МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Кафедра кадастра недвижимости, землеустройства и геодезии

Технология эксплуатации и ремонта геодезических приборов

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

к выполнению практических работ для студентов направления 21.03.03 «Геодезия и дистанционное зондирование» (профиль «Геодезия») всех форм обучения

МЕРЫ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ ТОПОГРАФО-ГЕОДЕЗИЧЕСКОЙ ТЕХНИКИ

- 1. К работе с оптико-электронными, радиоэлектронными приборами, спутниковой гравиметрической аппаратурой, обслуживанию К бензоэлектрических агрегатов, аккумуляторных батарей должны допускаться имеюшие на ЭТО право, подготовка которых подтверждена лица. соответствующим документом.
- 2. При эксплуатации геодезических приборов, оборудования, вспомогательной аппаратуры запрещается:
- применять не по назначению и использовать эту технику в неисправном состоянии;
- эксплуатировать в режимах и при нагрузках, превышающих установленные паспортом нормы;
- применять без контрольно-измерительных и индикаторных устройств, входящих в комплект, или без штатных средств защиты и сигнализации;
- оставлять без присмотра работающее оборудование и аппаратуру в случаях, требующих обязательного присутствия обслуживающего персонала;
- пользоваться оборудованием, не имеющим специального технического заключения по их безопасной эксплуатации.
- 3. Во время работы радиодальномерами с мощностью излучения более 100 мВт запрещается:
- присутствие людей в секторе 100 с радиусом 3 м с центром в основании антенны дальномерной станции;
- касаться конденсаторов настройки, объемного резонатора и других деталей, находящихся под напряжением более 36 В;
- работать в помещении без поглощающего экрана, устанавливаемого перед антенной.
- 4. При работе с лазерными геодезическими приборами с мощностью излучения более 1 мВТ запрещается:
- в момент генерации излучения осуществлять визуальный контроль точности визирования на отражатель без применения защитных средств;
- направлять луч лазера на глаза или другие части тела людей;
- наводить лазерный луч на отражающие поверхности (зеркала, полированные материалы, стекла).

- 5. При работе с электронными геодезическими приборами в полевых условиях запрещается:
- касаться руками неизолированных проводов и других элементов электронной схемы;
- работать во время дождя и под линиями электропередачи;
- протирать узлы и детали тряпкой или ветошью.
- 6. Ремонт, юстировка, настройка высокочастотных приборов должны производиться подготовленными специалистами в рабочих помещениях, в которых пол, стены и потолок экранированы специальными поглощающими материалами.
- 7. С целью ограничения воздействия электромагнитного излучения рекомендуется:
- рациональное размещение в рабочем пространстве оборудования, излучающего электромагнитную энергию;
- удаление источников излучения от рабочих мест;
- экранирование рабочего места;
- установление рациональных режимов работы оборудования и обслуживающего персонала;
- применение средств сигнализации (световой, звуковой) и средств индивидуальной защиты.

СОДЕРЖАНИЕ

Введение	4
Практическая работа № 1. Поверка рулеток измерительных метал- лических длиной 1–3 м	5
Практическая работа № 2. Поверка нивелирных деревянных реек	10
Практическая работа № 3. Поверка нивелиров	16
Практическая работа № 4. Поверка электронных тахеометров	20
Приложение 1. Результаты поверки измерительной металличес- кой рулетки длинойм_ №	25
Приложение 2. Результаты поверки нивелирной деревянной рейки рн-3 №	27
Приложение 3. Результаты исследования работы компенсатора нивелира	30
Приложение 4. Результаты исследования работы компенсатора	
электронного тахеометра	31

Практическая работа № 1 ПОВЕРКА РУЛЕТОК ИЗМЕРИТЕЛЬНЫХ МЕТАЛЛИЧЕСКИХ ДЛИНОЙ 1–3 м

Цель работы: освоить методику поверки рулеток измерительных металлических длиной до 3 м.

1. Рабочее средство измерений и рабочие эталоны:

- 1) рулетка 1 м (2 м или 3 м);
- 2) штангенциркуль;
- 3) штриховая мера 1 м.

2. Рекомендуемая литература

- 1. ГОСТ 7502–98. Рулетки измерительные металлические. Технические условия. Минск: Государственное предприятие «Научно-исследовательский институт горной механики и маркшейдерского дела» и Межгосударственный технический комитет по стандартизации МТК 296 «Оптика и оптические приборы», 1998. 11 с.
- 2. МИ 1780–87. Методические указания. Государственная система обеспечения единства измерений. Ленты образцовые и рулетки металлические измерительные. Методика поверки. М.: НПО ВНИИМ им. Д. И. Менделеева. 1989. 9 с.
- 3. РД68-8.17–98. Руководящий документ. Локальные поверочные схемы (ЛПС) для средств измерений (СИ) топографо-геодезического и картографического назначения. М.: ЦНИИГАиК, 1999. 40 с.
- 4. Спиридонов А. И., Кулагин Ю. Н., Кузьмин М. В. Поверки геодезических приборов. М.: Недра, 1981. –159 с.
- 5. СТО СГУГиТ–011–2017. Стандарт организации. Система менеджмента качества. Государственная итоговая аттестация выпускников СГУГиТ. Структура и правила оформления / сост. : Л. Г. Куликова, В. А. Ащеулов, Т. Н. Хацевич, И. О. Михайлов, Я. Г. Пошивайло ; под общ. ред. В. А. Ащеулова. Новосибирск : СГУГиТ, 2017. 71 с.

3. Последовательность выполнения работы

3.1. Выполнить оценку внешнего состояния рулетки

Подготовить в рабочей тетради приложение А (прил. 1).

Путем визуального осмотра измерительной металлической рулетки (рулетки) определить качество штрихов и надписей, наличие или отсутствие дефектов, ухудшающих внешний вид рулетки и затрудняющих снятие отсчетов: рабочие поверхности должны быть чистыми, без следов ржавчины, коррозии, пятен и царапин.

Записать в рабочую тетрадь оценку внешнего состояния рулетки: «При осмотре измерительной металлической рулетки длиной до 1 (2 или 3 м) N_2 внешних повреждений и дефектов (не) обнаружено (если есть, то какие)».

3.2. Проверить качество сборки рулетки

Путем опробования проверить механизм перемотки на раскручивание и скручивание. Механизм перемотки должен работать плавно, без скачков и заеданий. Фиксирующие устройство и ограничители рулетки должны надежно удерживать ленту в развернутом и свернутом состояниях.

Оценки механизма перемотки и фиксирующего устройства ленты рулетки записать в рабочую тетрадь в следующем виде: «При опробовании механических дефектов (не) обнаружено. Механизм перемотки работает (не) плавно».

3.3. Выполнить проверку ширины и толщины ленты

Ширину и толщину ленты определить в трех точках рулетки (в начале, середине и конце), равномерно расположенных в пределах ее длины. В каждой точке ширину и толщину измерить дважды. За окончательные значения взять среднее арифметическое из измерений во всех точках рулетки.

Результаты измерений и вычислений занести в табл. П.1.1 (прил. 1). Средние значения представить с точностью 0,01 мм.

В соответствии с ГОСТ 7502–98 ширина ленты должна находиться в пределах от 7 до 25 мм, а толщина — от 0,12 до 0,30 мм. В случае, если выявленные отклонения близки к предельно допускаемым (около 95 %), поверку следует повторить в новых трех точках рулетки.

3.4. Определить длины отдельных интервалов шкалы и общей длины рулетки

Определение длины отдельных интервалов шкалы и общей длины рулетки осуществляют путем сличения их с рабочим эталоном (образцовым средством измерения).

В работе в качестве рабочего эталона используется штриховая мера длиной 1 м (контрольная линейка 2-го разряда).

Длину отдельных интервалов (1 мм, 1 см, 1 дц) рулетки измеряют в трех точках ленты, если длина рулетки не превышает 5 м. В противном случае количество точек увеличивают до пяти.

Общую длину рулетки определяют способом совокупных измерений: путем суммирования измеренных всех метровых интервалов рулетки контрольной линейкой. При этом в результаты измерения вводят общую поправку за длину и температуру контрольной линейки.

Отдельные и метровые интервалы измеряют в прямом и обратном ходах. В каждом ходе интервал измеряют при двух сдвижках контрольной линейки. Расхождение между результатами измерений не должно превышать 0,10 мм.

В работе отдельные интервалы в середине диапазона ленты и первый метр рулетки следует измерить в следующем порядке:

- 1) открыть футляр штриховой меры, взять за верхний выступ контрольной линейки и положить на стол;
- 2) расположить ленту рулетки так чтобы левый штрих интервала ленты был в пределах первых двух-трех делений контрольной линейки, при этом лента должна быть параллельной ее краю и слегка касаться по всей длине. Затем на столе закрепить два конца ленты рулетки;
- 3) записать измеряемый интервал ленты рулетки и температуру контрольной линейки в таблицу П.1.2 (прил. 2);
- 4) совместить начальный штрих (нулевой) контрольной линейки со серединой левого штриха интервала и записать отсчет по левому краю (Л) в табл. Π .1.2 (0,00);
- 5) спроецировать середину правого штриха интервала ленты рулетки на штрихи контрольной линейки и взять отчет (П). Далее записать в табл. П.1.2 и вычислить длину l_i до 0,01 мм;

- 6) сдвинуть контрольную линейку на одно или два деления и взять отсчеты по левому (Π) и правому (Π) штрихам интервала ленты рулетки аналогично п. 5;
- 7) повернуть контрольную линейку на 180° и выполнить действия, описанные в пп. 4–6.

По завершении измерений вычислить средние значения отдельных интервалов и метрового интервала до 0.01 мм.

3.5. Оформить результаты поверки

Записать оценки внешнего осмотра, качества сборки рулетки и средние значения ширины и толщины ленты в табл. П.1.3.

Отклонение отдельных интервалов рулетки от номинального значения вычислить на основании средних значений, представленных в табл. А.1.2.

Для определения отклонения метрового интервала от номинального значения необходимо предварительно вычислить действительное значение метрового интервала l по формуле

$$l = l_{\rm cp} + \Delta_{\rm K} + \alpha(t - t_{\rm o}), \qquad (1.1)$$

где $l_{\rm cp}$ — среднее значение метрового интервала; $\Delta_{\rm K}$ — поправка за компарирование контрольной линейки (штриховой меры); α — коэффициент расширения металла (инвара — 0,018); t — температура контрольной линейки в момент измерения интервала рулетки; $t_{\rm O}$ — температура контрольной линейки в момент сличения на компараторе (эталонном базисе).

4. Содержание отчета и контрольные вопросы

4.1. Каждый обучающийся представляет отчет, который должен включать следующее:

- а) титульный лист и оглавление;
- б) разделы:
- 1 Локальная поверочная схема для средств измерений длины в диапазоне до 100 метров. Здесь на основании источника 3 (см. п. 2) составить схему и дать к ней пояснения;

- 2 Методика поверки рулеток. На основании изучения рекомендуемой литературы (см. п. 2) изложить содержание поверочных работ: внешний осмотр; опробование; определение ширины и толщины ленты рулетки; определение отклонения от номинального значения отдельных интервалов (1 мм, 1 см, 1 дц) и метрового интервала;
 - г) список литературы;
- д) Приложение А Поверки измерительной металлической рулетки длиной м \mathbb{N}_2 .

Отчет оформляется в соответствии с требованиями, изложенными в разделах 5,6 источника 5 (см. п. 2).

- 4.2. Каждый обучающийся в рабочей тетради отвечают на следующие контрольные вопросы:
 - 1. Какие могут быть рулетки по длине?
 - 2. Что понимают под измерением?
 - 3. Запишите основное уравнение измерения.
 - 4. Какой способ измерений применяется в работе?
 - 5. Что понимают под методом измерения?
 - 6. Какие методы измерений применяются в работе?
 - 7. В каком порядке выполняют поверку рулеток?
 - 8. Расшифруйте условные обозначения: Р50Н2К и Р5У3П.
- 9. Приведите допустимые значения отклонения общей длины и длины отдельных интервалов ленты рулеток 2-го и 3-го разряда.
 - 10. Что понимают под метрологией?

Практическая работа № 2 ПОВЕРКА НИВЕЛИРНЫХ ДЕРЕВЯННЫХ РЕЕК

Цель работы: освоить методику поверки деревянных нивелирных реек.

1. Рабочее средство измерений, рабочие эталоны и вспомогательное оборудование:

- 1) нивелирная деревянная рейка РН-3;
- 2) штриховая мера 1 м;
- 3) образцовый нивелир типа Н-3;
- 4) штатив для тахеометров;
- 5) штатив для нивелиров;
- 6) деревянный треугольник для штатива;
- 7) нивелирный костыль (башмак) 3 шт.

2. Рекомендуемая литература

- 1. ГОСТ 10528–90/ Нивелиры. Общие технические условия. М. : Изво стандартов, 1990-15 с.
- 2. ГКИНП(ГНТА) 03-010–02. Инструкция по нивелированию I, II, III и IV классов. Дата введения 2003-01-01. М. : ЦНИИГАиК, 2003. 134 с.
- 3. ГКИНП(ГНТА) 17-195–99. Инструкция по проведению технологической поверки геодезических приборов. Дата введения 1999-10-01. М.: ЦНИИГАиК, 1999. 31 с.
- 4. РД68-8.17-98. Руководящий документ. Локальные поверочные схемы (ЛПС) для средств измерений (СИ) топографо-геодезического и картографического назначения. М.: ЦНИИГАиК, 1999. 40 с.
- 5. Спиридонов А. И., Кулагин Ю. Н., Кузьмин М. В. Поверки геодезических приборов. М.: Недра, 1981. 159 с.
- 6. СТО СГУГиТ–011–2017. Стандарт организации. Система менеджмента качества. Государственная итоговая аттестация выпускников СГУГиТ. Структура и правила оформления / сост. : Л. Г. Куликова,

В. А. Ащеулов, Т. Н. Хацевич, И. О. Михайлов, Я. Г. Пошивайло; под общ. ред. В. А. Ащеулова. – Новосибирск: СГУГиТ, 2017. – 71 с.

3. Последовательность выполнения работы

3.1. Выполнить проверку внешнего состояния, опробования и правильности установки круглого накладного уровня рейки

В рабочей тетради подготовить приложение А для отчета на основании прил. 2.

После получения нивелирной рейки РН-3, эталонных (образцовых) средств измерения и вспомогательного оборудования необходимо провести внешний осмотр рейки. При этом следует обратить внимание на качество окраски шашечных штрихов и оцифровки. На рабочей поверхности рейки не должно быть больших пятен, царапин и отслаивания краски.

Далее необходимо проверить надежность крепления ручек и пятки: ручки и пятка должны быть жестко зафиксированы шурупами на корпусе рейке; между торцом рейки и пяткой не должно быть щели. Если ручки или пятка ненадежно зафиксированы на рейке, тогда необходимо подтянуть соответствующие шурупы.

Оценки внешнего состояния и опробования занести в табл. П.2.4 (прил. 2).

Проверку, в том числе юстировку накладного круглого уровня, следует выполнить в следующем порядке.

Установить в отвесное положение рейку с помощью нитяного отвеса и зафиксировать ее нивелирным штативом. Пузырек круглого уровня должен находиться в окружности, если это выполняется, тогда юстировка не требуется. В ином случае с помощью исправительных винтов накладного круглого уровня надо привести пузырек в центр окружности. При этом рейка должна находиться в вертикальном положении.

3.2. Выполнить поверку правильности нанесения дециметровых делений

Проверку правильности нанесения дециметровых делений выполняют в интервале 1–29 на черной и 47–76 на красной сторонах рейки.

В работе следует выполнить правильность нанесения дециметровых делений по черной стороне в интервале 1–11 делений в следующем порядке:

- 1) положить рейку на ровную поверхность стола, сверху контрольную линейку, затем записать температуру контрольной линейки $(t_{\rm H})$;
- 2) совместить ноль контрольной линейки с первым дециметром интервала рейки. Далее в его пределах его взять последовательно отсчеты по дециметрам O_i^I . Результаты измерений записать в колонку «Положение I» (табл. $\Pi.2.1$);
- 3) сдвинуть контрольную линейку в пределах одного миллиметра и повторить отсчеты по дециметровым делениям O_i^{II} интервала. Результаты измерений записать в колонку «Положение II» (табл. П.2.1); Разности II—I не должны превышать 0,20 мм. В противном случае надо повторить измерения на соответствующих дециметровых делениях;
- 4) записать температуру контрольной линейки $(t_{\rm K})$ и вычислить среднее значение отсчетов до 0,01 мм;
- 5) вычислить случайные ошибки нанесения дециметровых делений на рейке по формуле

$$\Delta_{\rm cn, j} = \Delta_j - \Delta_c, \tag{2.1}$$

где $\Delta_j = O_{\mathrm{cp},i+1}^\mathrm{A} - O_{\mathrm{cp},i}^\mathrm{A}$, $O_{\mathrm{cp},\,i} = \frac{O_i^I + O_i^{II}}{2}$, O_i^I и O_i^{II} — отсчеты по контрольной линейке по i-му дециметру шкалы нивелирной рейки при первом и втором ее положении соответственно; $O_{\mathrm{cp},i}^\mathrm{A}$ — дробная часть среднего значения

$$O_{\mathrm{cp},\;i};\;\Delta_c-$$
 систематическая ошибка; $\Delta_c=rac{\sum\Delta_j}{N};N-$ количество ошибок Δ_c .

6) результаты вычислений занести в табл. П.2.1 (прил. 2).

3.3. Определить среднюю длину метра рейки

Основной характеристикой нивелирных реек является длина среднего метра пары реек. Для этого измеряют контрольной линейкой интервалы: 01–10; 10–20; 20–29 по черной и 48–57; 57–67; 67–76 по красной стороне в прямом и обратном ходах. Перед изменением хода контрольную линейку

поворачивают на 180°. В каждом ходе интервал измеряют двумя приемами. Между приемами контрольную линейку немного сдвигают. Измерение части рейки в приеме заключается взятием отсчетов по контрольной линейке в начале (Л) и в конце (П) метрового интервала с точностью 0,10 мм.

Колебание измеренного интервала в приемах не должно превышать 0,10 мм. Если получены недопустимые значения, тогда выполняют повторные измерения соответствующего интервала. Грубые измерения, в том числе отсчеты, аккуратно зачеркивают в таблице, так чтобы можно было прочитать все цифры.

В работе необходимо выполнить определение среднего метра рейки на основании измерения одного интервала в следующем порядке:

- 1) положить рейку на ровную поверхность на столе и на нее контрольную линейку. Определить температуру контрольной линейки и записать в табл. П.2.2 (прил. 2);
- 2) совместить первый штрих (нулевой) контрольной линейки с началом метрового интервала, при этом край линейки должен быть параллелен грани рейки;
- 3) взять отсчеты по левому (Π) и правому (Π) краю контрольный линейки. Записать отсчеты в табл. Π .2.2 (прил. 2);
 - 4) немного сдвинуть контрольную линейку и повторить действия п. 3;
- 5) вычислить измеренный интервал при двух положениях контрольной линейки, т. е. $l_1^{'}$ и $l_2^{'}$. Если разность между ними не превышает 0,10 мм, тогда вычислить среднее арифметическое значение интервала: $l_{\rm cp}=\frac{l_1^{'}+l_2^{'}}{2}$.
 - 6) вычислить действительную длину интервала по формуле (2.1);
- 7) повернуть контрольную линейку на 180° и выполнить измерения в обратном ходе аналогично пп. 2–6.

Средний метр рейки по черной стороне рейки вычислить по формуле

$$l_{1_{\mathcal{M}}} = \frac{\sum l_i}{n},\tag{2.2}$$

где n — номинальная сумма длин измеренных интервалов.

Результаты измерений и вычислений занести в таблицу П.2.2 (прил. 2).

3.4. Выполнить поверку перпендикулярности плоскости пятки к оси рейки

В аудитории установить три костыля (башмака) на расстоянии 15 м от нивелира.

Затем выполнить пять приемов измерений. Один прием включает взятие отсчета по средней нити сетки нитей зрительной трубы нивелира по двум сторонам рейки и при трех положениях установки пятки рейки на костыль. В каждом приеме с начала необходимо установить рейку на костыль левой частью пятки (a_1) , затем центральной (a_2) и завершить правой частью пятки (a_3) . Между приемами необходимо изменить высоту нивелира на 5-10 см.

Вычислить средние значения отсчетов a_1 , a_2 и a_3 по каждой стороне рейки и определить уклонения: $a_2 - a_1$ и $a_2 - a_3$. Результаты измерений и вычислений занести в таблицу П.2.3 (прил. 2).

3.5. Оформить результаты поверки

Оформление результатов поверки заключается в составлении табл. $\Pi.2.4$ (прил. 2), на основании табл. $\Pi.2.1 - \Pi.2.3$. Метрологические характеристики занести в колонку «факт».

В строке «дециметрового интервала» записать максимальное значение, по абсолютной величине, случайной ошибки дециметровых делений.

Определить отклонение от номинального значения метра среднего метра рейки по черной стороне и занести в строку «метрового интервала».

Допустимые значения для вышерассмотренных метрологических характеристик выписать из ГОСТ 10528–90.

Среднее значение уклонений $a_2 - a_1$ и $a_2 - a_3$ записать в строку «от перпендикулярности плоскости пятки от оси рейки».

4. Содержание отчета и контрольные вопросы

4.1. Каждый обучающийся представляет отчет, который должен включать следующее:

а) титульный лист и оглавление;

- в) разделы:
- -1 Локальная поверочная схема для средств измерения длины в диапазоне 4 м. Здесь на основании источника 4 (см. П. 2) составить схему и дать к ней пояснения;
- 2 Поверка деревянных нивелирных реек. На основании изучения рекомендуемой литературы (см. П.2) изложить содержание поверочных работ: внешний осмотр; опробование; поверка совмещения нулевого отсчета шкал рейки с пяткой; определение разности отсчетов по черной и красной сторонам рейки; исследование дециметровых делений (интервалов); определения длины метровых интервалов и средней длины метра пары реек;
 - г) список литературы;
- д) приложение A Результаты метрологической поверки деревянной нивелирной реки PH-3, №____.

Отчет оформляется в соответствии с требованиями, изложенными в разделах 5, 6 источника 5(см. Π .2).

4.2. Каждый обучающийся в рабочей тетради отвечают на следующие контрольные вопросы:

- 1. Классификация нивелирных реек.
- 2. В каком порядке выполняют поверку нивелирных реек?
- 3. Как выполняют исследование дециметровых делений?
- 4. Допустимое значение отклонения метрового интервала от номинального значения
- 5. Что необходимо знать, чтобы вычислить действительную длину метрового интервала?
 - 6. Как выполняют измерения метровых интервалов?
 - 7. В чем различие между совместными и совокупными измерениями?
 - 8. Что понимают под случайной ошибкой измерений?
 - 9. На какие типы подразделяют измерения по их количеству?
 - 10. Расшифруйте РН-3ЦП.

Практическая работа № 3 ПОВЕРКА НИВЕЛИРОВ

Цель работы: ознакомиться с методикой поверки нивелиров и овладеть практическими навыками по определению систематической погрешности работы компенсатора на 1' наклона оси нивелира.

1. Рабочее средство измерений и вспомогательное оборудование

- 1) нивелир типа Sprinter 50 (150);
- 2) две штрихкодовые рейки РН-3;
- 3) штатив для нивелиров;
- 4) деревянный треугольник для штатива;
- 5) нивелирный костыль (башмак) 2 шт.;
- 6) рулетка, 30 м.

2. Рекомендуемая литература

- 1. ГОСТ 10528-90 Нивелиры. Общие технические условия. ИПК. М. : Изд-во. Стандартов, 2003. 15 с.
- 2. ГКИНП(ГНТА) 17-195-99. Инструкция по проведению технологической поверки геодезических приборов. Дата введения 1999-10-01. М. : ЦНИИГАиК, 1999. 31 с.
- 3. ГКИНП(ГНТА) 03-010-02. Инструкция по нивелированию I, II, III и IV классов. Дата введения 2003-01-01. М. : ЦНИИГАиК, 2003. 134 с.
- 4. РД68-8.17–98. Руководящий документ. Локальные поверочные схемы (ЛПС) для средств измерений (СИ) топографо-геодезического и картографического назначения. М.: ЦНИИГАиК, 1999. 40 с.
- 5. Спиридонов А. И., Кулагин Ю. Н., Кузьмин М. В. Поверки геодезических приборов. М.: Недра, 1981. 159 с.
- 6. СТО СГУГиТ–011–2017. Стандарт организации. Система менеджмента качества. Государственная итоговая аттестация выпускников СГУГиТ. Структура и правила оформления / сост. : Л. Г. Куликова,

В. А. Ащеулов, Т. Н. Хацевич, И. О. Михайлов, Я. Г. Пошивайло; под общ. ред. В. А. Ащеулова. – Новосибирск: СГУГиТ, 2017. – 71 с.

3. Последовательность выполнения работы

3.1. Описать основные части и технические характеристики нивелира

Сфотографировать цифровой нивелир (нивелир) и в интернете найти руководство пользователя для этого прибора. Затем оформить первый раздел отчета, где привести фотографию нивелира в виде рисунка. На нем подписать основные части нивелира, а основные технические характеристики привести в таблице.

3.2. Рассмотреть содержание поверочных работ

Рассмотреть во втором разделе отчета содержание следующих поверочных работ:

- внешний осмотр и опробование;
- определения увеличения зрительной трубы, цены деления круглого уровня и коэффициента нитяного дальномера;
 - определение угла i;
 - исследование влияния хода фокусирующего устройства;
- определение средней квадратической погрешности измерения превышения на станции и на 1 км хода.

3.3. Определить диапазон работы компенсатора

Определение диапазон работы компенсатора цифрового нивелира τ_k выполнить в следующем порядке:

- установить рейку отвесно;
- установить в рабочее положение цифровой нивелир, т. е. привести пузырек круглого уровня в нуль-пункт;
- навестись на рейку. Установить четкое изображение сетки нитей зрительной трубы нивелира и штрихкодовой рейки. При этом вертикальная сетка нитей зрительной трубы нивелира должна делить ее пополам;
- нажать на кнопку измерения и записать в рабочую тетрадь расстояние до рейки S и отсчет по средней нити рейки b_1 ;

- с помощью подъемного винта, расположенного в створе «нивелир рейка», наклонять прибор до появления ошибки на экране прибора;
- нажать на кнопку измерения и записать в рабочую тетрадь отсчет по реке b_2 . Разность отсчетов по средней нити рейки не должна превышать 1-2 мм;
- сфотографировать или зарисовать положение пузырька круглого уровня. Край пузырька круглого уровня должен слегка касаться первого деления (окружности). Тогда диапазон работы компенсатора нивелира будет равен цене деления круглого уровня τ_k . Значение диапазона работы компенсатора записать в рабочую тетрадь.

3.4. Определить систематическую погрешность работы компенсатора

В рабочей тетради подготовить приложение А, представленное в прил. 3. Нивелир установить в середине створа реек, установленных на расстоянии 30 м.

Выполнить три или пять приемов измерений. В каждом приеме определить превышение при пяти положениях пузырька круглого уровня (см. прил. 3) по формуле

$$h = a - b \,, \tag{3.1}$$

где a и b — отсчеты по средней нити сетки нитей зрительной трубы нивелира соответственно по задней и передней рейкам.

Между приемами необходимо изменять высоту нивелира на 3–5 см.

Результаты измерений и вычисления превышений занести в приложение (см. прил. 3).

Систематическую погрешность работы компенсатора на 1' наклона оси нивелира вычислить по формуле

$$\sigma_k = \frac{h_{\text{cp},i} - h_{\text{cp},o}}{2 \cdot S \cdot \tau_k} \rho, \qquad (3.2)$$

где $\rho = 206\ 265$; τ_k — диапазон работы компенсатора либо цена одного деления круглого уровня.

4. Содержание отчета и контрольные вопросы

4.1. Каждый обучающийся представляет отчет, который должен включать следующее:

- титульный лист;
- оглавление;
- 1 Локальная поверочная схема для средств измерений превышений (высот). *На основании источника 4 (n.2) составить схему с пояснениями*;
- 2 Основные технические характеристики цифрового нивелира (см. п. 3.1);
 - 3 Поверка точных нивелиров (см. п.3.2);
 - список литературы;
- приложение А Результаты исследования работы компенсатора нивелира.

Отчет оформляется в соответствии с требованиями, изложенными в разделах 5, 6 источника 6(см. п. 2).

4.2. Каждый обучающийся в рабочей тетради отвечают на следующие контрольные вопросы:

- 1. Что понимается под средством измерения?
- 4. Какие бывают метрологические характеристики?
- 5. На какие типы подразделяются средства измерений по функциональному назначению?
 - 6. Расшифруйте: Н-2КП; 2Н-05.
 - 7. Какие исследования проводят в рамках поверки нивелиров?
 - 8. Как можно определить диапазон работы компенсатора?
- 9. Как определяют систематическую погрешность работы компенсатора на 1' оси нивелира?
 - 10. Что понимают под систематической погрешностью?

Практическая работа № 4 ПОВЕРКА ЭЛЕКТРОННЫХ ТАХЕОМЕТРОВ

Цель работы: ознакомиться с методикой поверки электронных тахеометров и овладеть практическими навыками определения диапазона и погрешностей работы компенсатора на 1' наклона оси электронного тахеометра.

1. Рабочее средство измерений и вспомогательное оборудование:

- 1) электронный тахеометр;
- 2) штатив для электронного тахеометра;
- 3) деревянный треугольник для штатива.

2. Рекомендуемая литература

- 1. ГОСТ Р 51774—2001 Тахеометры. Общие технические условия. М. Издат. Стандартов, 2001. 12 с.
- 2. ГКИНП(ГНТА) 17-195-99. Инструкция по проведению технологической поверки геодезических приборов. Дата введения 1999-10-01. М. : ЦНИИГАиК, 1999. 31 с.
- 3. Спиридонов А. И., Кулагин Ю. Н., Кузьмин М. В. Поверки геодезических приборов. М.: Недра, 1981. 159 с.
- 4. СТО СГУГиТ–011–2017. Стандарт организации. Система менеджмента качества. Государственная итоговая аттестация выпускников СГУГиТ. Структура и правила оформления / сост. : Л. Г. Куликова, В. А. Ащеулов, Т. Н. Хацевич, И. О. Михайлов, Я. Г. Пошивайло ; под общ. ред. В. А. Ащеулова. Новосибирск : СГУГиТ, 2017. 71 с.
- 5. Ямбаев X. К., Голыгин Н. X. Геодезическое инструментоведение. Практикум: учеб. пособие для вузов. М.: ЮНИКС, 2005. 312 с.

3. Последовательность выполнения работы

3.1. Описать основные части и технические характеристики нивелира

Сфотографировать электронный тахеометр и на основании руководства пользователя в рабочей тетради описать его основные части. Также

привести его основные технические характеристики. Затем оформить первый раздел отчета.

3.2. Рассмотреть содержание поверочных работ

Рассмотреть во втором разделе отчета содержание следующих поверочных работ:

- внешний осмотр и опробование;
- определение диапазона и систематической погрешности работы компенсатора на 1' наклона оси электронного тахеометра;
- исследование влияния хода фокусирующей линзы на коллимационную погрешность и место нуля (место зенита);
- исследование циклической погрешности и определение постоянной поправки светодальномера;
- определение средней квадратической погрешности измерений: горизонтальных углов, вертикальных углов и расстояний.

3.3. Определить диапазон работы компенсатора

Подготовить приложение А в соответствии с прил. 4.

Установить электронный тахеометр на штативе и привести прибор в горизонтальное положение с помощью подъемных винтов и цилиндрического уровня при алидаде горизонтального круга в следующем порядке:

- повернуть прибор, так чтобы цилиндрический уровень располагался вдоль двух подъемных винтов;
- привести пузырек цилиндрического уровня в нуль-пункт с помощью этих подъемных винтов;
- повернуть прибор на 90 °, т. е. расположить цилиндрический уровень вдоль третьего подъемного винта;
- затем с помощью этого подъемного винта привести пузырек цилиндрического уровня в нуль-пункт.

Перейти в режим цифрового уровня и с помощью подъемных винтов добиться нулевых показаний компенсатора по абсциссе (X) и ординате (Y). Допускается отклонение от нулевого значения в пределах $\pm (2-3)$ ".

Диапазон работы компенсатора прибора следует определить тремя приемами.

Один прием включает следующие действия:

- с помощью подъемных винтов, расположенных вдоль цилиндрического уровня, наклонять прибор влево до появления ошибки на экране электронного тахеометра. Максимальное значение по электронному уровню будет являться диапазоном работы компенсатора. Занести это значение в колонку v_1 табл. $\Pi.4.1$;
- выполнить вышерассмотренные действия, только теперь прибор нужно наклонять вправо и за угол наклона принять v_2 ;
 - привести прибор в горизонтальное положение;
- с помощью третьего подъемного винта наклонять прибор на себя (назад) до появления ошибки на экране электронного тахеометра. Занести значение диапазона компенсатора в колону v_3 табл. П.4.1;
- выполнить вышерассмотренные действия, только теперь прибор нужно наклонять от себя (вперед) и значение диапазона компенсатора занести в колонку ν_4 табл. $\Pi.4.1$.

Окончательное значение диапазона v_k с точностью до 0,1" вычислить по формуле

$$v_k = \frac{\sum \left| v_{cp,i} \right|}{4},\tag{4.1}$$

где $v_{cp,i} = \frac{\sum v_i}{3}$; v_i — значение диапазона работы компенсатора при *i*-м наклоне оси электронного тахеометра.

Результаты вычислений занести в табл. П.4.1.

3.4. Определить случайную и систематическую погрешности работы компенсатора

На расстоянии 10–15 м от электронного тахеометра закрепить стикер на стене и поставить на нем маленькую точку. В качестве марки также можно использовать стационарные марки в аудитории.

Расположить трегер электронного тахеометра на головке штатива так, чтобы один подъемный винт находился в коллимационной плоскости зрительной трубы при визировании на цель.

Рассчитать ряд значений наклонов оси электронного тахеометра v_i с шагом: v_k / 5 в пределах диапазона работы компенсатора $\pm v_k$. В середине это ряда включить нулевое значение $v_i = 0'00$ ". Результаты расчетов занести в соответствующую колонку табл. П.4.2.

Исследование выполняют в прямом и обратном ходах. В прямом ходе исследование начинают с положительных значений, а обратном – с отрицательных углов наклона оси электронного тахеометра.

В каждом ходе с помощью подъемных винтов последовательно устанавливают необходимое значение v_i по оси X(Y) компенсатора электронного тахеометра. Если наклон осуществляют в плоскости X компенсатора, тогда значение по оси Y удерживают близкое к нулю. Далее визируют на марку и берут отсчет по вертикальному кругу β_i .

Результаты измерений занести в табл. П.4.2 и вычислить случайную и систематическую погрешности по формулам

$$m_k = \sqrt{\frac{d_i^2}{2 \cdot N}}, \tag{4.2}$$

$$\Theta_k^{\mp} = \frac{\left[\Delta_i^{\mp}\right]}{2 \cdot N^{\mp}},\tag{4.3}$$

где $d_i = \beta_i^\Pi - \beta_i^O$; $\Delta_i = \beta_{\text{ср},i} - \beta_{\text{ср},o}$; $\beta_{\text{ср},i} = (\beta_i^\Pi + \beta_i^O)/2$; $\pm -$ обозначает отрицательный и положительный интервал угла наклона оси прибора; β_i^Π и β_i^O отсчет по вертикальному кругу для i-го наклона оси электронного тахеометра V_i в прямом и обратном ходе соответственно; N, N^\pm — количество разностей d_i и уклонений Δ_i^\pm соответственно.

Рассчитать систематическую погрешность на 1' наклона оси электронного тахеометра по формуле (8),

$$\Delta_k = \Delta_i / \nu_i. \tag{4.4}$$

В конце табл. П.4.2 привести результаты вычислений случайной и систематической погрешностей работы компенсатора.

4. Содержание отчета и контрольные вопросы

4.1. Каждый обучающийся представляет отчет, который должен включать следующее:

- титульный лист;
- оглавление;
- -1 Основные части и технические характеристики электронного тахеометра (см. п. 3.1);
 - -2 Содержание поверочных работ (см. 3.2);
- 3 Определения диапазона и систематической погрешности работы компенсатора на 1' наклона оси электронного тахеометра;
 - список литературы;
 - приложение А Результаты исследований электронного тахеометра.

Отчет оформляется в соответствии с требованиями, изложенными в разделах 5, 6 источника 4 (см. П.2).

4.2. Каждый обучающийся в рабочей тетради отвечают на следующие контрольные вопросы:

- 1. Что понимают под единством измерений?
- 2. Что понимается под поверкой средств измерений?
- 3. На какие типы подразделяют измерения по точности?
- 4. Каков общий порядок обработки прямых многократных измерений?
- 5. Как можно определить погрешность измерения?
- 6. Как определить циклическую погрешность и постоянную поправку светодальномера?
- 7. Как определяют среднюю квадратическую погрешность измерений горизонтальных и вертикальных углов?
- 8. Каков порядок исследования систематической погрешности компенсатора электронного тахеометра?
 - 9. В каком порядке выполняют поверку электронных тахеометров?
- 10. В каком порядке выполняют исследование влияния хода фокусирующей линзы на коллимационную погрешность и место нуля (место зенита)?

Таблица П.1.1

Определение ширины и толщины ленты рулетки

Дата	Штангенциркуль заводской №							
TT		Ширин	a, mm			Толщи	на, мм	
Наименование	начало	середина	конец	среднее	начало	середина	конец	среднее
Среднее								
Допустимое зна	ачение, м	IM		7–25				0,12-0,30
Определен	ия знач	нения отд	ельны	х интер	валов и	метрово		ица П.1.2 ервала

Контрольная линейка №

Дата

Урав	Уравнение контрольной линейки <u>L=</u>						
	П	рямой ход,	MM	O6	ратный ход	Ц, MM	Средняя
Интервал/ t ⁰ C	Л	П	$l_i^{\Pi} = \Pi - \Pi$	Л	П	$l_i^{\text{o}} = \Pi$ -Л	длина интервала $(l_{ m cp})$, мм
1 мм							
Среднее							
1 см							
Среднее							
1 дц							
Среднее							
1 м							

Метрологические характеристики

Операции	Резул	ьтаты			
Внешний осмотр					
Опробование					
	Значение параметра, мм				
Наименование параметра	доп.	факт.			
Ширина, мм	7–25				
Толщина, мм	0,12-0,30				
Отклонение длины ин	тервалов при температуре 20) °C:			
миллиметровых					
сантиметровых					
дециметровых					
метровых					

РЕЗУЛЬТАТЫ ПОВЕРКИ НИВЕЛИРНОЙ ДЕРЕВЯННОЙ РЕЙКИ

Таблица П.2.1

Определение правильности нанесения дециметровых делений

Дата		Контрольная линейка №
Уравнение	контрольн	ой линейки: L =
$t_{\text{Hay}} = $	_o <i>C</i>	$t_{\text{KOH}} = \underline{\hspace{1cm}}^{\text{O}} C$

Номер дециметра	контро линей	еты по ольной ке, мм жение	II-I ,	$O_{\rm cp} = \frac{II + I}{2},$	Ошибка дециметрового деления (Δ), мм	Случайная ошибка дециметрового деления $(\Delta_{ m CЛ})$, мм
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
				Σ		

Систематическая ошибка дециметрового деления:		
Наибольшие случайные ошибки дециметровых делений: +	_ и -	

Определение среднего метра

дата				контролі	ьная лин	неика №	
Уравнение к	онтро	ольно	й лине	йки: L=			
		Из	меренны	й интервал (<i>l</i> '), mm	Общая по- правка за	Действитель-
Ход/Интер- вал, дц	t, °C	Л	П	$l' = \Pi$ - Π	$l_{ m cp}^{\prime}$	длину и темпе- ратуру ли- нейки, мм	ная длина интервала ($\it l$), мм
Промой мон/							
Прямой ход/ 01–10							
01-10							
Среднее							
Обратный							
ход/							
10-01							
Среднее							
n = 1.8 M						Сумма	
Средняя длина	метров	ого ин	тервала	пейки №	по черно	ой стороне:	MM.

Таблица $\Pi.2.3$ Исследование перпендикулярности плоскости пятки к оси рейки

Дата	Обра	зцовый нивелир_	<u>№</u>	
No॒	Сторона	Левый край пятки	Центр пятки	Правый край пятки
приема	рейки	(a_1) , mm	(a_2) , mm	(a_3) , mm
1				
2				
3	Черная			
4	ep]			
5	Ь			
Среднее				
1				
2	В'			
3	Красная			
4	pa			
5	×			
Среднее				
Разность знач	_	Черная сторона	Красная сторона	Среднее
a_2	$-a_1$			
a_2	$-a_3$			

Метрологические характеристики

Операции	Результ	аты
Внешний осмотр		
Опробование		
Иомисторамия испамотра	Значение параметра, мм	
Наименование параметра	доп.	факт.
Отклонение при температуре 20 °C:		
дециметрового интервала		
метрового интервала		
от перпендикулярности плоскости пятки от оси рейки	0,5	

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ РАБОТЫ КОМПЕНСАТОРА НИВЕЛИРА

	Дата	Ниве	лир	№	
№ приема	Положение пузырька уровня	Отсчеты г задняя, а	по рейке, мм передняя, b	h=a-b, mm	σ_k , "/мин.
1 2					
3 4					
5				7	7 7
Среднее				$h_{\rm cp,o}$	$h_{\rm cp,o} - h_{\rm cp,o}$
1					
3					
4					
5					
Среднее				$h_{\text{cp,i}}$	$h_{\rm cp,1} - h_{\rm cp,o}$
1					
3					
4					
5					
Среднее				$h_{\mathrm{cp},i}$	$h_{\rm cp,2} - h_{\rm cp,o}$
2					
3					
4					
5				I ₂	lo lo
Среднее				$h_{\mathrm{cp},i}$	$h_{\rm cp,3} - h_{\rm cp,o}$
1 2					
3					
4					
5 Среднее				$h_{ m cp,i}$	$h_{\text{cp,4}} - h_{\text{cp,o}}$

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ РАБОТЫ КОМПЕНСАТОРА ЭЛЕКТРОННОГО ТАХЕОМЕТРА

Таблица П.4.1

Определение диапазона работы компенсатора

Дата электронныи тахеометр№								
No	Наклон							
	$v_{1,}$	ν ₂ ,	ν _{3,}	v_4 ,				
	0 "	0 "	0 "	0 "				
1								
2								
3								
Cp.								

Диапазон работы компенсатора электронного тахеометра составляет:_____

Таблица П.4.2

Результаты поверки работы компенсатора

Дата		элект	гронный тахео	метр	№		
№	Наклон прибора, v_i . "	$_{_{_{_{_{_{_{_{i}}}}}}}}$ ном $_{_{_{_{_{_{i}}}}}}$ ход, β_{i}^{Π}	о вертикаль- у кругу обратный ход, β_i^{o}	$eta_{\mathrm{cp},i}$	d_{i}	Δ_i	Δ_{k} , "/мин
		"	66				
1	$+v_k$						
	•••	•••				• • •	• • •
6	0 00			•••	•••		
•••		•••	•••		•••	•••	•••
11	- v _k						

$$m_k = \underline{\hspace{1cm}}; \ \Theta_k^+ = \underline{\hspace{1cm}}; \ \Theta_k^- = \underline{\hspace{1cm}}; \ \Delta_k^- = \underline{\hspace{1cm}}; \ \Delta_k^+ = \underline{\hspace{1cm}}.$$