МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета радиотехники и электроники

наименование факультета

рад/В.А. Небольсин/

И.О. Фамилия

«26» марта 2019 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Материаловедение и технология конструкционных материалов»

Направление подготовки 14.03.01 Ядерная энергетика и теплофизика

Профиль Техника и физика низких температур

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2019

Авторы программы

__/ В.В. Ожерельев /

В.А. Юрьева /

Заведующий кафедрой

материаловедения и физики

металлов

/ Д.А. Коновалов /

Руководитель ОПОП

/ О.В. Калядин /

Воронеж 2019

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины: формирование представления об основных группах конструкционных материалов, их составе, строении и свойствах, физической сущности явлений, происходящих в материалах при различных прогнозирования и регулирования воздействиях, структуры, областях упрочнения, рациональных применения, основных технологических процессах их получения и обработки; формирование у основ научного мышления, В TOM числе: студентов атомно-кристаллического строения металлов; фазово-структурного состава сплавов; типовых диаграмм состояния; методов обработки металлов; представлению о новых металлических, неметаллических керамических и композиционных материалах.

1.2. Задачи освоения дисциплины:

- изучение атомно-кристаллического строения металлов, фазово-структурного состава сплавов, типовых диаграмм состояния;
- ознакомление с основными группами конструкционных материалов и технологий, применяемых в машиностроении;
- формирование представлений о возможности использования основных групп конструкционных материалов и технологий в машиностроении;
- приобретение студентами теоретических знаний и практического опыта в выборе материала и технологии изготовления заданного изделия, методов воздействия на структуру и свойства для обеспечения необходимого уровня качества;
 - освоение методики контроля качества и исправления дефектов;
- приобретение навыков структурного анализа качества материалов и лабораторного определения их свойств;
- изучение основных технологических процессов получения и обработки материалов для изготовления деталей и заготовок.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Материаловедение и технология конструкционных материалов» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Материаловедение и технология конструкционных материалов» направлен на формирование следующих компетенций:

- ПК-5 Способен участвовать в проектировании оборудования атомных электростанций с учетом экологических требований и обеспечения безопасной работы
 - ПК-4 Способен разрабатывать проекты узлов аппаратов с учетом

сформулированных к ним требований, использовать в разработке технических

проектов новые информационные технологии

Компетенция	Результаты обучения, характеризующие			
компетенция	сформированность компетенции			
ПК-5	знать основные технические и конструктивные			
	характеристики продукции, организацию			
	конструкторской и технологической подготовки			
	производства, технологические процессы и режимы			
	производства; производственные мощности,			
	технические характеристики, конструктивные			
	особенности и режимы работы оборудования			
	уметь выбирать рациональные технологические			
	процессы изготовления деталей и сборки изделий			
	владеть навыками разработки типовых			
	технологических процессов обработки деталей и			
	изделий; навыками выбора материалов для			
	заданных условий эксплуатации с учетом			
	требований технологичности, экономичности,			
	надежности и долговечности, экологических			
	последствий их применения			
ПК-4	знать нормативную и техническую			
	документацию, находящуюся в открытом доступе;			
	основные закономерности фазовых и структурных			
	превращений в гомогенных и гетерогенных			
	системах; маркировку, химический состав,			
	назначение и методы упрочнения сплавов на основе			
	железа, алюминия, меди; виды термической,			
	химико-термической обработки материалов;			
	классификацию конструкционных материалов и			
	материалов специального назначения; их основные			
	свойства и области применения			
	уметь осуществить рациональный выбор материала			
	для конкретного изделия; анализировать фазовые			
	превращения при нагревании и охлаждении			
	сплавов, пользуясь диаграммами состояния			
	двойных систем			
	владеть навыками определения основных			
	механических свойств материалов; навыками			
	анализа надежности и долговечности материала в			
	изделии по данным о его структуре и свойствах			

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Материаловедение и технология конструкционных материалов» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Ρυπι υποδιιού ποδοπι	Всего	Семестры
Виды учебной работы	часов	3
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	18	18
Самостоятельная работа	54	54
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего,
1	ВВЕДЕНИЕ. СТРОЕНИЕ МЕТАЛЛОВ. КРИСТАЛЛИЗАЦИЯ МЕТАЛЛОВ И СПЛАВОВ	курса. Типы связей в кристаллах, кристаллическое строение металлов. Параметры решетки. Монои поликристаллическое строение. Анизотропия и полиморфизм. Точечные, линейные, поверхностные дефекты и их свойства. Основы теории кристаллизации. Явление переохлаждения. Модифицирование. Термодинамические основы и кинетика кристаллизации	4	2	4	8	18
2	ТЕОРИЯ СПЛАВОВ	Понятие терминов: сплав, система, компонент, фаза. Образование твердых растворов внедрения и замещения. Упорядоченные твердые растворы вычитания. Химические соединения и промежуточные фазы. Механические смеси. Методы построения диаграмм состояния двойных сплавов. Правило фаз. Правило отрезков.	1	2	4	8	18

ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ ТЕРМИЧЕСКАЯ	характеристики железа и углерода, фазы и структуры в железоуглеродистых сплавах. Диаграмма состояния железо-цементит. Техническое железо, сталь, белый чугун. Примеси в технических сплавах. Классификация, маркировка, свойства и применение углеродистых сталей. Серые чугуны. Классификация чугунов. Маркировка и свойства чугунов.	4	2	4	8	18
ОБРАБОТКА СТАЛЕЙ	Теория термической обработки. Превращения в сталях при нагреве. Преобразование аустенита в изотермических условиях и при непрерывном охлаждении. Критическая скорость закалки. Мартенситное превращение и его главные особенности. Классификация видов термической обработки стали и ее технология. Отжиг, нормализация и закалка стали, их режимы. Первое, второе и третье превращение при отпуске. Закаливаемость сталей.	2	4	2	10	18
КОНСТРУКЦИОННЫЕ СТАЛИ И СПЛАВЫ. СТАЛИ И СПЛАВЫ С ОСОБЫМИ СВОЙСТВАМИ. ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ.	Углеродистые конструкционные стали. Легирующие элементы в конструкционных сталях. Цементуемые конструкционные стали и технологический режим их обработки. Улучшаемые стали. Низколегированные стали. Автоматные и литейные стали. Инструментальные стали и сплавы, их классификация. Твердые сплавы. Коррозионностойкие стали. Жаропрочные и	2	4	2	10	18

		жаростойкие стали и сплавы. Основы теории термической обработки (старения) легких сплавов. Классификация алюминиевых сплавов. Взаимодействие алюминия с другими элементами. Термическая обработка					
6	OCHODIA TEVHOLOGIA	алюминиевых сплавов. Классификация медных сплавов и их маркировка. Латуни и бронзы. Состав, свойства и структура медных сплавов, их обрабатываемость и назначение.					
6	ОСНОВНЫЕ СПОСОБЫ ПОЛУЧЕНИЯ ЗАГОТОВОК И ДЕТАЛЕЙ. ОСНОВЫ ТЕХНОЛОГИИ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА СТАЛИ,	Свойства литейных сплавов. Основные способы получения отливок. Классификация способов обработки давлением. Прокатное производство. Ковка. Штамповка. Классификация видов сварки. Свариваемость. Сварка плавлением. Способы обработки резанием.	2	4	2	10	18

Особенности свойств. Пластмассы. Термопластичные, термореактивные, газонаполненные. Резиновые материалы. Клеящие материалы. Неорганические материалы. Графит, ситаллы, керамические материалы.					
газонаполненные. Резиновые материалы. Клеящие					
материалы. Графит, ситаллы,					
Сущность метода					
порошковой металлургии. Способы получения изделий и полуфабрикатов.					
Получение композиционных материалов. Армирующие					
материалы. Способы их получения. Изготовление					
композиционных материалов.					
Итого	18	18	18	54	108

5.2 Перечень лабораторных работ

1. Строение и свойства металлов.

Инструктаж по технике безопасности. Структурный анализ металлов и сплавов.

2. Кристаллизация металлов и сплавов.

Кристаллизация растворов солей.

3. Железоуглеродистые сплавы.

Диаграмма состояния сплавов системы железо-углерод. Микроструктура углеродистых сталей и чугунов.

4. Термическая обработка сталей.

Влияние термической обработки на структуру и свойства углеродистой стали

5. Конструкционные стали и сплавы. Стали и сплавы с особыми свойствами. Микроструктура конструкционных сталей и сплавов и сталей и сплавов с особыми свойствами.

6. Цветные металлы и сплавы.

Микроструктура цветных металлов и сплавов.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

((110 411	Power route of very and		1	1
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-5	знать основные	Активная работа на	Выполнение работ	Невыполнение
	технические и	лабораторных занятиях,	в срок,	работ в срок,
	конструктивные	отвечает на	предусмотренный в	предусмотренный
	характеристики	теоретические вопросы	рабочих	в рабочих
	продукции,	при устном опросе	программах	программах
	организацию			
	конструкторской и			
	технологической			
	подготовки			
	производства,			
	технологические			
	процессы и режимы			
	производства; производственные			
	мощности, технические			
	характеристики,			
	конструктивные			
	особенности и режимы			
	работы оборудования			
	уметь выбирать	Решение стандартных	Выполнение работ	Невыполнение
	рациональные	практических задач	в срок,	работ в срок,
	технологические	1	предусмотренный в	предусмотренный
	процессы изготовления		рабочих	в рабочих
	деталей и сборки		программах	программах
	изделий			
	владеть навыками	Решение прикладных	Выполнение работ	Невыполнение
	разработки типовых	задач в конкретной	в срок,	работ в срок,
	технологических	предметной области	предусмотренный в	
	процессов обработки		рабочих	в рабочих
	деталей и изделий;		программах	программах
	навыками выбора			
	материалов для			
	заданных условий			
	эксплуатации с учетом			
	требований			
	технологичности, экономичности,			
	надежности и			
	долговечности,			
	экологических			
	последствий их			
	применения			
ПК-4	знать нормативную и	Активная работа на	Выполнение работ	Невыполнение
	техническую	лабораторных занятиях,	в срок,	работ в срок,
	документацию,		предусмотренный в	предусмотренный
	-	теоретические вопросы	рабочих	в рабочих
	открытом доступе;	при устном опросе	программах	программах
	основные			
	закономерности			
	фазовых и структурных			
	превращений в			
	гомогенных и			
	гетерогенных системах;			
	маркировку,			
	химический состав,			
	назначение и методы			
	упрочнения сплавов на			
	основе железа,			

	иния, меди; виды ческой,			
химик	о-термической			
обраб	отки материалов;			
классі	ификацию			
конст	рукционных			
матер	иалов и			
матер	иалов			
специ	ального			
назнач	нения; их			
основ	ные свойства и			
област	ги применения			
	осуществить	Решение стандартных	Выполнение работ	Невыполнение
рацио	нальный выбор	практических задач	в срок,	работ в срок,
матер	иала для		предусмотренный в	
	етного изделия;		рабочих	в рабочих
	зировать фазовые		программах	программах
превра	ащения при			
нагрен	зании и			
охлаж	дении сплавов,			
1	уясь диаграммами			
состоя	ния двойных			
систем	M			
владет	гь навыками	Решение прикладных	Выполнение работ	Невыполнение
опред	еления основных	задач в конкретной	в срок,	работ в срок,
механ	ических свойств	предметной области	предусмотренный в	
матер	иалов; навыками		рабочих	в рабочих
анализ	за надежности и		программах	программах
долго	вечности			
матер	иала в изделии по			
	им о его структуре			
и свой	іствах			

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ПК-5	знать основные технические и конструктивные характеристики продукции, организацию конструкторской и технологической подготовки производства, технологические процессы и режимы производства; производственные мощности, технические характеристики, конструктивные особенности и режимы работы оборудования		Выполнение теста на 70-100%	Выполнение менее 70%

	уметь выбирать рациональные технологические процессы изготовления	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	деталей и сборки изделий			
	владеть навыками разработки типовых технологических процессов обработки деталей и изделий; навыками выбора	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	материалов для заданных условий эксплуатации с учетом требований			
	технологичности, экономичности, надежности и			
	долговечности, экологических последствий их применения			
ПК-4	знать нормативную и	Тест	Выполнение теста	Выполнение менее
	техническую документацию,		на 70-100%	70%
	находящуюся в открытом			
	доступе; основные			
	закономерности фазовых и структурных			
	превращений в			
	гомогенных и			
	гетерогенных системах;			
	маркировку, химический			
	состав, назначение и			
	методы упрочнения			
	сплавов на основе железа,			
	алюминия, меди; виды термической,			
	химико-термической			
	обработки материалов; классификацию			
	конструкционных			
1	материалов и материалов			
	специального назначения;			
	их основные свойства и области применения			
	уметь осуществить	Рашанна отоннования	Пропемонотрирова	Задачи не решены
	рациональный выбор материала для	Решение стандартных практических задач	Продемонстрирова н верный ход решения в	задачи не решены
	конкретного изделия; анализировать фазовые		большинстве задач	
	превращения при нагревании и охлаждении			
	сплавов, пользуясь диаграммами состояния			
	двойных систем	n	П	7
	владеть навыками определения основных механических свойств	Решение прикладных задач в конкретной	Продемонстрирова н верный ход	Задачи не решены
	материалов; навыками анализа надежности и	предметной области	решения в большинстве задач	

долговечности материала		
в изделии по данным о его		
структуре и свойствах		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Что такое мартенсит в углеродистой стали?
- А) Твердый раствор внедрения углерода в αFe;
- В) Твердый раствор внедрения углерода в үFe;
- С) Пересыщенный твердый раствор внедрения углерода в аFe;
- D) Пересыщенный твердый раствор внедрения углерода в γFe;
- Е) Твердый раствор замещения углерода в αFe.
- 2. С какой целью проводят рекристаллизационный отжиг?
- А) Выравнивание химического состава;
- В) Устранение наклепа;
- С) Снятие внутренних напряжений;
- D) Измельчение зерна;
- Е) Устранение сетки вторичного цементита.
- 3. Что является основной технологической особенностью отжига?
- А) Температура нагрева;
- В) Скорость нагрева;
- С) Время выдержки;
- D) Скорость охлаждения;
- Е) Время нагрева.
- 4. Что является причиной брака по недостаточной твердости при неполной закалке доэвтектоидной стали?
- А) Окисление по границам зерен;
- В) Образование сетки вторичного цементита;
- С) Укрупнение зерна;
- D) Наличие избыточного феррита;
- Е) Получение слишком мелкого зерна.
- 5. К какому типу дефектов можно отнести газовые раковины в отливках?
- А) К точечным;
- В) К линейным;
- С) К поверхностным;
- D) К объемным;
- Е) К смешанным.
- 6. Как взаимодействуют краевые дислокации одного знака, движущиеся в одной плоскости скольжения?
- А) Притягиваются;
- В) Отталкиваются;
- С) Выстраиваются в вертикальные стенки;
- D) Выстраиваются в "шахматном" порядке;
- Е) Взаимно тормозятся.
- 7. Как изменяется количество феррита в железоуглеродистых сплавах с увеличением содержания углерода?
- А) Растет;
- В) Уменьшается;
- С) По кривой с максимумом;

- D) По кривой с минимумом; Е) Не зависит от содержания углерода. 8. Какой термической обработке подвергаются детали после цементации? А) Закалке и высокотемпературному отпуску; В) Закалке; С) Закалке и низкотемпературному отпуску; D) Дополнительная термообработка не требуется; Е) Отжигу. 9. Какая термическая обработка применяется для заэвтектоидных сталей перед закалкой? А) Сфероидизирующий отжиг; В) Нормализация; С) Рекристаллизационный отжиг: D) Отжиг для снятия внутренних напряжений; Е) Диффузионный отжиг 10. Сталь была подвергнута улучшению. Это означает, что А) Была проведена дополнительная очистка по вредным примесям; В) Было выполнено олаждение из аустенитного состояния на спокойном воздухе; С) Было проведено модифицирование; Была проведена закалка с последующим высоким отпуском; Е) Была проведена неполная закалка. 7.2.2 Примерный перечень заданий для решения стандартных задач 1. Что обозначает буква с в формуле с=к+п-ф? А) Число внешних факторов; В) Число фаз; С) Число степеней свободы; D) Число компонент: Е) Концентрацию основной компоненты. 2. Что обозначает буква F в формуле F=H-TS? А) Энтропию; В) Абсолютную температуру; С) Полную энергию; D) Свободную энергию; Е) Силу. 3. При нагреве до какой температуры закалка стали не имеет смысла? А) Ниже линии А₁; В) Выше линии A₁ на 30-50 ⁰С; С) Выше линии A₃ на 30-50 ⁰С; D) Выше линии A₃ на 100-150 ^оC; Е) Выше линии A_{ct} на 30-50 ${}^{0}C$. 4. Сколько атомов приходится на элементарную ячейку ОЦК решетки? A) 4; B) 2; C) 1; D) 6;
 - 5. Как зависит размер рекристаллизованного зерна от степени предварительной деформации, превышающей $\epsilon_{\kappa p}$?
 - А) Растет;

E) 8.

- В) Уменьшается;
- С) Зависимость имеет максимум;
- D) Зависимость имеет минимум;

Е) Размер зерна не зависит от степени предварительной деформации.
6. Какое из приведенных трехфазных равновесий относится к монотектическому? А) $\beta_1 = \beta_2 + \alpha$; В) $\gamma = \alpha + \beta$; С) $\beta + \kappa = \alpha$;
D) $\kappa_1 + \kappa_2 = \alpha$; E) $\kappa_1 = \kappa_2 + \alpha$;
 7. Как меняется размер критического зародыша с ростом степени переохлаждения? A) Растет; B) Уменьшается; C) Описывается кривой с максимумом; D) Описывается кривой с минимумом; E) Не зависит от степени переохлаждения.
8. Какая составляющая свободной энергии $\Delta F = -\Delta F$ об. + ΔF упр. + ΔF пов. является определяющей при первичной кристаллизации? А) ΔF пов.; В) ΔF упр.; С) ΔF об. + ΔF упр.; D) ΔF пов. + ΔF упр.; E) ΔF об.
9. Какую характеристику материалов определяют при одноосном растяжении ? A) КСU; B) δ ; C) ϵ ; D)HRB; E) σ_{100} .
10. Какой из легирующих элементов относится к ферритообразующим? A) N; B) Cr; C) Ni; D) Mn; E) C.
7.2.3 Примерный перечень заданий для решения прикладных задач 1. Какую структуру имеет доэвтектический белый чугун? А) $\alpha\Phi+\Pi_{\Pi}$; В) $\alpha\Phi+\Pi$; С) $\Pi+\Pi_{\Pi}$; D) $\Pi+\Pi+\Pi_{\Pi}$; E) $\Pi+\Pi$
2. Какая структура получается при охлаждении углеродистой стали в масле? А) Перлит; В) Сорбит; С) Троостит; D) Бейнит; E) Мартенсит.
 3. Каково соотношение линейных параметров кубической решетки? A) a=b≠c; B) a≠b≠c; C) a=b=c; D) a>b>c; E) a<b<c.< li=""> </b<c.<>
4. Какой из перечисленных сплавов является сталью? A) XH77TЮР;

В) Бр03Ц7С5H1; С) P18;
D) Д16;
E) BT5.
5. Какая структура образуется при низком отпуске стали?
А) Мартенсит отпуска;
В) Троостит отпуска;
С) Зернистый сорбит;
D) Пластинчатый сорбит;
Е) Зернистый перлит.
6. Элементы A и B образуют диаграмму эвтектического типа и два ограниченных твердых раствора α и β
переменной растворимости. Какую структуру будет иметь сплав, имеющий концентрацию в интервале между
минимальной и максимальной растворимостью элемента В в элементе А?
A) $\alpha + \beta_{II}$;
B) $\alpha + \beta + \beta_{\text{II}}$;
C) $9+\alpha_{\text{II}}+\beta_{\text{II}}$;
D) $\beta + \beta + \alpha_{\text{II}}$;
E) $\beta + \alpha_{II}$.
7. Какие процессы происходят при отпуске стали в интервале температур 400-600 °C?
А) Частичный распад мартенсита;
В) Распад остаточного аустенита;
С) Карбидное превращение;
D) Полный распад мартенсита и карбидное превращение;E) Изменяется морфология структуры феррита, происходит коагуляция частиц цементита.
г.) изменяется морфология структуры феррита, происходит коагуляция частиц цементита.
8. Какова форма графитовых включений в белых чугунах?
А) Хлопьевидная;
В) Шаровидная;
С) Зернистая;
D) В этих чугунах нет графита; E) Пластинчатая.
Е) Пластинчатая.
9. Легированные стали по структуре нормализации делятся на 4 класса. Выберите лишний.
А) Ферритный;
В) Перлитный;
С) Аустенитный;D)Ледебуритный;
E) Мартенситный.
L) Map Tenent Historic
10. Какой из перечисленных сплавов является титановым сплавом?
A) XH77TIOP;
B) 5p03U7C5H1;
C) P18; D) Д16;
E) BT5.
~,~~~

7.2.4 Примерный перечень вопросов для подготовки к зачету

Теоретические вопросы

- 1. Основные типы структур металлов.
- 2. Классификация дефектов кристаллической решетки. Точечные дефекты.
- 3. Классификация дефектов кристаллической решетки. Краевые дислокации.
- 4. Классификация дефектов кристаллической решетки. Винтовые и смешанные дислокации.
- 5. Контур Бюргерса, вектор Бюргерса, плотность и торможение дислокаций.
- 6. Классификация дефектов кристаллической решетки. Поверхностные дефекты
- 7. Основные закономерности самопроизвольной кристаллизации

- 8. Влияние степени переохлаждения на основные характеристики процесса кристаллизации.
- 9. Несамопроизвольная кристаллизация. Модифицирование.
- 10. Форма кристаллов и структура слитка.
- 11. Вторичная кристаллизация. Особенности мартенситного механизма.
- 12. Фазы в сплавах металлических систем.
- 13. Правило фаз Гиббса, правило отрезков.
- 14. Диаграмма состояния с неограниченной растворимостью компонентов в твердом и жидком состоянии.
- 15. Диаграмма состояния с эвтектикой. Строение эвтектики.
- 16. Диаграмма состояния с перитектикой.
- 17. Диаграммы состояния с полиморфизмом у компонентов.
- 18. Диаграммы состояния с химическим соединением и промежуточной фазой.
- 19. Правило Курнакова.
- 20. Геометрические свойства концентрационного треугольника тройных диаграмм.
- 21. Механические свойства конструкционных материалов.
- 22. Влияние нагрева на структуру и свойства деформированного металла.
- 23. Компоненты и фазы диаграммы железо-углерод.
- 24. Формирование структуры сплавов диаграммы железо-цементит.
- 25. Чугуны. Серые, высокопрочные, ковкие.
- 26. Классификация видов термической обработки.
- 27. Термическая обработка сплавов, не имеющих превращений в твердом состоянии.
- 28. Термическая обработка сплавов с переменной растворимостью в твердом состоянии.
- 29. Превращения в стали при нагреве до аустенитного состояния.
- 30. Превращения в стали при охлаждении из аустенитного состояния.
- 31. Диаграмма изотермического распада аустенита.
- 32. Превращения аустенита в изотермических условиях и при непрерывном охлаждении.
- 33. Особенности мартенситного превращения в сталях.
- 34. Бейнитное превращение в сталях.
- 35. Перлитное превращение в сталях.
- 36. Превращения при нагреве закаленной стали.
- 37. Отжиг и нормализация сталей.
- 38. Закалка сталей. Обработка холодом.
- 39. Закаливаемость и прокаливаемость сталей.
- 40. Химико-термическая обработка сталей.
- 41. Свойства и классификация углеродистых сталей
- 42. Маркировка легированных сталей
- 43. Классификация легированных сталей
- 44. Конструкционные легированные стали
- 45. Инструментальные легированные стали
- 46. Коррозионностойкие, жаростойкие и жаропрочные легированные стали
- 47. Сплавы на основе алюминия.
- 48. Классификация и применение алюминиевых сплавов.
- 49. Сплавы на основе меди.
- 50. Классификация и применение медных сплавов.

Практические вопросы

- 1. Режим обработки стали 45 на зернистый сорбит.
- 2. Режим обработки стали У8 на зернистый перлит.
- 3. Режим получения структуры нижнего бейнита в стали У8.

- 4. Режим термической обработки низкоуглеродистой стали, подвергнутой цементации.
- 5. Режим упрочняющей термической обработки сплава Д16.
- 6. Режим обработки на максимальную твердость стали 50.
- 7. Режим обработки на максимальную твердость стали У8.
- 8. Режим обработки на максимальную твердость стали У10.
- 9. Причина брака при закалке стали 40, заключающегося получении троостито-мартенситной структуры.
- 10. Причина брака при улучшении среднеуглеродистой стали, заключающегося в превышении заданного уровня твердости.
- 11. Причина брака при улучшении среднеуглеродистой стали, заключающегося в занижении заданного уровня твердости.
- 12. Причина брака при закалке среднеуглеродистой стали, заключающегося в недостаточной твердости.
- 13. Причина ухудшения пластичности стали при замене улучшения нормализацией.
- 14. Причина различий в механических свойствах дуралюмина, подвергнутого отжигу, закалке и естественному старению.
- 15. Способы устранения остаточного аустенита в закаленной стали.
- 16. Способ измельчения, структура эвтектики в силуминах.
- 17. Способы измельчения зерна в металлических материалах.
- 18. Способ получения шаровидного графита в чугунах.
- 19. Способ получения структуры ковкого чугуна.
- 20. Способы закалки стали.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест - карточкам. Студенту выдается карточка с пятью вопросами. Правильный ответ на каждый вопрос только один. За правильный ответ студент получает один балл. У каждого студента свой вариант. Некоторые вопросы в разных вариантах могут повторяться, так как являются приоритетными.

Максимальное количество набранных баллов – 5.

Шкала оценивания:

Оценка «зачтено» выставляется студенту, набравшему 3-5 баллов.

Оценка «не зачтено», выставляется студенту, набравшему менее 3 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	ВВЕДЕНИЕ. СТРОЕНИЕ МЕТАЛЛОВ. КРИСТАЛЛИЗАЦИЯ МЕТАЛЛОВ И СПЛАВОВ	ПК-4, ПК-5	Тест, контрольная работа, защита лабораторных работ
2	ТЕОРИЯ СПЛАВОВ	ПК-4, ПК-5	Тест, контрольная работа, защита лабораторных работ

3	ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ	ПК-4, ПК-5	Тест, контрольная работа, защита лабораторных работ
4	ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛЕЙ	ПК-4, ПК-5	Тест, контрольная работа, защита лабораторных работ
5	КОНСТРУКЦИОННЫЕ СТАЛИ И СПЛАВЫ. СТАЛИ И СПЛАВЫ С ОСОБЫМИ СВОЙСТВАМИ. ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ.		Тест, устный опрос, зачет
6	ОСНОВЫ ТЕХНОЛОГИИ ОБРАБОТКИ МЕТАЛЛОВ. ОСНОВНЫЕ СПОСОБЫ ПОЛУЧЕНИЯ ЗАГОТОВОК И ДЕТАЛЕЙ. ОСНОВЫ ТЕХНОЛОГИИ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА СТАЛИ, ЧУГУНОВ, ЦВЕТНЫХ И РЕДКИХ МЕТАЛЛОВ. ОСНОВЫ ТЕХНОЛОГИИ ПРОИЗВОДСТВА НЕМЕТАЛЛИЧЕСКИХ, ПОРОШКОВЫХ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ.		Тест, устный опрос, зачет

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

1. Б.Н. Арзамасов, В.И. Макарова, Мухин и др.; под ред. Б.Н. Арзамасова. Материаловедение – М: Изд-во МГТУ им. Баумана, 2003. – 648

- 2. Лахтин Ю.М., Леонтьева В.П. Материаловедение М.: Изд-во Металлургия, 1990.-472 с.
- 3. Лукина З.С., Комаров В.Г. Получение и обработка металлов и соединений: Учебное пособие
- 4. Дальский А.М. и др. Технология конструкционных материалов М.: Изд-во Машиностроение, 2002. 327 с.
- 5. Ю.А. Геллер, А.Г. Рахштадт Материаловедение (Лаб. работы, методы анализа, задачи). М.: Металлургия, 1985
- 6. О.Д. Козенков. Практикум по материаловедению: учеб. пособие / О.Д. Козенков, В.А. Юрьева. Воронеж: ФГБОУ ВПО «Воронежский государственный технический университет», 2015. 91 с.
- 7. М.В. Березин, И.А. Пантыкина, В.А. Юрьева Методические указания по выполнению лабораторных работ по курсу «Материаловедение». Воронеж, 2011.48 с. №200-2011
- 8. Лукина З.С., Семичев А.Н. Методические указания к выполнению лабораторных работ № 1-4 по курсу «Получение и обработка металлов и соединений»
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Рекомендуемая литература в виде электронных ресурсов представлена на сайте ВГТУ (научно-техническая библиотека): http://catalog.vorstu.ru/

- Информационно-правовые порталы «Консультант плюс» (http://www.consultant.ru), «Гарант» (http://www.garant.ru/);
 - Библиотека ГОСТов, стандартов и нормативов (http://www.infosait.ru/);
- Электронная информационно-образовательная среда ВГТУ (http://eios.vorstu.ru)

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой Учебные лаборатории:

«Лаборатория металлографического анализа»

«Лаборатория механических испытаний»

«Лаборатория термической обработки»

Дисплейный класс, оснащенный компьютерными программами для проведения лабораторного практикума

Лаборатория, оборудованная проектором и интерактивной доской Натурные лекционные демонстрации:

- Комплект элементарных ячеек;

- Комплекты образцов сталей, чугунов, цветных металлов;
- Атласы металлографические;
- Комплекты фотографий микроструктур сталей и чугунов.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Материаловедение и технология конструкционных материалов» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета величины зерна, количественного соотношения фаз, химического состава фаз. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом
Практическое занятие	занятии. Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:

	- работа с текстами: учебниками, справочниками,		
	дополнительной литературой, а также проработка конспектов		
	лекций;		
	- выполнение домашних заданий и расчетов;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций,		
	олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует		
промежуточной	систематически, в течение всего семестра. Интенсивная		
аттестации	подготовка должна начаться не позднее, чем за месяц-полтора до		
	промежуточной аттестации. Данные перед зачетом три дня		
	эффективнее всего использовать для повторения и		
	систематизации материала.		