МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

скан факультета энергетики

и систем управления

/ Бурковский А.В./

03-2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Тепломассообменное оборудование предприятий»

Направление подготовки 13.03.01 Теплоэнергетика и теплотехника

Профиль Промышленная теплоэнергетика

Квалификация выпускника бакалавр

Нормативный период обучения <u>4 года / 4 года и 6 м. / 4 года и 11 м.</u>

Форма обучения очная / очно-заочная / заочная

Год начала подготовки 2024

Автор программы Заведующий кафедрой

Теоретической и

промышленной

теплоэнергетики

Руководитель ОПОП

/Портнов В.В./

/Портнов В.В./

/ Дахин С.В./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Целями изучения дисциплины являются:

- знакомство с основными конструкциями аппаратного оформления тепломассообменных процессов;
- овладение инженерными методиками теплотехнологических расчетов процессов и аппаратов;
- получение навыков по методам выбора и проверки основного и вспомогательного оборудования промышленных тепломассообменных аппаратов

1.2. Задачи освоения дисциплины

Задачами освоения дисциплины являются:

- приобретение инженерных навыков в теплотехнологических расчетах промышленной тепломассообменной аппаратуры;
 - формирование у студентов знаний теплотехнической терминологии;
- развитие у обучаемых способности к самостоятельному ориентированию в нормативной и справочной документации при расчетах и проектировании тепломассообменных устройств

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Тепломассообменное оборудование предприятий» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Тепломассообменное оборудование предприятий» направлен на формирование следующих компетенций:

ПК-1 - Способен к обеспечению эффективной эксплуатации и модернизации энергетического и теплотехнологического оборудования

ПК-3 - Способен проводить расчеты энергетического и теплотехнического оборудования по типовым методикам

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-1	знать основные типы, конструкции и
	технологические схемы тепломассообменного
	оборудования
	уметь разбираться в процессах, протекающих в
	изученном оборудовании

	владеть навыками работы с нормативной и справочной документацией
ПК-3	знать методы выбора, расчета и оптимизации тепломассообменного оборудования
	уметь проводить инженерные расчеты энергетического оборудования
	владеть навыками расчета тепломассообменного оборудования

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Тепломассообменное оборудование предприятий» составляет 8 з.е.

Распределение трудоемкости дисциплины по видам занятий **очная форма обучения**

Виды учебной работы		Семестры		
Биды учеоной рассты	часов	6	7	
Аудиторные занятия (всего)	108	72	36	
В том числе:				
Лекции	54	36	18	
Практические занятия (ПЗ)	36	18	18	
Лабораторные работы (ЛР)	18	18	-	
Самостоятельная работа	135	36	99	
Курсовой проект	+		+	
Часы на контроль	45	1	45	
Виды промежуточной аттестации -	+	+	+	
экзамен, зачет с оценкой	Т	Т	T	
Общая трудоемкость:				
академические часы	288	108	180	
зач.ед.	8	3	5	

очно-заочная форма обучения

Decree and first as forms	Всего	Семе	стры
Виды учебной работы	часов	7	8
Аудиторные занятия (всего)	76	48	28
В том числе:			
Лекции	30	16	14
Практические занятия (ПЗ)	30	16	14
Лабораторные работы (ЛР)	16	16	-
Самостоятельная работа	167	96	71
Курсовой проект	+		+
Часы на контроль	45	-	45
Виды промежуточной аттестации -		1	
экзамен, зачет с оценкой	+	+	+
Общая трудоемкость:			

академические часы	288	144	144
зач.ед.	8	4	4

заочная форма обучения

Виды учебной работы		Семес	стры
Биды учеоной расоты	часов	6	7
Аудиторные занятия (всего)	24	8	16
В том числе:			
Лекции	8	2	6
Практические занятия (ПЗ)	8	2	6
Лабораторные работы (ЛР)	8	4	4
Самостоятельная работа	251	96	155
Курсовой проект	+		+
Часы на контроль	13	4	9
Виды промежуточной аттестации -			
экзамен, зачет с оценкой	+	+	+
Общая трудоемкость:			
академические часы	288	108	180
зач.ед.	8	3	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Основные виды промышленных тепломассообменных процессов, аппаратов и установок	Теплотехнологические схемы, процессы, аппараты, установки. Классификация тепломассообменных процессов и аппаратов. Основные процессы: нагревание, охлаждение, испарение, конденсация, выпаривание, сублимация, плавление, сушка, разделение, ректификация, дистилляция; их теплофизическая сущность, основные принципы расчета. Теплообменные аппараты и их классификация - по процессам теплообмена, по времени действия, по назначению. Теплообменные и тепломассообменные установки: подогревательные, конденсационные; выпарные, опреснительные, дистилляционные, сушильные	8	4	4	18	34

				I	ı		
		и др. Теплоносители: основные					
1		свойства и области					
		рационального применения:					
1		водяной пар, вода, дымовые					
		газы, высоко- и					
1		низкотемпературные					
		теплоносители.					
2	Рекуперативные и	Конструкции наиболее					
	регенеративные	распространенных типов					
	теплообменные	рекуперативных ТОА -					
	аппараты	трубчатых, кожухотрубных,					
	•	пластинчатых, спиральных,					
		матричных. Их основные					
		элементы и узлы.					
		Конструктивный и поверочный					
		тепловые расчеты ТОА.					
		Гидравлический расчет ТОА.					
		Расчет ТОА с использование					
		ЭВМ. Совершенствование ТОА					
		на базе их математического					
		моделирования. Понятие о					
		технико-экономической					
		оптимизации ТОА. Критерий					
		оптимизации, параметр					
		оптимизации, целевая функция.					
		Решение задач оптимизации на ЭВМ. ТОА с развитыми					
		1					
		поверхностями теплообмена.	0			10	2.4
		Способы изготовления и	8	4	4	18	34
		особенности расчета.					
		Рекуперативные ТОА					
		периодического действия, их					
		тепловой расчет, графики					
		температур и тепловой					
		нагрузки. Тепловой расчет					
		водонагревателей-					
		аккумуляторов с паровым и					
		водяным обогревом.					
		Регенеративные ТОА. Аппараты					
		с неподвижной и					
		перемещающейся насадкой.					
		Аппараты с кипящим слоем: с					
		активной насадкой и					
		контактные. Особенности					
		теплообмена, температурные					
		режимы и поле температур.					
		Тепловой расчет					
		регенеративных ТОА. Методика					
		теплового расчета ТОА с					
		кипящим слоем.					
3	Дистилляционные	и Общие сведения о перегонке и					
	ректификационные	ректификации. Физико-					
	установки	химические свойства бинарных					
		смесей. Особенности процессов	8	4	2	20	34
		кипения и конденсации					
		бинарных смесей. Азеотропные					
		смеси. Дистилляция. Диаграмма					
Щ	<u> </u>	омест. дистиплиция. диаграмма		<u> </u>	l		

		1		1	1	1	1
		состояния t-x,y и диаграмма					
		равновесия у-х для бинарных					
		смесей. Процессы в					
		ректификационных установках					
		и их изображение на t-x,y и y-x					
		диаграммах. Дефлегмация и					
		сепарация. Схемы					
		ректификационных установок					
		· · ·					
		*					
		Конструкции тарельчатых,					
		ситчатых и насадочных колонн.					
		Определение числа тарелок в					
		колонне. Влияние флегмового					
		числа на экономику при					
		проектировании и эксплуатации					
		колонны. Выбор оптимального					
		флегмового числа. Тепловой					
		баланс ректификационных					
		установок. Определение					
		расхода пара и охлаждающей					
		воды на работу					
		ректификационных установок					
		непрерывного действия.					
4	Выпарные установки	Физические основы процессов					
	1 3	выпаривания. Свойства водяных					
		растворов. Классификация и					
		конструкции выпарных					
		аппаратов. Сепараторы и					
		брызгооотделители, выбор их					
		основных размеров. Схемы					
		многоступенчатых выпарных					
		установок (МВУ)					
		поверхностного типа:					
		прямоточные, противоточные,					
		смешанные, непрерывного и					
		периодического действия; с					
		конденсатором, с					
		противодавлением, с					
		ухудшенным вакуумом.					
		Материальный баланс процесса	8	6	2	20	36
		выпаривания. Определение				20	50
		количества выпаренной воды и					
		количества выпаренной воды и концентрации раствора.					
		Тепловой расчет МВУ.					
		1					
		•					
		разности температур. Технико- экономические показатели					
		•					
		числа ступеней для МВУ.					
		Схемы подогрева раствора,					
		применяемого на МВУ.					
		Оптимальное число ступеней					
		подогрева. Рациональные схемы					
		использования вторичного					
		тепла. Выпарные аппараты с					
I		погружными горелками.					

		Адиабатные выпарные					
		аппараты. Кристаллизаторы.					
5	Сушильные установки	Назначение и виды					
		обезвоживания. Область					
		применения сушки. Свойства					
		влажных материалов как					
		объектов сушки. Общие					
		сведения о процессах сушки.					
		Кинетика сушки. Динамика					
		сушки. Конвективная сушка.					
		Теплотехнологические схемы	8	6	2	20	36
		сушильных установок.					
		Аппаратно-технологическое					
		оформление процессов сушки.					
		Сушка жидкотекучих, твердых,					
		дисперсных и ленточных					
		материалов. Сушка ТВЧ и					
		сублимационные сушильные					
		установки.					
6	Смесительные	Технологические процессы и					
	тепломассообменные	установки с					
	аппараты	тепломассообменом. Движущая					
		сила массообменных процессов.					
		H - d - диаграмма влажного					
		воздуха и процессы на ней.					
		Смесительные теплообменные					
		аппараты и установки:					
		конденсаторы смешения,	8	6	2	20	36
		скрубберы полые и насадочные,					
		градирни. Методы и алгоритмы					
		расчета аппаратов. Процессы в					
		скрубберах и из изображение на					
		H - d - диаграмме. Методика					
		определения конечных					
		температур и температурного					
		напора в скрубберах.					
7	Холодильные установки	Классификация установок для					
	-	трансформации теплоты и					
		области их применения.					
		Термодинамические основы					
		получения искусственного					
		холода. Хладагенты и					
		хладоносители. Сравнительные					
		характеристики холодильных					
		установок. Компрессионные	6	6	2	19	33
		холодильные установки и их					
		элементы, методы теплового					
		расчета. Абсорбционные					
		холодильные установки.					
		Газовые холодильные					
		установки. Пароэжекторные ХУ					
		и их элементы; область					
		применения.					
		Итого	54	36	18	135	243

очно-заочная форма обучения

№ Наименование темы Содержание раздела Лен	екц Прак зан.	Лаб. зан.	CPC	Всего, час
--	---------------	--------------	-----	---------------

1	Основные виды	Теплотехнологические схемы,					
	промышленных	процессы, аппараты, установки.					
	тепломассообменных	Классификация					
	процессов, аппаратов и	тепломассообменных процессов					
	установок	и аппаратов. Основные					
	y oranio zen	процессы: нагревание,					
		охлаждение, испарение,					
		конденсация, выпаривание,					
		сублимация, плавление, сушка,					
		разделение, ректификация,					
		дистилляция; их					
		теплофизическая сущность,					
		основные принципы расчета.					
		Теплообменные аппараты и их					
		классификация - по процессам					
		теплообмена, по времени	6	4	4	24	38
		действия, по назначению.	U	4	4	24	36
		Теплообменные и					
		тепломассообменные					
		установки: подогревательные,					
		конденсационные и					
		холодильные; выпарные,					
		опреснительные,					
		дистилляционные,					
		ректификационные, сушильные					
		и др. Теплоносители: основные					
		свойства и области					
		рационального применения:					
		водяной пар, вода, дымовые					
		газы, высоко- и					
		низкотемпературные теплоносители.					
2	Рекуперативные и	Конструкции наиболее					
_	регенеративные	распространенных типов					
	теплообменные	рекуперативных ТОА -					
	аппараты	трубчатых, кожухотрубных,					
	umapu121	пластинчатых, спиральных,					
		матричных. Их основные					
		элементы и узлы.					
		Конструктивный и поверочный					
		тепловые расчеты ТОА.					
		Гидравлический расчет ТОА.					
		Расчет ТОА с использование					
		ЭВМ. Совершенствование ТОА					
		на базе их математического	4	4	2	24	34
		моделирования. Понятие о					
		технико-экономической					
		оптимизации ТОА. Критерий					
		оптимизации, параметр					
		оптимизации, целевая функция.					
		Решение задач оптимизации на					
		ЭВМ. ТОА с развитыми					
		поверхностями теплообмена.					
		Способы изготовления и					
		особенности расчета.					
		Рекуперативные ТОА					
		периодического действия, их					

			1				
		тепловой расчет, графики					
		температур и тепловой					
		нагрузки. Тепловой расчет					
		водонагревателей-					
	аккумуляторов с паровым и						
		водяным обогревом.					
		Регенеративные ТОА.					
		Аппараты с неподвижной и					
		перемещающейся насадкой.					
		Аппараты с кипящим слоем: с					
		активной насадкой и					
		активной насадкой и контактные. Особенности					
		теплообмена, температурные					
		режимы и поле температур.					
		Тепловой расчет					
		регенеративных ТОА.					
		Методика теплового расчета					
		ТОА с кипящим слоем.					
3	Дистилляционные и	, , , , ,					
	ректификационные	ректификации. Физико-					
	установки	химические свойства бинарных					
		смесей. Особенности процессов					
		кипения и конденсации					
		бинарных смесей. Азеотропные					
		смеси. Дистилляция. Диаграмма					
		состояния t-х,у и диаграмма					
		равновесия у-х для бинарных					
		смесей. Процессы в					
		ректификационных установках					
		и их изображение на t-x,y и y-x					
		-					
		диаграммах. Дефлегмация и					
		сепарация. Схемы					
		ректификационных установок	4	4	2	24	34
		для бинарных смесей.					
		Конструкции тарельчатых,					
		ситчатых и насадочных колонн.					
		Определение числа тарелок в					
		колонне. Влияние флегмового					
		числа на экономику при					
		проектировании и эксплуатации					
		колонны. Выбор оптимального					
		флегмового числа. Тепловой					
		баланс ректификационных					
		установок. Определение					
		расхода пара и охлаждающей					
		воды на работу					
		ректификационных установок					
		непрерывного действия.					
4	Выпарные установки	Физические основы процессов					
	ZZIII PIIDIO JOI WIIODKII	выпаривания. Свойства					
		водяных растворов.					
		Классификация и конструкции					
			4	4	2	24	34
		выпарных аппаратов.	7	7		24	J -1
		Сепараторы и					
		брызгооотделители, выбор их					
		основных размеров. Схемы					
1		многоступенчатых выпарных					

					1		1
		установок (МВУ)					
		поверхностного типа:					
		прямоточные, противоточные,					
		смешанные, непрерывного и					
		периодического действия; с					
		конденсатором, с					
		противодавлением, с					
		ухудшенным вакуумом.					
		Материальный баланс процесса					
		выпаривания. Определение					
		количества выпаренной воды и					
		концентрации раствора.					
		Тепловой расчет МВУ.					
		располагаемая и полезная					
		разности температур. Технико-					
		экономические показатели					
		МВУ. Выбор оптимального					
		числа ступеней для МВУ.					
		Схемы подогрева раствора,					
		применяемого на МВУ.					
		Оптимальное число ступеней					
		подогрева. Рациональные					
		схемы использования					
		вторичного тепла. Выпарные					
		аппараты с погружными					
		горелками. Адиабатные					
		выпарные аппараты.					
		Кристаллизаторы.					
5	Сушильные установки	Назначение и виды					
		обезвоживания. Область					
		применения сушки. Свойства					
		влажных материалов как					
		объектов сушки. Общие					
		сведения о процессах сушки.					
		Кинетика сушки. Динамика					
		сушки. Конвективная сушка.					
		Теплотехнологические схемы	4	4	2	24	34
		сушильных установок.					
		Аппаратно-технологическое					
		оформление процессов сушки.					
		Сушка жидкотекучих, твердых,					
		дисперсных и ленточных					
		материалов. Сушка ТВЧ и					
		сублимационные сушильные					
		установки.					
6	Смесительные	Технологические процессы и					
	тепломассообменные	установки с					
	аппараты	тепломассообменом. Движущая					
		сила массообменных процессов.					
		H - d - диаграмма влажного					
		воздуха и процессы на ней.	4	4	2	24	34
		Смесительные теплообменные			_		
		аппараты и установки:					
		конденсаторы смешения,					
		скрубберы полые и насадочные,					
		градирни. Методы и алгоритмы					
		расчета аппаратов. Процессы в					

		скрубберах и из изображение на					
		H - d - диаграмме. Методика					
		определения конечных					
		температур и температурного					
		напора в скрубберах.					
7	Холодильные установки	Классификация установок для					
		трансформации теплоты и					
		области их применения.					
		Термодинамические основы					
		получения искусственного					
		холода. Хладагенты и					
		хладоносители. Сравнительные					
		характеристики холодильных					
		установок. Компрессионные	4	6	2	23	35
		холодильные установки и их					
		элементы, методы теплового					
		расчета. Абсорбционные					
		холодильные установки.					
		Газовые холодильные					
		установки. Пароэжекторные ХУ					
		и их элементы; область					
		применения.					
		Итого	30	30	16	167	243

заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Основные виды	Теплотехнологические схемы,					
	промышленных	процессы, аппараты, установки.					
	тепломассообменных	Классификация					
	процессов, аппаратов и	тепломассообменных процессов					
	установок	и аппаратов. Основные					
		процессы: нагревание,					
		охлаждение, испарение,					
		конденсация, выпаривание,					
		сублимация, плавление, сушка,					
		разделение, ректификация,					
		дистилляция; их					
		теплофизическая сущность,					
		основные принципы расчета.					
		Теплообменные аппараты и их					
		классификация - по процессам	2	_	2	36	40
		теплообмена, по времени					
		действия, по назначению.					
		Теплообменные и					
		тепломассообменные					
		установки: подогревательные,					
		конденсационные и					
		холодильные; выпарные,					
		опреснительные,					
		дистилляционные,					
		ректификационные, сушильные					
		и др. Теплоносители: основные свойства и области					
		рационального применения: водяной пар, вода, дымовые					
		газы, высоко- и					

		низиотемпературни је					
		низкотемпературные теплоносители.					
2	Ракупаратири на н						
-	Рекуперативные и регенеративные	Конструкции наиболее распространенных типов					
	теплообменные	рекуперативных ТОА -					
	аппараты	трубчатых, кожухотрубных,					
	аппараты	пластинчатых, спиральных,					
		матричных. Их основные					
		элементы и узлы.					
		Конструктивный и поверочный					
		тепловые расчеты ТОА.					
		Гидравлический расчет ТОА.					
		Расчет ТОА с использование					
		ЭВМ. Совершенствование ТОА					
		на базе их математического					
		моделирования. Понятие о					
		технико-экономической					
		оптимизации ТОА. Критерий					
		оптимизации, параметр					
		оптимизации, целевая функция.					
		Решение задач оптимизации на					
		ЭВМ. ТОА с развитыми					
		поверхностями теплообмена.					
		Способы изготовления и	2	_	2	36	40
		особенности расчета.			_		
		Рекуперативные ТОА					
		периодического действия, их					
		тепловой расчет, графики					
		температур и тепловой					
		нагрузки. Тепловой расчет					
		водонагревателей-					
		аккумуляторов с паровым и					
		водяным обогревом.					
		Регенеративные ТОА.					
		Аппараты с неподвижной и					
		перемещающейся насадкой.					
		Аппараты с кипящим слоем: с					
		активной насадкой и					
		контактные. Особенности					
		теплообмена, температурные					
		режимы и поле температур.					
		Тепловой расчет					
		регенеративных ТОА.					
		Методика теплового расчета					
2	п	ТОА с кипящим слоем.					
3	Дистилляционные и	, , , , , , , , , , , , , , , , , , , ,					
	ректификационные	ректификации. Физико-					
	установки	химические свойства бинарных					
		смесей. Особенности процессов					
		кипения и конденсации					
		бинарных смесей. Азеотропные	2	-	2	36	40
		смеси. Дистилляция. Диаграмма					
		состояния t-х,у и диаграмма					
		равновесия у-х для бинарных смесей. Процессы в					
		ректификационных установках					
		и их изображение на t-х,у и у-х					
Щ		п пл поображение на t-х,у и у-х	j				

		_					
		диаграммах. Дефлегмация и					
		сепарация. Схемы					
		ректификационных установок					
		для бинарных смесей.					
		Конструкции тарельчатых,					
		ситчатых и насадочных колонн.					
		Определение числа тарелок в					
		колонне. Влияние флегмового					
		числа на экономику при					
		проектировании и эксплуатации					
		колонны. Выбор оптимального					
		-					
		флегмового числа. Тепловой					
		баланс ректификационных					
		установок. Определение					
		расхода пара и охлаждающей					
		воды на работу					
		ректификационных установок					
		непрерывного действия.					
4	Выпарные установки	Физические основы процессов					
		выпаривания. Свойства					
		водяных растворов.					
		Классификация и конструкции					
		выпарных аппаратов.					
		Сепараторы и					
		брызгооотделители, выбор их					
		основных размеров. Схемы					
		многоступенчатых выпарных					
		установок (МВУ)					
		поверхностного типа:					
		прямоточные, противоточные,					
		смешанные, непрерывного и					
		периодического действия; с					
		конденсатором, с					
		•					
		противодавлением, с					
		ухудшенным вакуумом.					
		Материальный баланс процесса			2	2.5	40
		выпаривания. Определение	2	2	2	36	42
		количества выпаренной воды и					
		концентрации раствора.					
		Тепловой расчет МВУ.					
		располагаемая и полезная					
		разности температур. Технико-					
		экономические показатели					
		МВУ. Выбор оптимального					
		числа ступеней для МВУ.					
		Схемы подогрева раствора,					
		применяемого на МВУ.					
		Оптимальное число ступеней					
		подогрева. Рациональные					
		схемы использования					
		вторичного тепла. Выпарные					
		аппараты с погружными					
		горелками. Адиабатные					
		выпарные аппараты.					
		Кристаллизаторы.					
5	Сушильные установки	Назначение и виды					
	сушильные установки	обезвоживания. Область	-	2	-	36	38
L		оосэвоживанил. Ооластв					

		холодильные установки. Газовые холодильные					
		расчета. Аосороционные холодильные установки.					
		элементы, методы теплового расчета. Абсорбционные					
		холодильные установки и их					
		установок. Компрессионные	-	2	-	35	37
		характеристики холодильных		_		2.5	25
		хладоносители. Сравнительные					
		холода. Хладагенты и					
		получения искусственного					
		Термодинамические основы					
		области их применения.					
	J Turiobkii	трансформации теплоты и					
7	Холодильные установки	Классификация установок для					
		напора в скрубберах.					
		определения конечных температур и температурного					
		H - d - диаграмме. Методика					
		скрубберах и из изображение на					
		расчета аппаратов. Процессы в					
		градирни. Методы и алгоритмы					
		скрубберы полые и насадочные,					
		конденсаторы смешения,	-	2	-	36	38
		аппараты и установки:					
		Смесительные теплообменные					
		воздуха и процессы на ней.					
		H - d - диаграмма влажного					
	1	сила массообменных процессов.					
	аппараты	тепломассообменом. Движущая					
	тепломассообменные	установки с					
6	Смесительные	Технологические процессы и					
		установки.					
		материалов. Сушка ТВЧ и сублимационные сушильные					
		дисперсных и ленточных					
		Сушка жидкотекучих, твердых,					
		оформление процессов сушки.			Į.		
		Аппаратно-технологическое					
		сушильных установок.			Į.		
		Теплотехнологические схемы					
		сушки. Конвективная сушка.			Į.		
		Кинетика сушки. Динамика					
		сведения о процессах сушки.					
		влажных материалов как объектов сушки. Общие					
		применения сушки. Свойства					1

5.2 Перечень лабораторных работ

Лабораторная работа №1 Изучение конструкции и исследование режимов работы горизонтального пароводяного подогревателя

Лабораторная работа №2 Изучение конструкции и исследование режимов работы горизонтального водоводяного подогревателя

Лабораторная работа №3 Определение оптимального флегмового числа ректификационной колонны непрерывного действия

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта в 7 семестре для очной формы обучения, в 8 семестре для очно-заочной формы обучения, в 7 семестре для заочной формы обучения.

Примерная тематика курсового проекта: «Расчет многоступенчатой выпарной установки»

Задачи, решаемые при выполнении курсового проекта:

- определение оптимального количества ступеней выпаривания;
- распределение концентрации раствора и параметров греющего, вторичного паров и раствора по ступеням;
- определение площади поверхности теплообмена выпарных аппаратов в каждой ступени;
 - определение расхода греющего пара первой ступени.

Курсовой проект включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	знать основные типы,	Активная работа на	Выполнение работ	Невыполнение
	конструкции и	практических и	в срок,	работ в срок,
	технологические схемы	лабораторных занятиях,	предусмотренный в	предусмотренный
	тепломассообменного	правильные отвечает на	рабочих	в рабочих
	оборудования	теоретические вопросы	программах	программах
		при защите лабораторных		
		работ и курсового проекта		

	уметь разбираться в	Правильные ответы на	Выполнение работ	Невыполнение
	процессах,	практических занятиях,	в срок,	работ в срок,
	протекающих в	правильное выполнение	предусмотренный в	предусмотренный
	изученном	лабораторных работ	рабочих	в рабочих
	оборудовании		программах	программах
	владеть навыками	Правильное выполнение	Выполнение работ	Невыполнение
	работы с нормативной и	курсового проекта и	в срок,	работ в срок,
	справочной	заданий на	предусмотренный в	предусмотренный
	документацией	самостоятельную	рабочих	в рабочих
		подготовку	программах	программах
ПК-3	знать методы выбора,	Правильное выполнение	Выполнение работ	Невыполнение
	расчета и оптимизации	лабораторных работ,	в срок,	работ в срок,
	тепломассообменного	расчет курсового проекта	предусмотренный в	предусмотренный
	оборудования		рабочих	в рабочих
			программах	программах
	уметь проводить	Решение задач на	Выполнение работ	Невыполнение
	инженерные расчеты	практических занятиях	в срок,	работ в срок,
	энергетического		предусмотренный в	предусмотренный
	оборудования		рабочих	в рабочих
			программах	программах
	владеть навыками	Правильное решение	Выполнение работ	Невыполнение
	расчета	задач на практических	в срок,	работ в срок,
	тепломассообменного	занятиях, расчет и	предусмотренный в	предусмотренный
	оборудования	оформление курсового	рабочих	в рабочих
		проекта	программах	программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6, 7 семестре для очной формы обучения, 7, 8 семестре для очно-заочной формы обучения, 6, 7 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неуловлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-1	знать основные типы, конструкции и технологические схемы тепломассообменного оборудования		Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	уметь разбираться в процессах, протекающих в изученном оборудовании	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	владеть навыками работы с нормативной и справочной документацией	Тест	Выполнение теста на 90-100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов

ПК-3	знать методы выбора, расчета и оптимизации тепломассообменного оборудования		Выполнение теста на 90-100%	Выполнение теста на 80- 90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	уметь проводить инженерные расчеты энергетического оборудования	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	владеть навыками расчета тепломассообменного оборудования	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Непрерывный теплообмен между двумя теплоносителями через разделяющую непроницаемую поверхность происходит в
 - 1. Регенеративных ТОА
 - 2. Рекуперативных ТОА
 - 3. Смесительных ТОА
 - 4. Правильного ответа нет
- 2. Теплообмен между двумя теплоносителями при поочередном омывании одной и той же поверхности происходит в
 - 1. Рекуперативных ТОА
 - 2. Регенеративных ТОА
 - 3. Смесительных ТОА
 - 4. Правильного ответа нет
- 3. Из перечисленных теплоносителей практически невозможно транспортировать:
 - 1. Водяной пар
 - 2. Горячая вода
 - 3. Дымовые газы
 - 4. Правильного ответа нет
- 4. Из перечисленных теплоносителей возможностью транспортировки на самые большие расстояния обладает:
 - 1. Водяной пар
 - 2. Горячая вода
 - 3. Дымовые газы
 - 4. Низкотемпературные теплоносители
- 5. Среди всех конструкций рекуперативных ТОА применяются во всем возможном диапазоне давлений и температур теплоносителей
 - 1. Кожухотрубные
 - 2. Спиральные
 - 3. Пластинчатые

- 6. Площадь проходного сечения межтрубного пространства в кожухотрубных ТОА по сравнению с площадью проходного сечения в трубном пространстве:
 - 1. Больше в 2,5-3 раза
 - 2. Меньше в 2,5-3 раза
 - 3. Приблизительно одинаковы
 - 7. Спиральные ТОА по сравнению с кожухотрубными ТОА обладают
 - 1. Повышенной прочностью
 - 2. Повышенным гидравлическим сопротивлением
 - 3. Повышенной компактностью
 - 4. Правильного ответа нет
- 8. Площадь поверхности теплообмена рекуперативного ТОА определяют в результате
 - 1. Теплового конструктивного расчета
 - 2. Теплового проверочного расчета
 - 3. Компоновочного расчета
 - 4. Прочностного расчета
- 9. Дополнительное перемешивание потока теплоносителя при движении в изогнутом канале под действием центробежной силы это
 - 1. Рециркуляция
 - 2. Вторичная циркуляция
 - 3. Турбулизация
 - 4. Правильного ответа нет
 - 10. Компоновкой трубного пучка называется
 - 1. Расположение труб на трубной решетке
- 2. Ориентация трубного пучка относительно потока теплоносителя
 - 3. Размещение перегородок в межтрубном пространстве
 - 4. Размещение перегородок в крышках ТОА

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Оценить площадь поверхности теплообменного аппарата по рекомендуемым значениям коэффициентов теплоотдачи.
- 2. Найти теплопроизводительность теплообменного аппарата по известному тепловому балансу.
 - 3. Определить коэффициент оребрения по геометрии ребер.
- 4. Определить коэффициент теплоотдачи со стороны оребренной и неоребренной поверхности.
- 5. Найти КПД ребра по известным характеристикам ребер и коэффициенту теплоотдачи.
- 6. Определить требуемую мощность на прокачку теплоносителя в теплообменном аппарате.

- 7. Найти конечное влагосодержание (либо температуру газа) в смесительном теплообменнике из его теплового баланса, считая газ на выходе полностью насышенным.
- 8. Найти количество вторичного пара (либо крепкого раствора) в выпарной установке по ступеням.
 - 9. Определить время сушки материала в первом периоде.
 - 10. Определить время сушки материала во втором периоде.
 - 7.2.3 Примерный перечень заданий для решения прикладных задач
- 1. Расположите теплоносители в порядке возрастания возможной дальности их транспортировки

Тип вопроса: 3. Установить последовательность ответов

- 1. Дымовые газы
- 2. Водяной пар
- 3. Горячая вода
- 2. Какая конструкция рекуперативных теплообменных аппаратов позволяет изменять площадь поверхности теплообмена путем разборки аппарата?

Тип вопроса: 1. Выбор единственно правильного ответа

- 1. Кожухотрубный
- 2. Секционный
- 3. Спиральный
- 4. Пластинчатый
- 3. Расставьте соответствия между видами расчетов при проектировании рекуперативных теплообменных аппаратов и их результатами

Тип вопроса: 4. Установить соответствия ответов

Вариантов ответов:

- 1. Тепловой конструктивный
- 2. Тепловой проверочный
- 3. Гидравлический
- 4. Прочностной

Вариантов соответствий:

- А. Конечные температуры теплоносителей
- В. Мощность нагнетателя для прокачки теплоносителя
- С. Минимально допустимые геометрические размеры элементов аппарата
 - D. Площадь поверхности теплообмена

4. Какие уравнения лежат в основе теплового расчета рекуперативных теплообменных аппаратов?

Тип вопроса: 2. Выбор возможных правильных ответов

- 1. Уравнение теплопередачи
- 2. Уравнение материального баланса
- 3. Уравнение теплого баланса
- 4. Уравнение Вейсбаха-Дарси
- 5. Какая схема движения теплоносителей применяется в рекуперативных теплообменных аппаратах когда хотя бы один из теплоносителей изменяет свое агрегатное состояние?

Тип вопроса: 1. Выбор единственно правильного ответа

- 1. Прямоток
- 2. Противоток
- 3. Смешанный ток
- 4. Выбор схемы не имеет значения
- 6. В межтрубном пространстве кожухотрубных теплообменных аппаратов применяют перегородки с целью

Тип вопроса: 2. Выбор возможных правильных ответов

- 1. Увеличения скорости теплоносителя
- 2. Удлинения пути теплоносителя
- 3. Перевод омывания из продольного в поперечно-продольное
- 4. Повышения компактности теплообменного аппарата
- 7. Из каких соображений выбирают размеры и расстояние между перегородками в межтрубном пространстве кожухотрубных теплообменных аппаратов

Тип вопроса: 1. Выбор единственно правильного ответа

- 1. Минимальные гидравлические потери при течении теплоносителей
 - 2. Минимальная площадь поверхности теплообмена
- 3. Равенство скоростей теплоносителя во всех критических местах
 - 4. Повышения степени турбулизации потока
- 8. Применение оребрения в кожухотрубных теплообменниках позволяет

Тип вопроса: 2. Выбор возможных правильных ответов

- 1. Увеличить тепловой поток со стороны оребрения при заданной температуре стенки
 - 2. Снизить температуру стенки при заданном тепловом потоке
- 3. Существенно увеличить интенсивность теплообмена со стороны оребрения
 - 4. Снизить гидравлические потери
- 9. Приведенный коэффициент теплоотдачи со стороны оребернной стенки в кожухотрубных теплообменниках учитывает

Тип вопроса: 2. Выбор возможных правильных ответов

- 1. Стационарный конвективный теплообмен на поверхности ребра
- 3. Нестационарные процессы распространения тепла по длине и сечению ребра
- 4. Повышение скорости теплоносителя в промежутке между ребрами
 - 5. Снижение площади поверхности неоребренной стенки
- 10. Причиной перегрева поверхности нагрева при пленочном режиме кипения теплоносителей является

Тип вопроса: 1. Выбор единственно правильного ответа

- 1. Резкое снижение скорости теплоносителя
- 2. Низкий коэффициент теплоотдачи от поверхности к пару
- 3. Резкое снижение вязкости теплоносителя
- 4. Резкое повышение плотности теплового потока

7.2.4 Примерный перечень вопросов для подготовки к зачету

Не предусмотрено учебным планом

7.2.5 Примерный перечень заданий для подготовки к экзамену

- 1. Характеристика основных теплоносителей, используемых в промышленности.
- 2. Основные конструкции рекуперативных теплообменных аппаратов.
 - 3. Основные расчеты при проектировании ТОА. Оптимизация
- 4. Компоновка трубного пучка в рекуперативных ТОА. Коридорный и шахматный пучки. Расчет теплообмена на поверхности пучка.
- 5. Перегородки в межтрубном пространстве рекуперативных ТОА. Конструкции. Варианты установки.
- 6. Оребрение. Конструкции оребренных труб. Методы расчета теплообмена при оребрении

- 7. Теплообмен при кипении теплоносителя. Два кризиса кипения
- 8. Теплообмен при конденсации теплоносителя. Пленочная и капельная конденсация
 - 9. Сложный теплообмен в рекуперативных ТОА
- 10. Тепловой проверочный расчет рекуперативных ТОА непрерывного действия
- 11. Компоновочный расчет рекуперативных ТОА непрерывного действия
- 12. Тепловой расчет рекуперативного ТОА периодического действия при изменении агрегатного состояния одного из теплоносителей
- 13. Тепловой расчет рекуперативного ТОА периодического действия при постоянном агрегатном состоянии теплоносителей
 - 14. Регенеративные ТОА. Основные конструкции
 - 15. Теплообмен в регенеративных ТОА
- 16. ТОА с «псевдоожиженным» слоем. Характеристики слоя. Гидродинамика образования «кипящего» слоя.
- 17. Выпаривание растворов. Основные процессы. Методы и способы выпаривания
- 18. Физико-химическая температурная депрессия. Причины возникновения. Методы расчета
- 19. Гидростатическая и гидродинамическая температурные депрессии.
 - 20. Располагаемая и полезная разности температур.
- 21. Устройство и принцип работы выпарных аппаратов с естественной циркуляцией раствора
- 22. Устройство и принцип работы выпарных аппаратов с принудительной циркуляцией раствора
 - 23. Устройство и принцип работы пленочных выпарных аппаратов
- 24. Многоступенчатое выпаривание. МВУ. Греющие теплоносители. Подогрев раствора.
 - 25. Классификации МВУ.
 - 26. Исходные данные и цели теплового расчета МВУ.
 - 27. Распределение полезной разности температур по ступеням МВУ
- 28. Контактные выпарные аппараты. Конструкция ВА с аппаратами погружного горения
- 29. Кристаллизация в выпарных аппаратах. Механизм кристаллизации. Способы кристаллизации
- 30. Кристаллизаторы. Конструкция вакуум-кристаллизационного аппарата.
- 31. Установки адиабатного испарения. Принцип работы и конструкции
- 32. Перегонка как способ разделения смесей. Бинарные смеси. Смеси с взаимно нерастворимыми и частично растворимыми компонентами.
- 33. Бинарные смеси с взаимно растворимыми компонентами. Виды смесей. Закон Рауля

- 34. Диаграммы состояния взаимнорастворимых идеальных смесей
- 35. Диаграммы состояния взаимнорастворимых реальных смесей. Законы Коновалова
 - 36. Дистилляция. Одноступенчатая дистилляционная установка
 - 37. Многоступенчатая дистилляционная установка. Дефлегмация
- 38. Ректификация. Конструкция и принцип ректификационной установки периодического действия. Изображение процессов на диаграмме
- 39. Ректификационная установка непрерывного действия. Конструкция. РУ для разделения многокомпонентных смесей
- 40. Цели расчета ректификационных установок. Метод теоретических тарелок. Уравнения рабочих линий
- 41. Метод «кинетической кривой» для расчета ректификационных установок
- 42. Влияние флегмового числа на работу ректификационной установки. Определение минимального флегмового числа
- 43. Определение оптимального флегмового числа методом Плановского и РТМ.
 - 44. Экстрактивная ректификация. Азеотропная ректификация.
- 45. Основные способы обезвоживания материалов. Естественная и искусственная сушка. Сушильный агент
 - 46. Свойства влажных материалов. Виды связи влаги с материалом.
- 47. Динамика сушки. Основные движущие силы, перемещающие влагу внутри высушиваемого материала
 - 48. Кинетика сушки. Первый и второй периоды сушки
- 49. Определение продолжительности первого и второго этапов сушки
- 50. Влияние способа подвода теплоты на перемещение влаги внутри высушиваемого материала
- 51. Теоретическая сушильная установка. Изображение процесса в теоретической СУ на диаграмме
- 52. Действительная сушильная установка. Изображение процесса в действительной СУ на диаграмме
- 53. Рециркуляция сушильного агента. Сушка с промежуточным подогревом сушильного агента
 - 54. Контактные сушильные установки
 - 55. Терморадиационные сушильные установки
 - 56. Сушка токами высокой частоты
 - 57. Сублимационная сушка
 - 58. Основные способы получения низких температур
- 59. Хладоагенты парокомпрессионных холодильных установок. Хладоносители
- 60. Идеальная парокомпрессионная холодильная установка. Холодильный коэффициент. Изображение цикла на диаграмме
- 61. Действительная одноступенчатая парокомпрессионная холодильная установка. Изображение цикла на диаграмме

- 62. Двухступенчатая парокомпрессионная холодильная установка. Изображение цикла на диаграмме
- 63. Каскадная парокомпрессионная холодильная установка. Изображение цикла на диаграмме
- 64. Идеальная газовая холодильная установка. Изображение цикла на диаграмме
- 65. Идеальная газовая холодильная установка с регенерацией тепла. Изображение цикла на диаграмме
- 66. Действительная газовая холодильная установка. Изображение цикла на диаграмме
 - 67. Идеальная абсорбционная холодильная установка
 - 68. Действительная абсорбционная холодильная установка
- 69. Пароэжекторная холодильная установка. Изображение идеального и реального циклов на диаграмме
 - 70. Термоэлектрические холодильные установки
- 71. Влажный воздух. Количественные и качественные характеристики влажного воздуха
- 72. Н-d диаграмма влажного воздуха. Изображение основных процессов на диаграмме: нагрев, охлаждение, адиабатное испарение, смешение двух потоков

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится в форме тестирования в ЭИОС. Тест содержит 20 вопросов. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 10 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 11 до 14 баллов
 - 3. Оценка «Хорошо» ставится в случае, если студент набрал от 15 до 18 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал свыше 19 баллов

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Рекуперативные и регенеративные теплообменные аппараты	ПК-1, ПК-3	Тест, защита лабораторных работ, экзамен
2	Ректификационные и дистилляционные установки	ПК-1, ПК-3	Тест, защита лабораторных работ, экзамен

3	Выпарные установки	ПК-1, ПК-3	Тест, выполнение
			курсового проекта,
			экзамен
4	Сушильные установки	ПК-1, ПК-3	Тест, экзамен
5	Смесительные ТОА	ПК-1, ПК-3	Тест, экзамен
6	Холодильные установки	ПК-1, ПК-3	Тест, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование, решение стандартных и прикладных задач осуществляется при помощи компьютерной системы тестирования в ЭИОС, Время тестирования до 45 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Защита курсового проекта или отчета по лабораторным работам осуществляется согласно требованиям, описанным в методических материалах. Примерное время защиты на одного студента составляет до 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Теоретический курс

- 1. Портнов В.В. Рекуперативные и регенеративные теплообменные аппараты: учеб. пособие / В. В. Портнов, Д. А. Коновалов, К.Г. Хрипунов; ФГБОУ ВО «Воронежский государственный технический университет». 2-е изд., перераб. и доп. Воронеж: Изд-во ВГТУ, 2020. 104 с.
- 2. Портнов В.В. Выпаривание: учеб. пособие / В.В. Портнов. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2011. 105 с.
- 3. Портнов В.В. Ректификационные и дистилляционные установки: учеб. пособие / В.В. Портнов. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2009. 80 с.
- 4. Портнов В.В. Сушильные установки: учеб. пособие. / В.В. Портнов. 2-е изд., перераб. и доп. Воронеж: ФГБОУ ВПО «Воронежский государственный технический университет», 2013. 120 с.
- 5. Портнов В.В. Холодильные установки: учеб. пособие / В.В. Портнов. Воронеж: ФГБОУ ВПО «Воронежский государственный технический университет», 2014. 98 с.
- 6. Портнов В.В. Смесительные теплообменные аппараты: учеб. пособие / В.В. Портнов. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2015. 75 с.

Практические занятия

- 7. Павлов, Константин Феофанович. Примеры и задачи по курсу процессов и аппаратов химической технологии [Текст] : учебное пособие для вузов. 14-е изд., стер. Москва : [б. и.], 2007 (Чебоксары : ГУП "ИПК "Чувашия", 2005). 575 с.
- 8. Бакластов, А.М. Проектирование, монтаж и эксплуатация теплообменных установок : Учеб. пособие / Под ред. А. М. Бакластова. Москва : Энергоиздат, 1981. 336 с.

Лабораторные работы

9. Портнов В.В., Майоров В.В. Трошин А.Ю. Лабораторный практикум по курсу «Тепломассообменное оборудование предприятий»: Учеб. пособие. Воронеж: Воронеж. гос. техн. ун-т, 2005, 89 с.

Курсовой проект

- 10. Портнов В.В. Многоступенчатые выпарные установки: учеб. пособие / В.В. Портнов. В.В. Майоров. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2008. 173 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

8.2.1 Программное обеспечение

Операционные системы

– Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic;

Офисные приложения

- OpenOffice;
- Adobe Acrobat Reader;
- Cool PDF Reader;

Браузеры

- Internet Explorer;
- Atom;
- Chrome;
- Opera;

САD или САПР программы - системы автоматизированного проектирования

Компас-График LT;

Программы для численных вычислений

- -Advanced Grapher;
- MathCAD 11 lite Portable Rus;

Антивирусы

-Avast Free Antivirus;

Kaspersky Free

Прикладные программы

- ГИДРОСИСТЕМА;
- $-\Pi ACCAT$;
- ZuluHydro
- 8.2.2 Ресурсы информационно-телекоммуникационной сети «Интернет»
 - Российское образование. Федеральный портал.

http://www.edu.ru/

– Образовательный портал ВГТУ

https://education.cchgeu.ru/

- 8.2.3 Информационные справочные системы
- http://window.edu.ru
- https://wiki.cchgeu.ru/
- 8.2.4 Современные профессиональные базы данных
- Электронный фонд правовой и нормативно-технической документации.

http://docs.cntd.ru

– Единая система конструкторской документации.

https://standartgost.ru/0/2871-

edinaya_sistema_konstruktorskoy_dokumentatsii

Федеральный институт промышленной собственности.
 Информационно-поисковая система.

www1.fips.ru

– Национальная электронная библиотека.

elibrary.ru

- 96C IPR Book

https://www.iprbookshop.ru

– ЭБС Лань

https://e.lanbook.com

– ЭБС Библиоклуб

https://biblioclub.ru

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- 1. Специализированная лекционная аудитория, оснащённая оборудованием для лекционных демонстраций и проекционной аппаратурой (ауд. 306/3).
- 2. Дисплейный класс, оснащённый компьютерными программами для проведения лабораторного практикума (ауд. 312/3).

3. Учебная лаборатория «Тепломассообмен и тепломассообменное оборудование» (ауд. 303/3), оснащенная необходимым лабораторным оборудованием.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Тепломассообменное оборудование предприятий» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовой проект.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета тепломассообменной аппаратуры. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсового проекта изложена в учебнометодическом пособии. Выполнять этапы курсового проекта должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсового проекта, защитой курсового проекта.

Вид учебных	Подполуческий опускати		
занятий	Деятельность студента		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно		
	фиксировать основные положения, выводы, формулировки,		
	обобщения; помечать важные мысли, выделять ключевые слова,		
	термины. Проверка терминов, понятий с помощью энциклопедий,		
	словарей, справочников с выписыванием толкований в тетрадь.		
	Обозначение вопросов, терминов, материала, которые вызывают		
	трудности, поиск ответов в рекомендуемой литературе. Если		
	самостоятельно не удается разобраться в материале, необходимо		
	сформулировать вопрос и задать преподавателю на лекции или на		
	практическом занятии.		
Практическое	Конспектирование рекомендуемых источников. Работа с		
занятие	конспектом лекций, подготовка ответов к контрольным вопросам,		
	просмотр рекомендуемой литературы. Прослушивание аудио- и		
	видеозаписей по заданной теме, выполнение расчетно-графических		
	заданий, решение задач по алгоритму.		
Лабораторная работа	Лабораторные работы позволяют научиться применять		
	теоретические знания, полученные на лекции при решении		
	конкретных задач. Чтобы наиболее рационально и полно		
	использовать все возможности лабораторных для подготовки к ним		
	необходимо: следует разобрать лекцию по соответствующей теме,		
	ознакомится с соответствующим разделом учебника, проработать		
	дополнительную литературу и источники, решить задачи и		
	выполнить другие письменные задания.		

Самостоятельная	Самостоятельная работа студентов способствует глубокому				
работа	усвоения учебного материала и развитию навыков				
	самообразования. Самостоятельная работа предполагает				
	следующие составляющие:				
	- работа с текстами: учебниками, справочниками, дополнительной				
	литературой, а также проработка конспектов лекций;				
	- выполнение домашних заданий и расчетов;				
	- работа над темами для самостоятельного изучения;				
	- участие в работе студенческих научных конференций, олимпиад;				
	- подготовка к промежуточной аттестации.				
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в				
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться				
аттестации	аттестации не позднее, чем за месяц-полтора до промежуточной аттестац				
	Данные перед зачетом с оценкой, экзаменом, зачетом с оценкой,				
	экзаменом, зачетом с оценкой, экзаменом три дня эффективнее				
	всего использовать для повторения и систематизации материала.				

Лист регистрации изменений

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1	Пункт 8.2.4 изложить в следующей редакции	29.01.2025	1

- 8.2.4 Современные профессиональные базы данных
- Электронный фонд правовой и нормативно-технической документации. http://docs.cntd.ru
- Единая система конструкторской документации. https://standartgost.ru/0/2871-edinaya_sistema_konstruktorskoy_dokumentatsii
- Федеральный институт промышленной собственности. Информационнопоисковая система.

www1.fips.ru

- Национальная электронная библиотека.

elibrary.ru

- ЭБС IPR Book

https://www.iprbookshop.ru

- ЭБС Лань

https://e.lanbook.com