### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»



### РАБОЧАЯ ПРОГРАММА

дисциплины (модуля) «Электротехника и электроника»

Направление подготовки <u>22.03.02 – МЕТАЛЛУРГИЯ</u> Профиль <u>Технология литейных процессов</u>
Квалификация выпускника <u>Бакалавр</u>
Нормативный период обучения <u>4 года</u>
Форма обучения <u>Очная</u>
Год начала подготовки 2017 г.

Автор программы \_\_\_\_\_\_\_/ Тонн Д. А. /

Заведующий кафедрой электропривода, автоматики и управления в технических системах

/ Бурковский В.Л. /

Руководитель ОПОП

/ Печенкина Л.С. /

Воронеж 2017

### 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

### 1.1. Цели дисциплины

формирование у студентов способности проводить вычисления и экспериментальные исследования электротехнической аппаратуры и электронных устройств с помощью измерительных приборов, умения оценивать степень достоверности результатов теоретических и экспериментальных исследований; умения планировать эксперимент и обрабатывать его результаты с использованием современных методов; формирование основ научного мышления.

#### 1.2. Задачи освоения дисциплины

- познакомить с электротехнической терминологией и символикой, с основными явлениями и законами электрических и магнитных цепей и методов их расчета;
- сформировать представление о принципах составления, моделирования и анализа электрических и магнитных цепей и современных программных средствах, используемых для этих цепей;
- привить практические навыки расчета электрических цепей и выбора приборов для измерения, составления схем их включения;
- познакомить с правилами обеспечения безопасной работы на электроустановках;
- сформировать представление об устройстве, принципе работы, характеристик трансформаторов, электрических машин и электроизмерительных приборов;
- привить практические навыки расчета основных характеристик электротехнических устройств и работы с электротехнической аппаратурой;
- ознакомить с составом современной элементной базы электроники, устройством, принципом действия, характеристиками области применения отдельных компонентов;
- сформировать представления о принципе создания электронных систем и привить практические навыки работы с электронными устройствами;
- сформировать представления о роли электротехники и электроники в промышленности, связи и быту и об их значении для усвоения смежных дисциплин.

### 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Электротехника и электроника» относится к дисциплинам базовой части блока Б1.

### 3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Электротехника и электроника» направлен на формирование следующих компетенций:

ОПК-7 - готовностью выбирать средства измерений в соответствии с требуемой точностью и условиями эксплуатации

| Компетенция | Результаты обучения, характеризующие<br>сформированность компетенции       |
|-------------|----------------------------------------------------------------------------|
| ОПК-7       | Знать:                                                                     |
| OHK-7       | <ul> <li>электротехническую терминологию и символику, законы</li> </ul>    |
|             | электрических и магнитных цепей, методы расчета цепей;                     |
|             | <ul> <li>правила безопасной работы на электроустановках;</li> </ul>        |
|             | <ul> <li>устройство, принцип работы, характеристики трансфор-</li> </ul>   |
|             | маторов, электрических машин и электроизмерительных приборов;              |
|             | <ul> <li>современную элементную базу электроники, устройство,</li> </ul>   |
|             | принцип действия, характеристиками области применения от-                  |
|             | дельных компонентов.                                                       |
|             | Уметь:                                                                     |
|             | <ul> <li>составлять, моделировать и анализировать электрические</li> </ul> |
|             | и магнитные цепи, в том числе и на современных программных                 |
|             | средствах;                                                                 |
|             | <ul> <li>рассчитывать электрические цепи, выбирать приборы для</li> </ul>  |
|             | измерения;                                                                 |
|             | <ul> <li>на практике рассчитывать основные характеристики</li> </ul>       |
|             | электротехнических устройств и работы с электротехнической ап-             |
|             | паратурой.                                                                 |
|             | Владеть:                                                                   |
|             | <ul> <li>принципами создания электронных систем;</li> </ul>                |
|             | <ul> <li>практические навыки работы с электронными устрой-</li> </ul>      |
|             | ствами;                                                                    |
|             | <ul> <li>представлением о роли электротехники и электроники в</li> </ul>   |
|             | промышленности, связи и быту и об их значении для усвоения                 |
|             | смежных дисциплин.                                                         |

## 4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Электротехника и электроника» составляет 6 з.е.

Распределение трудоемкости дисциплины по видам занятий.

### очная форма обучения

| очная форма обучения                     |       |       |     |
|------------------------------------------|-------|-------|-----|
| Daniel vinofino i poficina               | Всего | Семес | тры |
| Виды учебной работы                      |       | 2     | 3   |
| Аудиторные занятия (всего)               | 72    | 36    | 36  |
| В том числе:                             |       |       |     |
| Лекции                                   | 36    | 18    | 18  |
| Практические занятия (ПЗ)                | 18    | 18    | -   |
| Лабораторные работы (ЛР)                 | 18    | -     | 18  |
| Самостоятельная работа                   | 108   | 72    | 36  |
| Часы на контроль                         | 36    | ı     | 36  |
| Виды промежуточной аттестации - экзамен, | +     | +     | +   |
| зачет                                    | Т     | T     | 7   |
| Общая трудоемкость:                      |       |       |     |
| академические часы                       | 216   | 108   | 108 |
| зач.ед.                                  | 6     | 3     | 3   |

### 5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

# 5.1 Содержание разделов дисциплины и распределение трудоем-кости по видам занятий

очная форма обучения

| No | Наименование темы                            | Содержание раздела                               | Леки  | Пракзан  | Лаб  | CPC | Всего |
|----|----------------------------------------------|--------------------------------------------------|-------|----------|------|-----|-------|
| π/ | 114111101101111101111111111111111111111      | обдержиние раздела                               | VIVIL | 11punoun | зан. | 010 | час   |
| 1  |                                              |                                                  |       | •        | Jan. |     | Tac   |
| П  |                                              |                                                  |       |          |      |     |       |
| 1  | Пинайни на адактринаакна нади                | Oavanus navanus arau                             |       |          |      |     |       |
| 1  | Линейные электрические цепи постоянного тока | трических цепей. Понятие                         |       |          |      |     |       |
|    | постоянного тока                             | электрической цепи. Ток,                         |       |          |      |     |       |
|    |                                              | напряжение, ЭДС, мощность                        |       |          |      |     |       |
|    |                                              | в цепи. Основные элементы                        |       |          |      |     |       |
|    |                                              | электрической цепи. Источ-                       |       |          |      |     |       |
|    |                                              | ники и приемники электри-                        |       |          |      |     |       |
|    |                                              | ческой энергии. Эквива-                          |       |          |      |     |       |
|    |                                              | лентные преобразования в                         |       |          |      |     |       |
|    |                                              | электрических цепях.                             |       |          |      |     |       |
|    |                                              | Основные законы элек-                            |       |          |      |     |       |
|    |                                              | тротехники для электри-                          | 1     | 4        |      | 10  | 26    |
|    |                                              | ческих цепей. Закон Ома                          |       | 4        | -    | 18  | 26    |
|    |                                              | для участка цепи, содержа-                       |       |          |      |     |       |
|    |                                              | щего и не содержащего ис-                        |       |          |      |     |       |
|    |                                              | точник ЭДС. Первый и вто-                        |       |          |      |     |       |
|    |                                              | рой законы Кирхгофа. Метод                       |       |          |      |     |       |
|    |                                              | расчета цепи на основе за-                       |       |          |      |     |       |
|    |                                              | конов Кирхгофа. Баланс                           |       |          |      |     |       |
|    |                                              | мощностей в электрической                        |       |          |      |     |       |
|    |                                              | цепи. Методы контурных                           |       |          |      |     |       |
|    |                                              | токов, узловых потенциалов,                      |       |          |      |     |       |
|    |                                              | двух узлов, наложения и эк-                      |       |          |      |     |       |
|    |                                              | вивалентного генератора.                         |       |          |      |     |       |
| 2  | Анализ периодических и пере-                 |                                                  |       |          |      |     |       |
|    | ходных процессов в линейных                  |                                                  |       |          |      |     |       |
|    | цепях. Магнитные цепи.                       | цепи синусоидального тока.                       |       |          |      |     |       |
|    |                                              | Основные параметры сину-                         |       |          |      |     |       |
|    |                                              | соидального сигнала: ам-                         |       |          |      |     |       |
|    |                                              | плитуда, частота, фаза.<br>Средние и действующие |       |          |      |     |       |
|    |                                              | значения периодических                           |       |          |      |     |       |
|    |                                              | ЭДС, напряжений и токов.                         |       |          |      |     |       |
|    |                                              | Линейные элементы R, L, C в                      |       |          |      |     |       |
|    |                                              | цепи синусоидального тока.                       |       |          |      |     | , .   |
|    |                                              | Треугольники сопротивле-                         | 10    | 14       | -    | 18  | 46    |
|    |                                              | ний и мощностей. Активная,                       |       |          |      |     |       |
|    |                                              | реактивная и полная мощ-                         |       |          |      |     |       |
|    |                                              | ность.                                           |       |          |      |     |       |
|    |                                              | Расчет цепей синусои-                            |       |          |      |     |       |
|    |                                              | дального тока, построение                        |       |          |      |     |       |
|    |                                              | векторных диаграмм.                              |       |          |      |     |       |
|    |                                              | Электрическая цепь с по-                         |       |          |      |     |       |
|    |                                              | следовательным соедине-                          |       |          |      |     |       |
|    |                                              | нием элементов R, L, C.                          |       |          |      |     |       |
|    |                                              | Комплексное сопротивление.                       |       |          |      |     |       |

| _ |                        | Ţ                                                     |   | 1 | ,  |    | T . |
|---|------------------------|-------------------------------------------------------|---|---|----|----|-----|
|   |                        | Векторные диаграммы. Тре-                             |   |   |    |    |     |
|   |                        | угольник напряжений. Ре-                              |   |   |    |    |     |
|   |                        | зонанс напряжений в после-                            |   |   |    |    |     |
|   |                        | довательной электрической                             |   |   |    |    |     |
|   |                        | цепи.                                                 |   |   |    |    |     |
|   |                        | Трехфазные электрические                              |   |   |    |    |     |
|   |                        | цепи. Трехфазная симмет-                              |   |   |    |    |     |
|   |                        | ричная система ЭДС. Полу-                             |   |   |    |    |     |
|   |                        | чение трехфазной системы                              |   |   |    |    |     |
|   |                        | ЭДС. Схемы соединения                                 |   |   |    |    |     |
|   |                        | трехфазных цепей. Линей-                              |   |   |    |    |     |
|   |                        | ные и фазные напряжения и                             |   |   |    |    |     |
|   |                        | токи трехфазной цепи при                              |   |   |    |    |     |
|   |                        | соединении фаз в звезду.                              |   |   |    |    |     |
|   |                        | Линейные и фазные напря-                              |   |   |    |    |     |
|   |                        | жения и токи при соедине-                             |   |   |    |    |     |
|   |                        | нии фаз треугольником.                                |   |   |    |    |     |
|   |                        | Анализ переходных про-                                |   |   |    |    |     |
|   |                        | цессов в линейных элек-                               |   |   |    |    |     |
|   |                        | трических цепях. Основные                             |   |   |    |    |     |
|   |                        | понятия и определения. За-                            |   |   |    |    |     |
|   |                        | коны коммутации. Свобод-                              |   |   |    |    |     |
|   |                        | ные и принужденные состав-                            |   |   |    |    |     |
|   |                        | ляющие переходного режи-                              |   |   |    |    |     |
|   |                        | ма. Расчет переходных про-                            |   |   |    |    |     |
|   |                        | цессов в линейной электри-                            |   |   |    |    |     |
|   |                        | ческой цепи классическим                              |   |   |    |    |     |
|   |                        | методом. Операторный ме-                              |   |   |    |    |     |
|   |                        | тод расчета переходных                                |   |   |    |    |     |
|   |                        | процессов.                                            |   |   |    |    |     |
|   |                        | Магнитные цепи. Понятие о                             |   |   |    |    |     |
|   |                        | магнитной цепи. МДС.                                  |   |   |    |    |     |
|   |                        | Классификация и основные                              |   |   |    |    |     |
|   |                        | законы магнитных цепей.                               |   |   |    |    |     |
|   |                        | Анализ разветвленной маг-                             |   |   |    |    |     |
| 2 | <u></u>                | нитной цепи.                                          |   |   |    |    |     |
| 3 | *                      | Электрические измерения                               |   |   |    |    |     |
|   |                        | и приборы. Методы изме-                               |   |   |    |    |     |
|   | шины и трансформаторы. | рений электрических и маг-                            |   |   |    |    |     |
|   |                        | нитных величин. Погрешно-                             |   |   |    |    |     |
|   |                        | сти измерений. Принцип                                |   |   |    |    |     |
|   |                        | действия магнитоэлектриче-                            |   |   |    |    |     |
|   |                        | ских, электромагнитных,                               |   |   |    |    |     |
|   |                        | электродинамических и                                 |   |   |    |    |     |
|   |                        | электростатических приборов. Измерение токов,         |   |   |    |    |     |
|   |                        | ров. измерение токов, напряжений и мощностей.         | 8 |   | 14 | 18 | 40  |
|   |                        | напряжении и мощностеи.<br>Электрические машины и     | 0 | - | 14 | 10 | 40  |
|   |                        | трансформаторы. Транс-                                |   |   |    |    |     |
|   |                        | форматор: устройство и                                |   |   |    |    |     |
|   |                        | форматор. устроиство и принцип действия. Соотно-      |   |   |    |    |     |
|   |                        | принцип деиствия. Соотно-<br>шения для токов и напря- |   |   |    |    |     |
|   |                        | жений обмоток и числа вит-                            |   |   |    |    |     |
|   |                        | ков. Электрические машины                             |   |   |    |    |     |
|   |                        | постоянного и переменного                             |   |   |    |    |     |
|   |                        | тока. Синхронные и асин-                              |   |   |    |    |     |
|   |                        | хронные двигатели. Син-                               |   |   |    |    |     |
|   |                        | лроппыс двигатели. Син-                               |   |   |    |    |     |

|   |                            | VNOTHILLS II SOUTHERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |   |    |    |
|---|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|----|----|
|   |                            | хронные и асинхронные ге-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |   |    |    |
| 4 | Полупроводниковые элементы | нераторы. Полупроводниковые дио-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |   |   |    |    |
|   |                            | ды. Собственная и примесная электропроводность полупроводников. Полупроводниковые диоды, их назначение и характеристики: выпрямительные диоды, стабилитроны, фото и светодиоды, тиристоры. Варикапы, оптроны: назначение и принцип работы.  Биполярные и полевые транзисторы. Структура и принцип действия биполярного и полевого транзисторов. Схемы включения биполярного транзистора. Характеристики биполярного и полевого транзисторов.                                                                                                                                                                                                                                                                                                                                                                      | 4 | - |   | 18 | 22 |
| 5 | Аналоговая схемотехника    | Источники вторичного электропитания. Структура источника питания электронных устройств. Однофазный однополупериодный выпрямитель. Однофазный мостовой выпрямитель. Трехфазный мостовой выпрямитель. Классификация и характеристики усилителей постоянного и переменного тока. Каскадное построение усилителей. Обратная связь в усилитель. Операционные усилителы. Подходы к построению усилительных устройств. Общие свойства устройств. Общие свойства устройств. Общие свойства устройств с операционными усилителями. Основные виды вычислительных схем на основе операционных усилителей. Схемотехника и основные параметры операционных усилителей. Генераторы. Режимы возбуждения генератора. Условия самовозбуждения. <i>ЕС</i> -генераторы. Генератор с мостом Вина на операционном усилителе. Генератор | 8 | - | 4 | 18 | 30 |

|   |                       | пилообразного напряжения.                                                                                                                                                                                                                                                                                                         |    |    |    |     |     |
|---|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|-----|-----|
| 6 | Цифровая схемотехника | Комбинационные цифровые устройства. Основные логические операции. Виды логических элементов. Таблицы истинности элементов И, ИЛИ, НЕ. Двоичная система исчисления. Комбинационные цифровые устройства: шифраторы и дешифраторы, мультиплексоры и демультиплексоры и демультиплексоры и условное обозначение и таблицы истинности. | 2  | -  | 1  | 18  | 20  |
|   |                       | Итого                                                                                                                                                                                                                                                                                                                             | 36 | 18 | 18 | 108 | 180 |

### 5.2 Перечень лабораторных работ

- 1. Исследование однофазного трансформатора.
- 2. Исследование двигателя постоянного тока параллельного возбуждения. Построение механических характеристик.
- 3. Исследование трехфазного асинхронного двигателя с короткозамкнутым ротором. Построение механических характеристик.
  - 4. Исследование однофазного неуправляемого выпрямителя.

### 5.3 Перечень практических работ

- 1. Расчет линейной цепи постоянного тока с одним источником ЭДС.
- 2. Расчет линейной цепи постоянного тока с несколькими источниками ЭДС.
  - 3. Расчет параметров линейных цепей синусоидального тока.
- 4. Расчет цепей синусоидального тока с R, L, C элементами в различных режимах работы.
- 5. Расчет трехфазной электрической цепи в различных режимах работы.
- 6. Расчет переходных процессов в линейных электрических цепях постоянного тока различными методами.
  - 7. Анализ разветвленной магнитной цепи.

### 6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

# 7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

### 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

#### «аттестован»;

#### «не аттестован».

| Компе- | Результаты обучения, характеризующие                                                                                                                                                                                                                                                                                                                                                                                             | Критерии                                                                                                                                                                           |                                                                               | П                                                               |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| тенция | сформированность компетенции                                                                                                                                                                                                                                                                                                                                                                                                     | оценивания                                                                                                                                                                         | Аттестован                                                                    | Не аттестован                                                   |
| ОПК-7  | Знать:  — электротехническую терминологию и символику, законы электрических и магнитных цепей, методы расчета цепей;  — правила безопасной работы на электроустановках;  — устройство, принцип работы, характеристики трансформаторов, электрических машин и электроизмерительных приборов;  — современную элементную базу электроники, устройство, принцип действия, характеристиками области применения отдельных компонентов. | Активная работа на практических и ла-<br>бораторных заняти-<br>ях, отвечает на тео-<br>ретические вопросы<br>при проверке отчета<br>по практическим и<br>лабораторным рабо-<br>там | Выполнение работ в срок, предусмотренный в рабочих программах                 | Невыполнение работ в срок, предусмотренный в рабочих программах |
|        | Уметь:                                                                                                                                                                                                                                                                                                                                                                                                                           | Решение стандартных<br>практических задач                                                                                                                                          | Выполнение работ в срок, предусмотренный в рабочих программах                 | Невыполнение работ в срок, предусмотренный в рабочих программах |
|        | Владеть:  — принципами создания электронных систем;  — практические навыки работы с электронными устройствами;  — представлением о роли электротехники и электроники в промышленности, связи и быту и об их значении для усвоения смежных дисциплин.                                                                                                                                                                             | Решение прикладных задач в данной предметной области (электротехники и электроники)                                                                                                | Выполнение ра-<br>бот в срок,<br>предусмотренный<br>в рабочих про-<br>граммах | Невыполнение работ в срок, предусмотренный в рабочих программах |

**7.1.2** Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 2, 3 семестре для очной формы обучения по двух/четырехбалльной системе:

«зачтено»

### «не зачтено»

|                  | 0 00 11 0110 //                                                      |                        |                  |            |
|------------------|----------------------------------------------------------------------|------------------------|------------------|------------|
| Компе-<br>тенция | Результаты обучения, характеризующие<br>сформированность компетенции | Критерии<br>оценивания | Зачтено          | Не зачтено |
| ОПК-7            | Знать:                                                               | Тест                   | Выполнение теста | Выполнение |
|                  | <ul><li>– электротехническую</li></ul>                               |                        | на 70-100%       | менее 70%  |
|                  | терминологию и символику, зако-                                      |                        |                  |            |
|                  | ны электрических и магнитных                                         |                        |                  |            |
|                  | цепей, методы расчета цепей;                                         |                        |                  |            |
|                  | <ul> <li>правила безопасной</li> </ul>                               |                        |                  |            |
|                  | работы на электроустановках;                                         |                        |                  |            |

| ,                                       |                     |                   | 1         |
|-----------------------------------------|---------------------|-------------------|-----------|
| – устройство, принцип                   |                     |                   |           |
| работы, характеристики транс-           |                     |                   |           |
| форматоров, электрических машин         |                     |                   |           |
| и электроизмерительных приборов;        |                     |                   |           |
| – современную эле-                      |                     |                   |           |
| ментную базу электроники,               |                     |                   |           |
| устройство, принцип действия,           |                     |                   |           |
| характеристиками области приме-         |                     |                   |           |
| нения отдельных компонентов.            | D                   | П                 | 2         |
| Уметь:                                  | Решение стандартных | Продемонстри-     | Задачи не |
|                                         | практических задач  | рова н верный ход | решены    |
| ровать и анализировать электри-         |                     | решения в боль-   |           |
| ческие и магнитные цепи, в том          |                     | шинстве задач     |           |
| числе и на современных про-             |                     |                   |           |
| граммных средствах;                     |                     |                   |           |
| – рассчитывать элек-                    |                     |                   |           |
| трические цепи, выбирать приборы        |                     |                   |           |
| для измерения;                          |                     |                   |           |
| <ul><li>на практике рассчи-</li></ul>   |                     |                   |           |
| тывать основные характеристики          |                     |                   |           |
| электротехнических устройств и          |                     |                   |           |
| работы с электротехнической ап-         |                     |                   |           |
| паратурой.                              |                     |                   |           |
| Владеть:                                | Решение прикладных  | Продемонстри-     | Задачи не |
| <ul><li>принципами создания</li></ul>   |                     | рова н верный ход | решены    |
| электронных систем;                     | метной области      | решения в боль-   |           |
| <ul> <li>практические навыки</li> </ul> | (электротехники и   | шинстве задач     |           |
| работы с электронными устрой-           | электроники)        |                   |           |
| ствами;                                 |                     |                   |           |
| <ul><li>представлением о роли</li></ul> |                     |                   |           |
| электротехники и электроники в          |                     |                   |           |
| промышленности, связи и быту и          |                     |                   |           |
| об их значении для усвоения             |                     |                   |           |
| смежных дисциплин.                      |                     |                   |           |

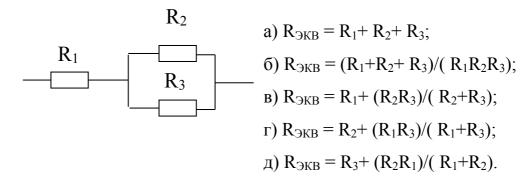
или

«отлично»;

«хорошо»;

«удовлетворительно»; «неудовлетворительно».

| Компе<br>-<br>тенци<br>я | Результаты обучения, характери-<br>зующие<br>сформированность компетенции                                                                                                                                                                                                                                                                                             | Критерии<br>оценивания | Отлично                             | Хорошо                     | Удовл.                            | Неудовл.                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------|----------------------------|-----------------------------------|--------------------------------------|
| ОПК-7                    | Знать:  — электротехническую терминологию и символику, законы электрических и магнитных цепей, методы расчета цепей;  — правила безопасной работы на электроустановках;  — устройство, принцип работы, характеристики трансформаторов, электрических машин и электроизмерительных приборов;  — современную элементную базу электроники, устройство, принцип действия, |                        | Выполнени<br>е теста на<br>90- 100% | Выполнение теста на 80-90% | Выполнение<br>теста на 70-<br>80% | В тесте менее 70% правильных ответов |


| характеристиками области           |            |            |             |               |           |
|------------------------------------|------------|------------|-------------|---------------|-----------|
| применения отдельных ком-          |            |            |             |               |           |
| понентов.                          |            |            |             |               |           |
| Уметь:                             | Решение    | Задачи ре- | Продемон-   | Продемонстр   | Задачи не |
| – составлять, моде-                |            | шены в     | стр ирован  | ирован верный | решены    |
| лировать и анализировать           |            | полном     | верный ход  | -             |           |
| электрические и магнитные          | х задач    | объеме и   | решения     | большинстве   |           |
| цепи, в том числе и на совре-      |            | получены   | всех, но не | задач         |           |
| менных программных сред-           |            | верные     | получен     |               |           |
| ствах;                             |            | ответы     | верный от-  |               |           |
| – рассчитывать                     |            |            | вет во всех |               |           |
| электрические цепи, выбирать       |            |            | задачах     |               |           |
| приборы для измерения;             |            |            |             |               |           |
| <ul><li>на практике рас-</li></ul> |            |            |             |               |           |
| считывать основные характе-        |            |            |             |               |           |
| ристики электротехнических         |            |            |             |               |           |
| устройств и работы с электро-      |            |            |             |               |           |
| технической аппаратурой.           |            |            |             |               |           |
| Владеть:                           | Решение    | Задачи ре- | Продемон-   | Продемонстр   | Задачи не |
| <ul><li>принципами со-</li></ul>   | прикладных | шены в     | 1 1         | ирован верный | решены    |
| здания электронных систем;         | задач в    | полном     | верный ход  | ход решения в |           |
| <ul><li>практические</li></ul>     | конкретной | объеме и   | решения     | большинстве   |           |
| навыки работы с электронны-        | предметной | получены   | всех, но не | задач         |           |
| ми устройствами;                   | области    | верные     | получен     |               |           |
| <ul><li>представлением о</li></ul> |            | ответы     | верный от-  |               |           |
| роли электротехники и элек-        |            |            | вет во всех |               |           |
| троники в промышленности,          |            |            | задачах     |               |           |
| связи и быту и об их значении      |            |            |             |               |           |
| для усвоения смежных дисци-        |            |            |             |               |           |
| плин.                              |            |            |             |               |           |

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

### 7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Количество уравнений, записанных по первому закону Кирхгофа, на одно меньше количества ......\_
  - а) контуров;
  - б) ветвей;
  - в) узлов;
  - г) ЭДС.
- 2. Количество уравнений в методе контурных токов равно количеству ...... контуров.
  - а) зависимых;
  - б) независимых;
  - в) свободных;
  - г) наружных.

# 3. Эквивалентное сопротивление участка определяется выражением....:

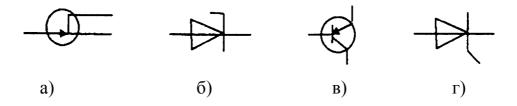


# <u>4 Действующее значение синусоидального тока определяется выражением .....</u>

a) 
$$I = \sqrt{2} \cdot I_m$$
; 6)  $I = \sqrt{3} \cdot I_m$ ;

в) 
$$I = \frac{I_m}{2}$$
;  $\Gamma$ )  $I = \frac{I_m}{\sqrt{2}}$ ;  $\Pi$ )  $I = \frac{I_m}{\sqrt{3}}$ .

5. Для тока  $i = I_m sin(\omega t + \psi)$  комплекс действующего значения имеет вид:


$$a) \ \dot{I} = I_m \cdot e^{j \cdot \omega \cdot t} \,, \quad \ \, 6) \ \dot{I} = \frac{I_m}{\sqrt{2}} \cdot e^{j \cdot \psi} \,, \qquad \ \, B) \ \dot{I} = I_m \cdot e^{j \cdot \psi} \,, \quad \ \, \Gamma) \ \dot{I} = \frac{I_m}{\sqrt{2}} \cdot e^{j \cdot \omega \cdot t} \,.$$

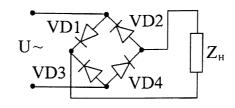
- 6. Вращающаяся часть электродвигателя называются ......
- а) статор;
- б) ротор;
- в) коммутатор.
- 7. В цепи питания нагревательного прибора, включенного на напряжение 220 В, сила тока равна 5 А. Определить мощность прибора.
  - a) 25 BT,
  - б) 1,1 кВт,
  - в) 120 Вт,
  - г) 44 Вт.

# 8. Какое из приведенных определений полупроводника наиболее точно?

- а) полупроводник это вещество, на внешней атомной оболочке которого находится 4 электрона;
- б) полупроводник это вещество, основным свойством которого является сильная зависимость удельного сопротивления от воздействия внешних факторов температуры, электрического и магнитного полей, светового и ионизирующего излучений;
- в) полупроводник это вещество, температурный коэффициент удельного сопротивления которого отрицателен.

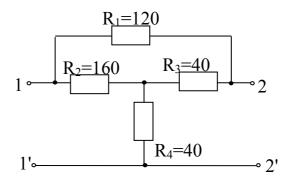
### 9. Полевой транзистор имеет обозначение:



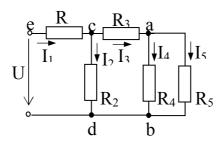

# 10. Укажите, какой из диодов мостовой схемы выпрямителя включен неправильно, если VD1 включен верно:

a) VD4 и VD2;б) VD3 и VD2;

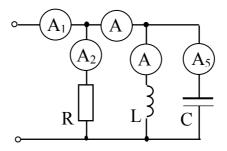
в) VD3;


г) VD4;

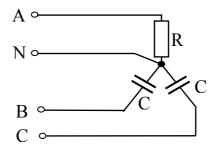
д) VD2.




### 7.2.2 Примерный перечень заданий для решения стандартных задач


**1.** Определить входное сопротивление относительно зажимов 1-1' цепи (рис. 1.10) при холостом ходе (зажимы 2-2' разомкнуты) и при коротком замыкании (зажимы 2-2' замкнуты). Значения сопротивлений указаны на схеме.

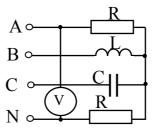


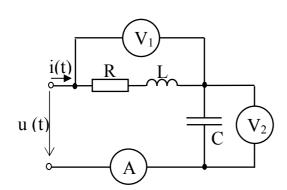

**2**. В электрической цепи, схема которой приведена на рисунке, известен ток четвертой ветви  $I_4$ =0,2 А. Определить приложенное напряжение и мощность, расходуемую в цепи, если сопротивления резисторов:  $R_1$ = 50 Ом;  $R_2$ = 80 Ом;  $R_3$ = 20 Ом;  $R_4$ = 30 Ом;  $R_5$ = 60 Ом.



- **3.** Элементы R, L, C соединены последовательно. Известны действующие значения напряжений этих элементов. Построить качественно векторную диаграмму напряжений и тока, определить действующее значение неизвестной величины и угол сдвига фаз ф между входным напряжением и током для следующих случаев:
  - 1)  $U_R=50 \text{ B}$ ,  $U_L=150 \text{ B}$ ,  $U_C=100 \text{ B}$ , U=?;
  - 2)  $U_R = ?$ ;  $U_L = 100 \text{ B}$ ,  $U_C = 50 \text{ B}$ , U = 100 B;
  - 3)  $U_R=60 \text{ B}$ ,  $U_L=?$ ,  $U_C=160 \text{ B}$ , U=100 B;
  - 4)  $U_R=40 \text{ B}$ ,  $U_L=30 \text{ B}$ ,  $U_C=?$ , U=50 B;
  - 5)  $U_R=60 \text{ B}$ ,  $U_L=220 \text{ B}$ ,  $U_C=140 \text{ B}$ , U=?.
- **4.** Определить показания амперметров  $A_2$  и  $A_3$  в схеме рисунке, если известны показания амперметров  $A_1$ ,  $A_4$ ,  $A_5$ :  $I_{A1}$ =5,64 A,  $I_{A4}$ =4 A,  $I_{A5}$ =3 A.




**5.** В цепи известны фазные токи:  $I_A$  =3 A;  $I_B$  =4 A;  $I_C$  =4 A. Определить показание амперметра в нейтральном проводе.



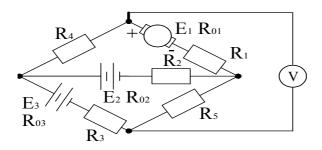

**6.** Линейное напряжение трехфазного трансформатора, соединенного звездой с нулевым проводом, равно 220 В. В фазе А включено 30 одинаковых ламп (40 Вт), 127 В каждая), в фазе В – 20 ламп, а фаза С – 10 ламп. Определить ток в нейтрали и напряжение на каждой группе ламп при обрыве нулевого провода.

7. Определить токи в цепи, если источник питания симметричен и

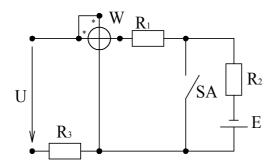
 $R = \omega L = 1/\omega C = 2 \text{ Om}; U_v = 20 \text{ B}.$ 



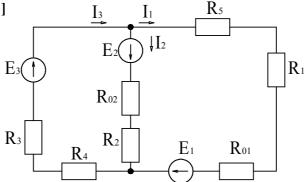



**8.** Определить показания приборов электромагнитной системы в цепи, схема которой показана на рисунке, записать выражение мгновенного значения тока, если: R = 50 Om,  $\omega L = 10 \text{ Om}$ ,  $\frac{1}{\omega C} = 90 \text{ Om}$ .

На вход цепи подано синусоидальное напряжение  $u(t) = 310\sin(\omega t + 30^{\circ})$  В.


- 9. Трехфазный трансформатор имеет: номинальную мощность  $S_{\text{ном}}$  =1600 кВ A, номинальное первичное  $U_{1\text{ном}}$  = 10 кВ и вторичное  $U_{2\text{ном}}$  = 0,4 кВ напряжения, максимальное значение магнитной индукции в стержне  $B_{\text{max}}$  =1,55 Тл , ЭДС одного витка  $E_{\text{вит}}$  = 5 В. Частота переменного тока сети f = 50 Гц, соединение обмоток транс- форматора Y/Y, коэффициент заполнения стержня сталью  $k_{\text{ст}}$  = 0,97. Определить: число витков в обмотках; максимальное значение основного магнитного потока; площадь поперечного сечения стержня; номинальный ток во вторичной цепи; коэффициент трансформации.
- **10.** Трехфазный трансформатор имеет: номинальное напряжение  $U_{1\text{ном}}$  =127 B, ток холостого хода  $I_{0\text{ном}}$  = 20,5 A , коэффициент мощности холостого хода  $\phi_{0\text{ном}}$  =0,08. Соединение обмоток трансформатора Y/Y. Частота переменного тока сети f = 50  $\Gamma$ ц. Определить параметры намагничивающего контура.

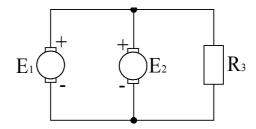
### 7.2.3 Примерный перечень заданий для решения прикладных задач


**1.** Определите показание вольтметра в цепи. Дано:  $E_1$ =220 B;  $E_2$ =60 B;  $E_3$ =90 B;  $R_{01}$ =0,4 Ом;  $R_{02}$ =0,2 Ом;  $R_{03}$ =0,1 Ом;  $R_1$ =40 Ом;  $R_2$ =16 Ом;  $R_3$ =45 Ом;  $R_4$ =15 Ом;  $R_5$ =20 Ом;  $R_V$   $\rightarrow \infty$ .



**2.** Определите показание ваттметра при разомкнутом и замкнутом выключателе SA. Дано: U=50 B; E=30 B;  $R_1=R_3=10$  Ом;  $R_2=20$  Ом.



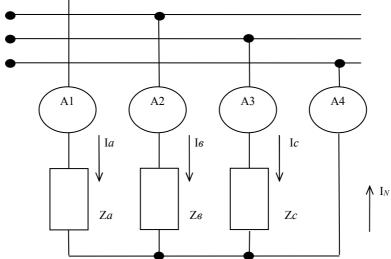

**3.** Запишите уравнение энергетического баланса для цепи. Определите мощности, отдаваемые источником  $E_3$  и потребляемые приемниками  $E_2$  и  $R_5$ . Дано:  $E_1$ =100 B;  $E_2$ =24 B;  $E_3$ =12 B;  $R_{01}$ =0,6 Oм;  $R_{02}$ =0,2 Oм;  $R_1$ =4,4 Oм;  $R_2$ =3,8 Ом;  $R_3$ =2 Ом;  $R_3$ =2 Ом;  $R_3$ =3,32 A.



**4.** Задана полная номинальная мощность трехфазного трансформатора Sном =100 кВА, номинальные мощности холостого хода  $P_0$  = 0,465кВт и короткого замыкания  $P_{\rm K}$  =1,97 кВт , коэффициент мощности нагрузки  $\cos \phi 2$  = 0,8 . Соединение обмоток трансформатора Y/Y. Частота переменного тока f = 50  $\Gamma$ ц. Определить коэффициент полезного действия при номиналь-

ной нагрузке и максимальный КПД.

**5.** В каких режимах работают электрические машины с ЭДС  $E_1$  и  $E_2$ ? Определите токи в цепи. Дано:  $E_1$ = $E_2$ =240 B;  $R_3$ =30 Ом.




- **6.** Три приемника электрической энергии подключены к сети с напряжением U, причем первый присоединен последовательно со вторым и третьим, которые между собой соединены параллельно. Дано:  $Q_1$ =0,25 кBAp; соѕ  $\phi_1$ =0,625;  $\phi_1$ >0;  $S_2$ =2,6 кBA;  $\phi_2$ =-60°;  $P_3$ =1,2 кBT;  $U_2$ =200 В (напряжение на параллельных приемниках). Изобразите схему замещения цепи. Определите напряжение сети и токи приемников. Постройте векторную диаграмму.
- 7. Как изменится яркость свечения лампы EL1 после подключения выключателем SA такой же ламы EL2? Какая из ламп после этого будет светиться ярче? Дано:  $R_1=X_2=R_3=X_4=200$  Ом; U=100 B.



- **8.** В трехфазную электрическую сеть с линейным напряжением 380 В включен трехфазный приемник. Дано: мощность фаз приемника:  $S_a$ =5,2 кВА;  $Q_B$ =4,5 кВАр;  $P_c$ =2,6 кВт;  $\phi_a$ = $\phi_b$ = $\phi_c$ =-60°. Изобразите схему замещения цепи. Определите все мощности трехфазного приемника, фазные токи и сопротивления фаз. Постройте векторную диаграмму.
- **9.** Трехфазный приемник потребляет из сети реактивную мощность Q=4,647 кВАр. Полные сопротивления фаз  $Z_a = Z_b = Z_c = 25$  Ом при  $\phi_a = \phi_b = \phi_c = -53,1^\circ$ . Изобразите схему замещения цепи. Определите комплексы фазных и линейных напряжений. Постройте векторную диаграмму.

**10.** На рисунке приведена принципиальная схема трехфазной цепи с несимметричной нагрузкой (при включении однофазных приемников). Дано: U=380 B; аргументы приемников  $\phi_a$ = 0°;  $\phi_b$ = 60°;  $\phi_c$ = 30°; показания амперметров  $I_{A1}$ =25 A;  $I_{A2}$ =10 A;  $I_{A3}$ =20 A. Определите показание  $I_{A4}$ , активные и реактивные с•протирнения фаз. Постройте векторную диаграмму.



### 7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Понятие электрической цепи. Ток, напряжение, ЭДС,
- 2. Мощность в цепи. Основные элементы электрической цепи.
- 3. Источники и приемники электрической энергии. Баланс мощностей.
- 4. Законы Ома и Кирхгофа.
- 5. Составление уравнений для расчета цепи постоянного тока на основе законов Кирхгофа (на примере).
- 6. Составление уравнений для расчета цепи постоянного тока методом контурных токов (на примере).
  - 7. Эквивалентные преобразования в электрических цепях.
- 8. Основные параметры синусоидального сигнала: амплитуда, частота, фаза. Среднее и действующее значения.
  - 9. Линейные элементы R, L, C в цепи синусоидального тока.
- 10. Последовательное соединение элементов R, L, C. Комплексное сопротивление.
  - 11. Векторные диаграммы. Активная, реактивная и полная мощность.
  - 12. Резонанс напряжений.
- 13. Трехфазная симметричная система ЭДС. Получение трехфазной системы ЭДС.
- 14. Схемы соединения трехфазных цепей. Линейные и фазные напряжения и токи.
- 15. Анализ переходных процессов в линейных электрических цепях. Основные понятия и определения.
  - 16. Законы коммутации.
  - 17. Свободные и принужденные составляющие переходного режима.

- 18. Расчет переходных процессов в линейной электрической цепи классическим методом.
  - 19. Операторный метод расчета переходных процессов.
- 20. Методы измерений электрических и магнитных величин. Погрешности измерений.
- 21. Принцип действия магнитоэлектрических, электромагнитных, электродинамических и электростатических приборов.
  - 22. Измерение токов, напряжений и мощностей.

### 7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Понятие электрической цепи. Ток, напряжение, ЭДС,
- 2. Мощность в цепи. Основные элементы электрической цепи.
- 3. Источники и приемники электрической энергии. Баланс мощностей.
- 4. Законы Ома и Кирхгофа.
- 5. Составление уравнений для расчета цепи постоянного тока на основе законов Кирхгофа (на примере).
- 6. Составление уравнений для расчета цепи постоянного тока методом контурных токов (на примере).
  - 7. Эквивалентные преобразования в электрических цепях.
- 8. Основные параметры синусоидального сигнала: амплитуда, частота, фаза. Среднее и действующее значения.
  - 9. Линейные элементы R, L, C в цепи синусоидального тока.
- 10. Последовательное соединение элементов R, L, C. Комплексное сопротивление.
  - 11. Векторные диаграммы. Активная, реактивная и полная мощность.
  - 12. Резонанс напряжений.
- 13. Трехфазная симметричная система ЭДС. Получение трехфазной системы ЭДС.
- 15. Схемы соединения трехфазных цепей. Линейные и фазные напряжения и токи.
- 16. Анализ переходных процессов в линейных электрических цепях. Основные понятия и определения.
  - 17. Законы коммутации
  - 18. Свободные и принужденные составляющие переходного режима.
- 19. Расчет переходных процессов в линейной электрической цепи классическим методом.
  - 20. Операторный метод расчета переходных процессов.
- 21. Трансформатор: устройство и принцип действия. Соотношения для токов и напряжений обмоток и числа витков.
- 22. Электрические машины постоянного и переменного тока. Синхронные и асинхронные двигатели и генераторы.
- 23. Методы измерений электрических и магнитных величин. Погрешности измерений.
  - 24. Принцип действия магнитоэлектрических, электромагнитных, элек-

тродинамических и электростатических приборов.

- 25. Измерение токов, напряжений и мощностей.
- 26. Собственная и примесная электропроводность полупроводников.
- 27. Выпрямительные диоды.
- 28. Стабилитроны.
- 29. Фотодиоды и светодиоды.
- 30. Тиристоры.
- 31. Структура и принцип действия биполярного транзистора.
- 32. Схемы включения биполярного транзистора.
- 33. Характеристики биполярного транзистора.
- 34. Полевые транзисторы: принцип действия, характеристики.
- 35. Структура источника питания электронных устройств.
- 36. Однофазный однополупериодный выпрямитель.
- 37. Однофазный мостовой выпрямитель.
- 38. Усилители постоянного и переменного тока.
- 39. Обратная связь в усилителях.
- 40. Однокаскадный усилитель напряжения.
- 41. Подходы к построению усилительных устройств.
- 42. Общие свойства устройств с операционными усилителями.
- 43. Основные виды линейных схем на основе операционных усилителей.
  - 44. Режимы возбуждения генератора. Условия самовозбуждения.
  - 45. *LC* генераторы.
  - 46. *RC*-генераторы.
- 47. Основные логические операции. Виды логических элементов. Таблицы истинности элементов И, ИЛИ, НЕ.
  - 48. Шифраторы и дешифраторы.
  - 49. Мультиплексоры и демультиплексоры.

# 7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация в 2 семестре проводится в форме Зачета по тест-билетам, каждый из которых содержит 5 вопросов, 5 стандартных задач и 5 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов — 15.

- 1. Оценка «Зачтено» ставится в случае, если студент набрал не менее 10 баллов.
- 2. Оценка «Незачтено» ставится, если студент набрал менее 9 баллов.

Промежуточная аттестация в 6 семестре проводится в форме экзамена по тест-билетам, каждый из которых содержит 5 вопросов, 5 стандартных задач и 5 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 2 баллами. Максимальное количество набранных баллов — 30.

Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 16 баллов.

- 1. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 16 до 20 баллов.
- 2. Оценка «Хорошо» ставится в случае, если студент набрал от 21 до 25 баллов.
- 3. Оценка «Отлично» ставится, если студент набрал от 26 до 30 баллов.

7.2.7 Паспорт оценочных материалов

| № п/п | Контролируемые разделы (темы) дисциплины                                      | Код контролируемо й компетенции | Наименование<br>оценочного средства                    |
|-------|-------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|
| 1     | Линейные электрические цепи по-<br>стоянного тока                             | ОПК-7                           | Тест, устный опрос, выполнение прак-<br>тических работ |
|       | Анализ периодических и переходных процессов в линейных цепях. Магнитные цепи. | ОПК-7                           | Тест, устный опрос, выполнение прак-<br>тических работ |
| 3     | Электрические измерения и приборы. Электрические машины и трансформаторы.     |                                 | Тест, устный опрос, защита лаборатор- ных работ        |
|       | Полупроводниковые элементы и основы микроэлектроники                          | ОПК-7                           | Тест, устный опрос                                     |
| 5     | Аналоговая схемотехника                                                       | ОПК-7                           | Тест, устный опрос, защита лаборатор- ных работ        |
| 6     | Цифровая схемотехника                                                         | ОПК-7                           | Тест, устный опрос                                     |

# 7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется

проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

### 8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

# 8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Кузовкин, В. А.Электротехника и электроника: учебник для бакалавров / В. А. Кузовкин, В. В. Филатов М.: Юрайт, 2013. 431 с.
- 2. Миловзоров, О. В. Электроника: учебник / О. В. Миловзоров, И. Г. Панков 3-е изд., стереотип. : Высш. шк., 2006. 288 с.
- 3. Попова, Т. В. Анализ линейных электрических цепей, электротехнических машин и аппаратов: лабораторный практикум: учеб. пособие / Т. В. Попова, Д. А. Тонн. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2016. 206 с.
- 4. Попова, Т. В. Расчет линейных электрических цепей, параметров и основных характеристик электротехнических машин и трансформаторов: практикум: учеб. пособие /Т.В. Попова, Д.А. Тонн. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2016. 99 с.
- 5. Миловзоров, О.В. Электроника: Учебник для бакалавров / О. В. Миловзоров, И. Г. Панков 5-е изд., перераб. и доп. М.: Юрайт, 2013. 407 с. (Бакалавр. Базовый курс).
- 6. Новожилов, О. П. Электротехника и электроника: Учебник / О. П. Новожилов М.: Гардарики, 2008. 653 с.
- 7. Иванов, И. И. Электротехника: Учеб. пособие / И. И. Иванов, Г. И. Соловьев Г.И.- 6-е изд., стереотип. СПб.; М.; Краснодар: Лань, 2009. 496 с.
- 8. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи: Учеб. для вузов / Л.А. Бессонов. 10-е изд. М.: Гардарики, 2002. 638 с.: ил.
- 9. Белов, Н.В. Электротехника и основы электроники [Электронный ресурс]: учебное пособие / Н.В. Белов, Ю.С. Волков. Электрон. дан. Санкт-Петербург: Лань, 2012. 432 с. Режим доступа: https://e.lanbook.com/book/3553.
- 10. Ермуратский, П. В. Электротехника и электроника [Электронный ресурс] : учебник / П. В. Ермуратский, Г. П. Лычкина, Ю. Б. Минкин. Электрон. дан. Москва: ДМК Пресс, 2011. 417 с. Режим доступа: https://e.lanbook.com/book/908.
- 11. Кравчук, Д.А. Электротехника и электроника [Электронный ресурс] : учебное пособие / Д.А. Кравчук, С.С. Снесарев. Электрон. дан. Ростов-на-Дону: ЮФУ, 2016. 100 с. Режим доступа: https://e.lanbook.com/book/114421.
- 12. Гордеев-Бургвиц, М.А. Общая электротехника и электроника [Электронный ресурс]: учебное пособие / Гордеев-Бургвиц М.А.— Электрон. текстовые данные.— М.: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2015.— 331 с.— Режим доступа:

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

### Лицензионное программное обеспечение

- 1. LibreOffice;
- 2. Microsoft Office Word 2013/2007;
- 3. Microsoft Office Excel 2013/2007;
- 4. Microsoft Office Power Point 2013/2007;
- 5. Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic;
  - 6. ABBYY FineReader 9.0.

### Ресурс информационно-телекоммуникационной сети «Интернет»

http://www.edu.ru/ Образовательный портал ВГТУ

### Информационная справочная система

- 1. http://window.edu.ru
- 2. https://wiki.cchgeu.ru/

### Современные профессиональные базы данных

### 1. Электротехника. Сайт об электротехнике

Адрес pecypca: https://electrono.ru

### 2. Электротехнический портал

http://электротехнический-портал.рф/

# 3. Силовая электроника для любителей и профессионалов

http://www.multikonelectronics.com/

### 4. Электроцентр

Адрес pecypca: http://electrocentr.info/

#### 5. Netelectro

Новости электротехники, оборудование и средства автоматизации. Информация о компаниях и выставках, статьи, объявления

Адрес pecypca: https://netelectro.ru/

#### 6. Marketelectro

Отраслевой электротехнический портал. Представлены новости отрасли

и компаний, объявления, статьи, информация о мероприятиях, фотогалерея, видеоматериалы, нормативы и стандарты, библиотека, электромаркетинг

Адрес pecypca: https://marketelectro.ru/

### 4. Электромеханика

Адрес pecypca: https://www.electromechanics.ru/

### 7. Electrical 4U

Разделы сайта: «Машины постоянного тока», «Трансформаторы», «Электротехника», «Справочник»

Адрес pecypca: https://www.electrical4u.com/

#### 8. All about circuits

Одно из самых крупных онлайн-сообществ в области электротехники. На сайте размещены статьи, форум, учебные материалы (учебные пособия, видеолекции, разработки, вебинары) и другая информация

Адрес pecypca: https://www.allaboutcircuits.com

### 9. Библиотека ООО «Электропоставка»

Адрес pecypca: https://elektropostavka.ru/library

### 10. Электрик

Адрес pecypca: http://www.electrik.org/

### 11. Чертижи.ru

Адрес pecypca: https://chertezhi.ru/

### 12. Электроспец

Адрес pecypca: http://www.elektrospets.ru/index.php

#### 13. Библиотека

Адрес pecypca: WWER http://lib.wwer.ru/

### 9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой (видеопроектор Epson). Специализированные лаборатории, оснащенные лабораторными стендами 144/3, 143/3, 139/3.

### 10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Электротехника и электроника» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета электрических и магнитных цепей, электротехнических и электронных устройств. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в

соответствии с методиками, приведенными в указаниях к выполнению работ.

Лабораторные работы направлены на приобретение практических навыков по исследованию и расчету, построению характеристик электротехнических и электронных устройств, построению и расчету, исследованию электрических цепей. Занятия проводятся путем проведения экспериментов и решению конкретных практических задач в аудитории.

| Вид учебных занятий                   | Деятельность студента                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Лекция                                | Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии. |  |
| Практическое<br>занятие               | Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.                                                                                                                                                                                                                                                                                                  |  |
| Лабораторная работа                   | Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.                                                                                                                              |  |
| Самостоятельная работа                | Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.                                                                       |  |
| Подготовка к промежуточной аттестации | Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.                                                                                                                                                                                                                                                                   |  |

### Лист регистрации изменений

| этиет регистрации изменении |                               |            |                  |  |
|-----------------------------|-------------------------------|------------|------------------|--|
|                             |                               |            | Подпись          |  |
| №                           |                               | Дата       | заведующего      |  |
| п/п                         | Перечень вносимых изменений   | внесения   | кафедрой,        |  |
| 11/11                       |                               | изменений  | ответственной за |  |
|                             |                               |            | реализацию ОПОП  |  |
| 1                           | Актуализирован раздел 8.2 в   | 30.08.2018 | 1                |  |
|                             | части состава используемого   |            | Mot-             |  |
|                             | лицензионного программного    |            | Д.Г. Жиляков     |  |
|                             | обеспечения, современных      |            |                  |  |
|                             | профессиональных баз данных и |            |                  |  |
|                             | справочных информационных     |            |                  |  |
|                             | систем                        |            |                  |  |
| 2                           | Актуализирован раздел 8.2 в   | 31.08.2019 |                  |  |
|                             | части состава используемого   |            | Pl               |  |
|                             | лицензионного программного    |            |                  |  |
|                             | обеспечения, современных      |            | В.Ф. Селиванов   |  |
|                             | профессиональных баз данных и |            |                  |  |
|                             | справочных информационных     |            |                  |  |
|                             | систем                        |            |                  |  |
| 3                           | Актуализирован раздел 8.2 в   | 31.08.2020 |                  |  |
|                             | части состава используемого   |            | P/               |  |
|                             | лицензионного программного    | ,          | Clar             |  |
|                             | обеспечения, современных      |            | В.Ф. Селиванов   |  |
|                             | профессиональных баз данных и |            |                  |  |
|                             | справочных информационных     |            | `                |  |
|                             | систем                        |            |                  |  |
|                             |                               |            |                  |  |