях от студента требуется не просто внимание, но и самостоятельное оформление конспекта. Качественный конспект должен легко восприниматься зрительно, в эго тексте следует соблюдать абзацы, выделять заголовки, пронумеровать формулы, подчеркнуть термины. В качестве ценного совета рекомендуется записывать не каждое слово лектора (иначе можно потерять мысль и начать писать автоматически, не вникая в смысл), а постараться понять основную мысль лектора, а затем записать, используя понятные сокращения.

- Практические занятия позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности практических занятий для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, выполнить упражнения по представленной методике, отрабатывая навыки 3D моделирования.
- Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:
- работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;
 - выполнение домашних заданий и типовых расчетов;
 - работа над темами для самостоятельного изучения;
 - участие в работе студенческих научных конференций, олимпиад;
 - подготовка к зачетам и экзаменам.

Кроме базовых учебников рекомендуется самостоятельно использовать имеющиеся в библиотеке учебно-методические пособия. Независимо от вида учебника, работа с ним должна происходить в течение всего семестра. Эффективнее работать с учебником не после, а перед лекцией.

При ознакомлении с каким-либо разделом рекомендуется прочитать его целиком, стараясь уловить общую логику изложения темы. При повторном чтении хорошо акцентировать внимание на ключевых вопросах и основных теоремах (формулах). Можно составить их краткий конспект.

Степень усвоения материала проверяется следующими видами контроля:

- текущий (опрос, контрольные работы, типовые расчеты);
- рубежный (коллоквиум);
- промежуточный (курсовая работа, зачет, зачет с оценкой, экзамен).

Экзамен – форма итоговой проверки знаний студентов.

Для успешной сдачи экзамена необходимо выполнить следующие рекомендации – готовиться к экзамену следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-

полтора до экзамена. Данные перед экзаменом три-четыре дня эффективнее всего использовать для повторения.

Вид учебных	Деятельность студента
занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Лабораторная ра- бота	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вноси- мых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП