МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан дорожно-транспортного факультета

/В.Л. Тюнин/

02 2025 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Строительная механика и металлические конструкции подъемно-транспортных, строительных, дорожных средств и оборудования»

Специальность 23.05.01 Наземные транспортно-технологические средства

Специализация <u>Подъемно-транспортные</u>, <u>строительные</u>, <u>дорожные</u> <u>средства</u> и <u>оборудование</u>

Квалификация выпускника инженер

Нормативный период обучения 5 лет и 11 м.

Форма обучения заочная

Год начала подготовки 2025

Автор программы

В.Л. Тюнин

Заведующий кафедрой Строительной техники и инженерной механики

Руководитель ОПОП

В.А. Жулай /

/ Р.А. Жилин /

Воронеж 2025

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Преподаваемая дисциплина предназначена для приобретения студентами теоретических знаний и практического умения выбирать материал, рассчитывать, конструировать и эксплуатировать металлические конструкции подъёмно-транспортных, строительных, дорожных средств и оборудования.

1.2. Задачи освоения дисциплины

- изучение основных положений по определению усилий и перемещений в элементах металлоконструкций при заданных внешних нагрузках;
- формирование требований к материалам, используемым в металлоконструкциях, методы расчета металлоконструкций;
- оценка надежности и долговечности металлоконструкций в зависимости от технических способов изготовления и условий эксплуатации;
- ознакомление с основами динамики металлоконструкций подъёмно-транспортных, строительных, дорожных средств и оборудования;
- изучение современных математических методов исследования, основанных на применении компьютерной техники;
- анализирование результатов расчетов и принимать по ним практические инженерные решения.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Строительная механика и металлические конструкции автомобилей и тракторов» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Строительная механика и металлические конструкции автомобилей и тракторов» направлен на формирование следующих компетенций:

ПК-1 - Способен управлять разработкой конструкций наземных транспортно-технологических средств и их компонентов

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-1	Знать особенности влияния изменений
	конструкции на технические параметры изделия;
	методы создания конструктивных форм, расчета
	и проектирования несущих конструкций
	наземных транспортно-технологических средств
	Уметь анализировать влияние технологических
	особенностей изготовления на технические
	характеристики компонентов АТС; разрабатывать

конкретные	варианты	конструкций	наземных		
транспортно-технологических средств					
Владеть методами проектирования конструкций					
наземных	транс	портно-технол	огических		
средств;	анализ	ировать	влияние		
технологических особенностей изготовления на					
технические	характерис	тики компонен	тов АТС		

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Строительная механика и металлические конструкции автомобилей и тракторов» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Виды учебной работы	Всего	Семестры
Виды учеоной расоты	часов	6
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	18	18
Самостоятельная работа	72	72
Курсовая работа	+	+
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

заочная форма обучения

Dayway wasaway nasamy	Всего	Семестры
Виды учебной работы		6
Аудиторные занятия (всего)	14	14
В том числе:		
Лекции	6	6
Практические занятия (ПЗ)	4	4
Лабораторные работы (ЛР)	4	4
Самостоятельная работа	157	157
Курсовая работа	+	+
Часы на контроль	9	9
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) Содержание разделов дисциплины и распределение **5.1** трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Введение. Кинематический анализ систем	Введение. Значение курса. Особенности металлоконструкций автомобилей и тракторов. Тенденции и перспективы совершенствования узлов металлоконструкций. Типы упругих систем. Геометрически неизменяемые, геометрически изменяемые и мгновенно изменяемые системы. Степень геометрической изменяемости и принцип образования геометрически неизменяемых шарнирно-стержневых систем.	2	2	_	6	10
2	Определение усилий в элементах шарнирно-стержневых и решетчатых статически определимых системах от действия подвижной нагрузки	Линии влияния в шарнирно-стержневых и решетчатых конструкциях, использование линий влияния для определения усилий в их элементах, при действии неподвижных нагрузок.	4	2	-	6	12
3	Перемещение упругих систем	Работа внешних и внутренних сил, связь между ними. Теоремы о взаимности работ и взаимности перемещений. Формула Мора для определения перемещений. Перемещение при изменении температурных условий. Использование формулы Мора для определения перемещений, правило Верещагина.	4	2	-	6	12
4	Методы расчета статически неопределимых систем	Статическая неопределимость, преобразование системы. Метод сил. Выбор основной системы. Канонические уравнения. Расчет плоских		2	-	6	10

		систем рамного.					
		систем рамного, решетчатого и смешанного					
		типов.					
5	M						
3	Матричный метод расчета и применение численных методов расчета при решении упругих систем металлоконструкций	Матричная алгебра как аппарат для расчета задач на ЭВМ. Расчет рам и решетчатых конструкций путем применения теории матриц. Метод конечных элементов и его применение. Метод конечных разностей и его	2	-	-	7	9
		применение к расчету					
		перекрестных балок.					
6	Основы динамики металлоконструкций	Определение моментов инерции элементов и узлов металлоконструкций относительно произвольной оси. Степень свободы динамической системы при колебаниях. Приведение масс и коэффициентов жесткостей в системах. Способы определения частот собственных колебаний. Дифференциальные уравнения движения систем при свободных и вынужденных колебаниях. Особенности динамических расчетов металлоконструкций машин.		-	-	7	9
7	Материалы металлоконструкций и методы расчета на статическую прочность	Марки и классы сталей, их характеристики. Влияние условий эксплуатации на изменение механических свойств сталей. Выбор марки стали. Сортамент. Прокатные, штампованные и гнутые профили. ГОСТ на материалы и прокатные профили. Виды нагрузок. Расчет по допускаемым напряжениям, коэффициенты запаса. Расчет по предельным состояниям. Критерии предельных состояний металлоконструкций. Коэффициенты перегрузки,		-	-	6	10

		однородности и условий					
		работы. Расчет на					
		надежность.					
8	Расчет и	Основные типы соединений					
	проектирование	и области их применения в					
	сварных и болтовых	металлоконструкциях					
	соединений.	машин.					
	Усталостная прочность						
	сварных узлов	виды, остаточные					
	сварных узлов	сварочные напряжения и					
		способы их уменьшения.					
		Прочность сварных	4	2		7	13
		*	4	2	-	,	13
		соединений, нормы					
		проектирования и расчета.					
		Механика усталостного					
		разрушения, влияние					
		перегрузок. Повышение					
		долговечности при					
		упрочняющих способах					
		технологической обработки					
0		сварных узлов.					
9	Балочные конструкции	Конструкция и расчет					
		стрелы и рукояти					
		одноковшового экскаватора					
		с оборудованием прямая	4	4	8	7	23
		лопата. Общая					
		устойчивость балочных					
		конструкций, составные					
		сварные балки.					
10	Решетчатые	Конструкции решетчатых					
	конструкции	систем. Расчет стрел и					
		башен строительных	2			7	9
		кранов. Расчет панелей	2	-	-	7	9
		поясов, раскосов и стоек на					
		устойчивость. Предельные					
		гибкости сжатых элементов.					
11	Рамы	Конструкция рамы					
		рабочего оборудования					
		бульдозера, тяговой рамы					
		скрепера, основной рамы				_	
		автогрейдера. Расчет усилий	6	4	10	7	27
		в элементах рамы					
		бульдозера, тяговой рамы					
		скрепера, основной рамы					
		автогрейдера.					
		Итого	36	18	18	72	14
	3a(очная форма обучения		10	10	, <u>, </u>	
1	Введение.	Введение. Значение курса.					
	Кинематический анализ	5 1	4	1		1.4	
	систем	металлоконструкций	1	1	-	14	16
		металлоконструкции автомобилей и тракторов.					
		автомобилси и гракторов. Тенденции и перспективы					

		совершенствования узлов металлоконструкций. Типы упругих систем. Геометрически					
		неизменяемые, геометрически изменяемые и мгновенно изменяемые системы. Степень геометрической					
		изменяемости и принцип образования геометрически неизменяемых шарнирно-стержневых систем.					
	и решетчатых статически определимых системах от действия подвижной нагрузки	нагрузок.	1	1	-	14	16
3	Перемещение упругих систем	Работа внешних и внутренних сил, связь между ними. Теоремы о взаимности работ и взаимности перемещений. Формула Мора для определения перемещений. Перемещение при изменении температурных условий. Использование формулы Мора для определения перемещений, правило Верещагина.	1	-1	1	14	15
	Методы расчета статически неопределимых систем	Статическая неопределимость, преобразование системы. Метод сил. Выбор основной системы. Канонические уравнения. Расчет плоских систем рамного, решетчатого и смешанного типов.	1	-	-	14	15
	Матричный метод расчета и применение численных методов расчета при решении упругих систем металлоконструкций	Матричная алгебра как аппарат для расчета задач на ЭВМ. Расчет рам и решетчатых конструкций путем применения теории матриц. Метод конечных элементов и его применение. Метод	-	-	-	15	15

		конечных разностей и его применение к расчету					
		перекрестных балок.					
6	Основы динамики металлоконструкций	Определение моментов инерции элементов и узлов металлоконструкций относительно произвольной оси. Степень свободы динамической системы при колебаниях. Приведение масс и коэффициентов жесткостей в системах. Способы определения частот собственных колебаний. Дифференциальные уравнения движения систем при свободных и вынужденных колебаниях.	-	-	-	15	15
		Особенности динамических расчетов металлоконструкций машин.					
7	Материалы металлоконструкций и методы расчета на статическую прочность	Марки и классы сталей, их характеристики. Влияние условий эксплуатации на изменение механических свойств сталей. Выбор марки стали. Сортамент. Прокатные, штампованные и гнутые профили. ГОСТ на материалы и прокатные профили. Виды нагрузок. Расчет по допускаемым напряжениям, коэффициенты запаса. Расчет по предельным состояниям. Критерии предельных состояний металлоконструкций. Коэффициенты перегрузки, однородности и условий работы. Расчет на надежность.	1	-	-	14	15
8	Расчет и проектирование сварных и болтовых соединений. Усталостная прочность сварных узлов	Основные типы соединений и области их применения в металлоконструкциях машин. Сварные соединения, их виды, остаточные сварочные напряжения и способы их уменьшения. Прочность сварных соединений, нормы	-	-	-	15	15

	проектирования и расчета. Механика усталостного разрушения, влияние перегрузок. Повышение долговечности при упрочняющих способах технологической обработки сварных узлов.					
9 Балочные конструкции I	Конструкция и расчет стрелы и рукояти одноковшового экскаватора с оборудованием прямая лопата. Общая устойчивость балочных конструкций, составные сварные балки.	-	1	2	14	17
конструкции (Конструкции решетчатых систем. Расчет стрел и башен строительных кранов. Расчет панелей поясов, раскосов и стоек на устойчивость. Предельные гибкости сжатых элементов.	1	-	-	14	15
11 Рамы	Конструкция рамы рабочего оборудования бульдозера, тяговой рамы скрепера, основной рамы автогрейдера. Расчет усилий в элементах рамы бульдозера, тяговой рамы скрепера, основной рамы автогрейдера.	-	1	2	14	17
	Итого	6	4	4	157	171

5.2 Перечень лабораторных работ

No	№ раздела	Наименование лабораторных работ	Трудоемкость
Π/Π	дисциплины	11win the 2 win to the open opin process	(час)
1.	9	Изучение металлоконструкций и разработка сварных соединений стрелы рабочего оборудования	4/1
		экскаватора прямая лопата.	
2.	9	Изучение металлоконструкции и разработка сварных соединений рукояти рабочего	4/1
		оборудования экскаватора прямая лопата.	
3.	11	Изучение металлоконструкции и разработка сварных соединений рамы бульдозера с неповоротный отвалом.	4/1
4.	11	Изучение металлоконструкции и разработка сварных соединений тяговой рамы скрепера.	4/0,5
5.	11	Изучение металлоконструкции и разработка сварных соединений рамы автогрейдера.	2/0,5

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы в 6 семестре для очной формы обучения.

Примерная тематика курсовых работ:

- Стрела рабочего оборудования экскаватора прямая лопата;
- Однобалочная рукоять рабочего оборудования экскаватора прямая лопата;
- Стрела и рукоять рабочего оборудования экскаватора обратная лопата;
- Рама бульдозера с неповоротным отвалом;
- Тяговая рама скрепера;
- Основная рама автогрейдера.

Задачи, решаемые при выполнении курсовой работы:

- Определение внешних неизвестных сил по расчётной схеме;
- Определение внутренних усилий и параметров сечений;
- Определение коэффициента запаса прочности и сравнение его с допустимым.

Курсовая работа включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	Знать особенности влияния изменений конструкции на технические параметры изделия; методы создания конструктивных форм, расчета и проектирования несущих конструкций наземных	Знает особенности влияния изменений конструкции на технические параметры изделия; методы создания конструктивных форм, расчета и проектирования несущих конструкций наземных транспортно-технологическ их средств	работ в срок, предусмотренн ый в рабочих	Невыполнение работ в срок, предусмотренный в рабочих программах
	технологических особенностей изготовления на технические характеристики компонентов ATC; разрабатывать конкретные	Умеет анализировать влияние технологических особенностей изготовления на технические характеристики компонентов ATC; разрабатывать конкретные варианты конструкций наземных	работ в срок, предусмотренн	Невыполнение работ в срок, предусмотренный в рабочих программах

транспортно-технологических	транспортно-технологически		
средств	х средств		
Владеть методами	Владеет методами	Выполнение	Невыполнение
проектирования	проектирования	работ в срок,	работ в срок,
конструкций наземных	конструкций наземных	предусмотренн	предусмотренн
транспортно-технологическ	транспортно-технологическ	ый в рабочих	ый в рабочих
их средств; анализировать	их средств; анализировать	программах	программах
влияние технологических	влияние технологических		
особенностей изготовления	особенностей изготовления		
на технические	на технические		
характеристики	характеристики		
компонентов АТС	компонентов АТС		

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивани я	Отлично	Хорошо	Удовл.	Неудовл.
ПК-1	Знать особенности влияния изменений конструкции на технические параметры изделия; методы создания конструктивных форм, расчета и проектирования несущих конструкций наземных транспортно-технологичес ких средств	· · · · · · · · · · · · · · · · · · ·	Выполнен ие теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильны х ответов
	Уметь анализировать влияние технологических особенностей изготовления	стандартны х практически	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	Владеть методами проектирования конструкций наземных	прикладных задач в конкретной предметной	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - 7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Какие нагрузки рассматривают в статических задачах строительной механики?
- а) Нагрузки, не изменяющиеся во времени.
- б) Нагрузки, изменяющиеся во времени.
- в) Инерционные силы.
- г) Импульсивные нагрузки.
- д) Инерционно-импульсные нагрузки.
- 2. В шарнирно неподвижной опоре, находящейся в плоскости, какие возникают реакции?
- а) Одна реактивная сила
- б) Две реактивные силы, направленные вдоль наложенных связей
- в) Одна реактивная сила и момент
- г) Три реактивные силы
- д) Две реактивные силы и момент.
- 3. Сколько связей в шарнирно подвижной опоре, находящейся в плоскости?
- а) Одна.
- б) Две.
- в) Три.
- г) Четыре.
- д) Пять.
- 4. Сколько связей в шарнирно неподвижной опоре, находящейся в плоскости?
- а) Одна.
- б) Две.
- в) Три.
- г) Четыре.
- д) Пять.
- 5. Сколько связей в заделке, находящейся в плоскости?
- а) Одна.
- б) Две.
- в) Три.
- г) Четыре.
- д) Пять
- 6. Какой вид имеют линии влияния опорных реакций в плоской ферме?
- а) Не совпадают с линиями влияний балочных опорных реакций.
- б) Имеют нелинейный вид.
- в) Имеют параболический вид.
- г) Совпадают с линиями влияний балочных опорных реакций.
- д) Имеют вид ломаных линий.
- 7. Какие допущения используют при расчете ферм?
- а) Наличие лишних связей.

- б) Соединения в узлах представляют идеальные шарниры.
- в) Соединения в узлах жесткие.
- г) Статическая определимость.
- д) Кинематическая определимость.
- 8. Что представляет график линия влияния внутреннего усилия?
- а) График изменения внутреннего усилия в определенном сечении в зависимости от положения единичной движущейся силы
- б) График изменения внутреннего усилия в определенном сечении в зависимости от положения двух единичных движущихся сил
- в) График изменения внутреннего усилия в определенном сечении в зависимости от изменения геометрических характеристик сечений
- г) График изменения внутреннего усилия в определенном сечении в зависимости от положения распределенной движущейся нагрузки
- д) График изменения внутреннего усилия в зависимости от положения единичной движущейся силы.
- 9. Что представляют ординаты линии влияния внутреннего усилия?
- а) Значение внутреннего усилия в зависимости от координаты единичной движущейся силы.
- б) Значение внутреннего усилия в зависимости от положения двух единичных движущихся сил.
- в) Значение внутреннего усилия в зависимости от положения распределенной нагрузки.
- г) Значение внутреннего усилия в зависимости от геометрических характеристик сечений.
- д) Значение внутреннего усилия в зависимости от физических характеристик сечений.
- 10. Степень статической неопределимости для плоской рамы можно определить по формуле n=3K-Ш. Что означает величина Ш?
- а) Количество опорных шарниров.
- б) Количество кратных шарниров.
- в) Количество связей в системе.
- г) Количество замкнутых контуров.
- д) Количество простых шарниров в замкнутых контурах.
- 11. Что означает левая часть следующей формулы:

$$\Delta_{kf} = \sum \int \frac{\overline{M}_k M_f dx}{EI}$$

- а) Перемещения при растяжении-сжатии.
- б) Перемещения при кручении.
- в) Перемещения при сдвиге.
- г) Перемещения при изгибе в двух плоскостях.
- д) Перемещения при изгибе.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. В шарнирно подвижной опоре какие возникают реакции?
- а) Реактивная сила, направленная вдоль наложенной связи
- б) Реактивный момент.
- в) Реактивные силы в трех направлениях.
- г) Реактивная сила и реактивный момент.
- д) Реактивные силы в трех направлениях и реактивный момент.
- 2. Как обозначается жесткость на изгиб?
- a) EA.
- б)ЕІ.
- в) GA.
- Γ) GI_p .
- д) GI_{кр}.
- 3. По какой формуле можно определить степень свободы плоской системы W, если Д число дисков, Ш количество простых шарниров, C_0 количество опорных связей?
- a) W= $(3D 2III C_0)$
- б) W=3К-Ш
- B) $W=n_y+n_{xy}$
- Γ) W= (2Y C C_o)
- д) $W = 3D 2III C_o$.
- 4. Какие усилия возникают в статически определимой плоской раме от поперечной нагрузки?
- а) Продольные, поперечные силы и изгибающий момент.
- б) Поперечные силы и изгибающий момент.
- в) Продольные силы и изгибающий момент.
- г) Продольные и сдвигающие усилия.
- д) Поперечные и сдвигающие усилия.
- 5. Перемещения в упругой системе можно определять по следующей формуле:

$$\Delta_{kf} = \sum \int \frac{\overline{M}_k M_f dx}{EI} + \sum \int \frac{\overline{N}_k N_f dx}{EA} + \eta \sum \int \frac{\overline{Q}_k Q_f dx}{GA}$$

Перемещения от каких деформаций выражает первая сумма?

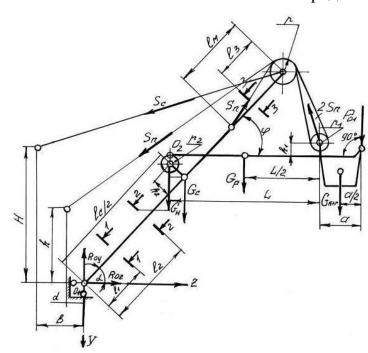
- а) От растяжения.
- б) От изгиба.
- в) От сжатия с изгибом.
- г) От сдвига.
- д) От кручения.

- 6. Какой вид имеет линия влияния опорной реакции в однопролетной шарнирно опертой балке?
- а) Прямая линия с ординатой равной 1 в одной опоре и ординатой равной нулю в другой опоре.
- б) Парабола с нулевыми ординатами в двух опорах.
- в) Линия с ординатами равными единице в двух опорах.
- 7. Какие системы относятся к статически определимым?
- а) Геометрически неизменяемые системы, в которых имеются лишние связи.
- б) Геометрически изменяемые системы.
- в) Мгновенно изменяемые системы.
- г) Геометрически неизменяемые, в которых нет лишних связей.
- д) Механизмы или кинематическая цепь.
- 8. Потенциальная энергия деформации упругой системы определяется по следующей формуле:

$$U = \sum \int \frac{M^2 dx}{2EI} + \sum \int \frac{N^2 dx}{2EA} + \sum \int \frac{Q^2 dx}{2GA} \eta$$

Какой вид деформации описывает вторая сумма в правой части?

- а) Растяжение сжатие.
- б) Изгиб.
- в) Растяжение и изгиб.
- г) Сдвиг.
- д) Кручение.
- 9. Степень свободы плоской системы определяется по следующей формуле:

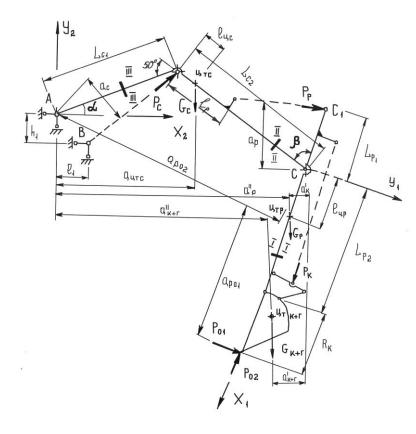

$$W=3D-2III-C_o$$
,

где Д- число дисков, Ш — количество простых шарниров, С $_{\rm o}$ — количество опорных связей. Если W<0, то система

- а) Геометрически изменяемая.
- б) Геометрически неизменяемая с лишними связями.
- в) Геометрически неизменяемая без лишних связей.
- г) Мгновенно изменяемая.
- д) Не может быть принята в качестве расчетной схемы.
- 10. Теорема о взаимности перемещений дает равенство единичных перемещений для каких систем?
- а) Неупругих.
- б) Пластических.
- в) Упругих.
- г) Геометрически нелинейных.
- д) Физически нелинейных.

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Расчётная схема какой машины представлена на рисунке?

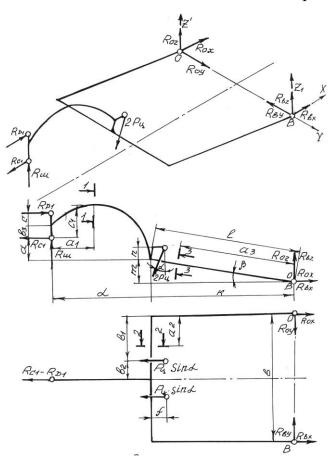

- А. Бульдозера с неповоротным отвалом Б. Экскаватора с оборудованием прямая лопата
- В. Экскаватора с оборудованием обратная лопата
- Г. Скрепера
- Д. Автогрейдера

2. Потенциальная энергия деформации упругой системы определяется по следующей формуле:

$$U = \sum \int \frac{M^2 dx}{2EI} + \sum \int \frac{N^2 dx}{2EA} + \sum \int \frac{Q^2 dx}{2GA} \eta$$

Какой вид деформации описывает третья сумма в правой части?

- а) Растяжение сжатие.
- б) Изгиб.
- в) Растяжение и изгиб.

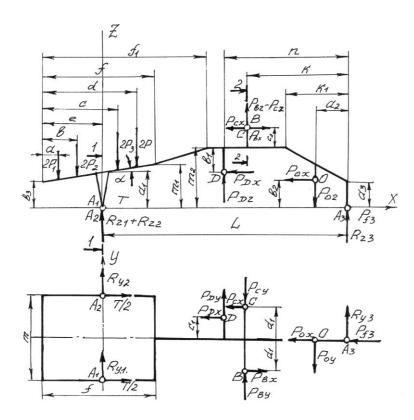

- г) Сдвиг.
- д) Кручение.
- 3. Расчётная схема какой машины представлена на рисунке?
- А. Бульдозера с неповоротным отвалом Б. Экскаватора с
- Б. Экскаватора с оборудованием прямая лопата
- В. Экскаватора с оборудованием обратная лопата
- Г. Скрепера
- Д. Автогрейдера
- 4. Что означает левая часть следующей формулы:

$$\Delta_{kf} = \sum \int \frac{\overline{N}_k N_f dx}{EA}$$

- а) Перемещения при кручении.
- б) Перемещения при изгибе.
- в) Перемещения при растяжении-сжатии.
- г) Перемещения при сдвиге.
- д) Перемещения при изгибе в двух плоскостях.
- 5. Степень свободы плоской системы определяется по следующей формуле: $W=3D-2 \coprod -C_o$,

где $\ \, Д$ - число дисков, $\ \, \coprod$ – количество простых шарниров, $\ \, C_o$ – количество опорных связей. Если $\ \, W>0$, то система

- а) Геометрически изменяемая.
- б) Геометрически неизменяемая без лишних связей.
- в) Геометрически неизменяемая с лишними связями.
- г) Мгновенно изменяемая.
- д) Может быть принята в качестве расчетной схемы.
 - 6. Расчётная схема какой машины представлена на рисунке?


- А. Бульдозера с неповоротным отвалом
- Б. Экскаватора с оборудованием прямая лопата
- В. Экскаватора с оборудованием обратная лопата
- Г. Скрепера
- Д. Автогрейдера

7. Перемещения в упругой системе можно определять по следующей формуле:

$$\Delta_{kf} = \sum \int \frac{\overline{M}_k M_f dx}{EI} + \sum \int \frac{\overline{N}_k N_f dx}{EA} + \eta \sum \int \frac{\overline{Q}_k Q_f dx}{GA}$$

От чего зависит величина η в правой части?

- а) От изгибающего момента.
- б) От поперечной силы.
- в) От формы поперечного сечения.
- г) От продольной силы.
- д) От жесткости системы.
- 8. Какие уравнения используются при решении статически определимых задач строительной механики?
- а) Уравнения совместности деформаций.
- б) Уравнения равновесия.
- в) Кинематические уравнения.
- г) Уравнения равновесия совместно с кинематическими уравнениями.
- д) Геометрические уравнения.
- 9. По какой формуле можно определить степень статической неопределимости для плоской системы n, если \mathcal{L} число дисков, \mathbf{U} количество простых шарниров, \mathbf{C}_{o} количество опорных связей?
- a) n= $(3D 2III C_0)$
- б) n= (3К-Ш)
- B) $n = -(3D 2III C_0)$
- Γ) $n=n_y+n_{\pi}$
- д) $n = (2Y C C_0)$.
 - 10. Расчётная схема какой машины представлена на рисунке?

- А. Бульдозера с неповоротным отвалом Б. Экскаватора с оборудованием прямая лопата
- В. Экскаватора с оборудованием обратная лопата
- Г. Скрепера
- Д. Автогрейдера

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом

7.2.5 Примерный перечень заданий для подготовки к экзамену

- 1. Строительная механика. Значение курса, основные задачи. Особенности металлоконструкций наземных транспортно-технологических средств.
- 2. Изменяемые и неизменяемые системы. Условия геометрической неизменяемости.
- 3. Линии влияния в балочных металлоконструкциях.
- 4. Линии влияния в фермах. Основные определения и понятия.
- 5. Расчет перемещений в упругих системах. Работа внешних сил.
- 6. Теорема о взаимности работ (Теорема Бетти).
- 7. Формула Мора. Назначение, физический смысл, возможные приложения.
- 8. Правило Верещагина. Определение, область применения, физический смысл.
- 9. Статически неопределимые системы. Расчет систем методом сил.
- 10. Основы матричных методов расчёта металлоконструкций строительных и дорожных машин.
- 11.Основы динамики металлоконструкций наземных транспортно-технологических средств.
- 12. Материалы применяемые в металлоконструкциях наземных транспортно-технологических средств. Сортамент.
- 13. Основные методы расчета на прочность металлоконструкций наземных транспортно-технологических средств.
- 14. Расчет и проектирование сварных и болтовых соединений.
- 15. Расчёт сварных швов тяговой рамы скрепера.
- 16. Расчёт сварных швов рабочего оборудования бульдозера.
- 17. Расчёт на прочность тяговой рамы скрепера.
- 18. Расчёт на прочность толкающего бруса бульдозера с неповоротным отвалом.
- 19. Расчёт на прочность стрелы рабочего оборудования экскаватора «прямая лопата».
- 20. Расчёт на прочность рукояти рабочего оборудования экскаватора «прямая лопата».
- 21. Расчёт на прочность основной рамы автогрейдера.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по билетам, каждый из которых содержит 2 вопроса.

- 1. Оценка «Неудовлетворительно» ставится в случае, если:
- Студент демонстрирует небольшое понимание экзаменационных вопросов и заданий. Многие требования, предъявляемые к ним не выполнены.
- Студент демонстрирует непонимание экзаменационных вопросов и заданий.

- У студента нет ответа на экзаменационные вопросы и задания. Не было попытки их выполнить.
 - 2. Оценка «Удовлетворительно» ставится в случае, если:
- В основном правильные и конкретные, без грубых ошибок ответы на экзаменационные вопросы при неточностях и несущественных ошибках в освещении отдельных положений.
 - 3. Оценка «Хорошо» ставится в случае, если:
- У студента последовательные, правильные, конкретные ответы на вопросы экзаменационного билета; при отдельных несущественных неточностях.
 - 4. Оценка «Отлично» ставится, если:
- У студента логически последовательные, содержательные, полные, правильные и конкретные ответы на все вопросы экзаменационного билета и дополнительные вопросы; использование в необходимой мере в ответах на вопросы материалов всей рекомендованной литературы.

При проведении экзамена допускается замена одного из теоретических вопросов билета практическими заданиями в виде тест-вопросов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемо й компетенции	Наименование оценочного средства
1	Введение. Кинематический анализ систем	ПК-1	Тест, защита лабораторных работ, вопросы к экзамену
2	Определение усилий в элементах шарнирно-стержневых и решетчатых статически определимых системах от действия подвижной нагрузки	ПК-1	Тест, защита лабораторных работ, вопросы к экзамену
3	Перемещение упругих систем	ПК-1	Тест, защита лабораторных работ, вопросы к экзамену
4	Методы расчета статически неопределимых систем	ПК-1	Тест, защита лабораторных работ, вопросы к экзамену
5	Матричный метод расчета и применение численных методов расчета при решении упругих систем металлоконструкций	ПК-1	Тест, защита лабораторных работ, вопросы к экзамену
6	Основы динамики металлоконструкций	ПК-2	Тест, защита лабораторных работ, вопросы к экзамену
7	Материалы металлоконструкций и методы расчета на статическую прочность	ПК-1	Тест, защита лабораторных работ, вопросы к экзамену
8	Расчет и проектирование сварных и болтовых соединений. Усталостная	ПК-1	Тест, защита лабораторных работ,

	прочность сварных узлов		вопросы к экзамену
9	Балочные конструкции	ПК-1	Тест, защита лабораторных работ, вопросы к экзамену
10	Решетчатые конструкции	ПК-1	Тест, защита лабораторных работ, вопросы к экзамену
11	Рамы	ПК-1	Тест, защита лабораторных работ, вопросы к экзамену

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Федоров, Ю. А. Строительная механика и металлические конструкции : Учебное пособие / Федоров Ю. А. Иваново : Ивановский государственный архитектурно-строительный университет, ЭБС ACB, 2013. 196 с. ISBN 978-5-88015-261-2. URL: http://www.iprbookshop.ru/20547.html.
- 2. Васильков, Генрих Васильевич. Строительная механика. Динамика и устойчивость сооружений [Текст] : учебное пособие : рекомендовано Учебно-методическим объединением. Санкт-Петербург ; Москва ;

- Краснодар : Лань, 2013 (Архангельск : ОАО "Издат.-полиграф. предприятие "Правда Севера", 2012). 254, [1] с.
- 3. Шеин, Александр Иванович. Краткий курс строительной механики [Текст]: учебник: рекомендовано УМО. Москва: Бастет, 2011 (Ярославль: ОАО "Ярославский полиграфкомбинат", 2011). 270 с.
- 4. Соколов, С. А. Строительная механика и металлические конструкции машин: Учебник / Соколов С. А. Санкт-Петербург: Политехника, 2012. 422 с. ISBN 978-5-7325-0969-4. URL: http://www.iprbookshop.ru/15913.html.
- 5. Старцева, Луиза Владимировна.
 - Строительная механика в примерах и задачах [Текст] : учебное пособие. Москва : АСВ, 2014 (Чехов: ОАО "Первая Образцовая тип.", фил. "Чеховский Печатный Двор", 2013). 222 с.
- 6. Глотов, В. А. Строительная механика и металлические конструкции машин : учебное пособие / В.А. Глотов; А.В. Зайцев; В.Ю. Игнатюгин. Москва|Берлин : Директ-Медиа, 2015. 95 с. ISBN 978-5-4475-5266-4. URL: http://biblioclub.ru/index.php?page=book&id=426940.
- 7. Техника и технологии наземного транспорта [Электронный ресурс] : методические указания к подготовке курсовых проектов и работ УГСН 23.00.00 для студентов всех специальностей и форм обучения (бакалавриат, специалитет, магистратура) / сост. : В. А. Жулай, В. Л. Тюнин, Н. М. Волков, Д. Н. Дегтев, А. Н. Щиенко. Воронеж: Воронежский государственный технический университет, 2020.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

LibreOffice

MicrosoftOfficeWord 2013/2007

MicrosoftOfficeExcel 2013/2007

ABBYY FineReader 9.0

Photoshop Extended CS6 13.0 MLP

Acrobat Professional 11.0 MLP

CorelDRAW Graphics Suite X6

"Программная система для обнаружения текстовых заимствований в учебных и научных работах "Антиплагиат.ВУЗ""

Модуль "Программный комплекс поиска текстовых заимствований в открытых источниках сети интернет "Антиплагиат-интернет""

APM WinMachine v. 9.4

7zip

AdobeAcrobatReader

MozillaFirefox

Ресурс информационно-телекоммуникационной сети «Интернет»:

http://www.edu.ru/

Образовательный портал ВГТУ

Информационная справочная система:

http://window.edu.ru https://wiki.cchgeu.ru/

Современные профессиональные базы данных:

Агентство автомобильного транспорта

Адрес pecypca: https://rosavtotransport.ru/ru/

Федеральный портал «Инженерное образование»

Адрес ресурса: http://window.edu.ru/resource/278/45278 Министерство транспорта Российской Федерации

Адрес ресурса: https://www.mintrans.ru/

NormaCS

Адрес pecypca: http://www.normacs.ru/

База данных zbMath

Адрес pecypca: https://zbmath.org/

Открытые архивы журналов издательства «Машиностроение»

Aдрес pecypca: http://www.mashin.ru/eshop/journals/

Грузовой и общественный транспорт Российской Федерации

Адрес ресурса: http://transport.ru/

Журнал Наука и техника транспорта

http://ntt.rgotups.ru/

Министерство транспорта РФ

https://mintrans.gov.ru/

Библиотека Российской открытой академии транспорта

http://transport.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для обеспечения лекционных занятий мультимедийной техникой используются ноутбук ASUS, компьютерный проектор, переносной проекционный экран. Для обеспечения лабораторных занятий используются Pentium-630 компьютеры (9 шт.) на базе co специализированным программным обеспечением, плоттер, принтер

При проведении лабораторных работ используется следующее учебно-лабораторное оборудование:

1. Модели металлоконструкций наземных транспортно-технологических средств (рабочее оборудование бульдозера, тяговая рама скрепер, основная рама автогрейдера, стрела и

2. Плакаты металлоконструкций транспортно-технологических средств.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Строительная механика и металлические конструкции автомобилей и тракторов» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета на прочность базовых элементов наземных транспортно-технологических средств. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсовой работы изложена в учебно-методическом пособии. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой работы, защитой курсовой работы.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим

	разделом учебника, проработать дополнительную		
	литературу и источники, решить задачи и выполнить другие		
	письменные задания.		
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает		
	следующие составляющие:		
	- работа с текстами: учебниками, справочниками,		
	дополнительной литературой, а также проработка		
	конспектов лекций;		
	- выполнение домашних заданий и расчетов;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференци		
	олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует		
промежуточной аттестации	систематически, в течение всего семестра. Интенсивная		
	подготовка должна начаться не позднее, чем за		
	месяц-полтора до промежуточной аттестации. Данные перед		
	экзаменом три дня эффективнее всего использовать для		
	повторения и систематизации материала.		

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

			Подпись
№ п/п	Перечень вносимых изменений	Дата внесения изменений	кафедрой,
			ответственной за
			реализацию ОПОП