МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Но. декана ФМАТ

В.И. Ряжских

машиностроения

За » аблугот 2017 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Материалы и технологические процессы в машиностроении»

Направление подготовки 27.03.01 СТАНДАРТИЗАЦИЯ И МЕТРОЛОГИЯ

Профиль Стандартизация и сертификация

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 5 лет

Форма обучения очная / заочная

Год начала подготовки <u>2017</u>

Заведующий кафедрой Материаловедения и физики металлов

Жиляков Д.Г.

Руководитель ОПОП _______ Юрьев В.А.

Воронеж 2017

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

является формирование знаний в области физических основ материаловедения, формирование и развитие компетенций в соответствии с образовательной программой, приобретение студентами знаний о материалах, структуре технологических процессов современного машиностроительного производства и этапах жизненного цикла выпускаемых изделий.

1.2. Задачи освоения дисциплины

приобретение студентами практических навыков в области изучения материалов и технологических процессов в машиностроении.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Материалы и технологические процессы в машиностроении» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Материалы и технологические процессы в машиностроении» направлен на формирование следующих компетенций:

ОПК-2 - способностью и готовностью участвовать в организации работы по повышению научно-технических знаний, в развитии творческой инициативы, рационализаторской и изобретательской деятельности, во внедрении достижений отечественной и зарубежной науки, техники, в использовании передового опыта, обеспечивающих эффективную работу учреждения, предприятия;

ПК-20 - способностью проводить эксперименты по заданным методикам с обработкой и анализом результатов, составлять описания проводимых исследований и подготавливать данные для составления научных обзоров и публикаций.

Компетенция	Результаты обучения, характеризующие сформированность компетенции				
ОПК-2	знать основные группы и классы современных материалов, их свойства и области применения; основные закономерности фазовых и структурных превращений; маркировку, классификацию сплавов на основе железа уметь анализировать фазовые превращения при нагре-				
	вании и охлаждении сплавов, пользуясь диаграммами состояния двойных систем				
	владеть практическими навыками работы на металлографическом микроскопе				
ПК-20	знать нормативную и техническую документацию, находящуюся в открытом доступе				
	уметь применять основные типы современных материа-				

лов для решения производственных задач; обобщать, анализировать, воспринимать информацию, сочетать теорию и практику

владеть основами методов исследования, анализа и моделирования свойств материалов, физических и химических процессов в них, обработки и модифицирования материалов; навыками выбора материалов для заданных условий эксплуатации с учетом требований технологичности, экономичности, надежности и долговечности, экологических последствий их применения

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Материалы и технологические процессы в машиностроении» составляет 7 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Duran was postary	Всего	Семе	стры
Виды учебной работы	часов	6	7
Аудиторные занятия (всего)	90	36	54
В том числе:			
Лекции	36	18	18
Практические занятия (ПЗ)	36	18	18
Лабораторные работы (ЛР)	18	1	18
Самостоятельная работа	126	72	54
Курсовая работа	+		+
Часы на контроль	36	1	36
Виды промежуточной аттестации -		ı	1
экзамен, зачет	+	+	+
Общая трудоемкость:			
академические часы	252	108	144
зач.ед.	7	3	4

заочная форма обучения

зао так форма обутения				
Ριμμι γιιοδιιού ποδοπι	Всего	C	еместрь	I
Виды учебной работы Аудиторные занятия (всего) В том числе: Лекции Практические занятия (ПЗ) Лабораторные работы (ЛР) Самостоятельная работа Курсовая работа	часов	8	9	10
Аудиторные занятия (всего)	18	12	6	-
В том числе:				
Лекции	6	4	2	-
Практические занятия (ПЗ)	6	4	2	-
Лабораторные работы (ЛР)	6	4	2	-
Самостоятельная работа	221	128	87	6
Курсовая работа	+		+	
Контрольная работа	+	+		
Часы на контроль	13	4	9	-

Виды промежуточной аттестации - экзамен, зачет	+	+	+	
Общая трудоемкость:				
академические часы	252	144	102	6
зач.ед.	7	4	2.83	0.17

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

		очная форма обуче	1111/1	,	1		
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Конструкционные материалы.	Краткая характеристика основных эксплуатационных и технологических свойств материалов. Обоснование необходимости получения и исследования материалов с различными свойствами. Основные группы материалов, применяемые в машиностроении. Классификация конструкционных сталей. Высокопрочные стали и сплавы. Коррозионностойкие материалы. Жаростойкие и жаропрочные материалы. Хладостойкие материалы. Радиационностойкие материалы. Материалы с высокими упругими свойствами. Неметаллические материалы. Композиционные материалы.	6	6	4	20	36
2	Материалы с особыми свойствами.	Материалы с особыми магнитными свойствами. Материалы с особыми тепловыми свойствами. Аморфные материалы. Сплавы с эффектом памяти формы и сверхупругостью. Выбор материала для конкретного изделия. История развития технологических процессов обработки материалов. Роль ГОСТов.	6	6	4	20	36
3	Основы литейного про- изводства.	Оборудование и оснастка литейного производства. Технология получения отливок в песчано-глинистых формах. Специальные способы литья. Контроль качества изделий в литейном производстве.	6	6	4	20	36
4	лением.	Классификация методов ОМД. Холодная и горячая объемная штамповка. Операции листовой штамповки. Физико-механические основы ОМД. Оборудование и инструмент для ОМД.	6	6	2	22	36
5	кой и пайкой.	Классификация видов сварки и пайки. Оборудование и технология сварки плавлением. Оборудование и технология сварки давлением. Технология пайки. Контроль качества при сварке и пайке.	6	6	2	22	36
6	Обработка металлов резанием.	Способы обработки металлов резанием. Оборудование и оснастка для обработки металлов резанием. Контроль качества изготовления деталей резанием. Финишные и специальные методы обработки. Оборудование и приемы слесарных работ.	6	6	2	22	36
i		Итого	36	36	18	126	216

заочная форма обучения

N	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Всего,

			1	зан.	зан.		час
1	Конструкционные материалы.	Краткая характеристика основных эксплуатационных и технологических свойств материалов. Обоснование необходимости получения и исследования материалов с различными свойствами. Основные группы материалов, применяемые в машиностроении. Классификация конструкционных сталей. Высокопрочные стали и сплавы. Коррозионностойкие материалы. Жаростойкие и жаропрочные материалы. Хладостойкие материалы. Радиационностойкие материалы. Радиационностойкие материалы. Материалы с высокими упругими свойствами. Неметаллические материалы. Композиционные материалы.	2	-	2	36	40
2	Материалы с особыми свойствами.	Материалы с особыми магнитными свойствами. Материалы с особыми тепловыми свойствами. Аморфные материалы. Сплавы с эффектом памяти формы и сверхупругостью. Выбор материала для конкретного изделия. История развития технологических процессов обработки материалов. Роль ГОСТов.	2	-	2	36	40
3	Основы литейного про- изводства.	Оборудование и оснастка литейного производства. Технология получения отливок в песчано-глинистых формах. Специальные способы литья. Контроль качества изделий в литейном производстве.	2	1	2	36	40
4	лением.	Классификация методов ОМД. Холодная и горячая объемная штамповка. Операции листовой штамповки. Физико-механические основы ОМД. Оборудование и инструмент для ОМД.	1	2	ı	38	40
5	кой и пайкой.	Классификация видов сварки и пайки. Оборудование и технология сварки плавлением. Оборудование и технология сварки давлением. Технология пайки. Контроль качества при сварке и пайке.	-	2	-	38	40
6	Обработка металлов резанием.	Способы обработки металлов резанием. Оборудование и оснастка для обработки металлов резанием. Контроль качества изготовления деталей резанием. Финишные и специальные методы обработки. Оборудование и приемы слесарных работ. Итого	-	2	-	37 221	39 239

5.2 Перечень лабораторных работ

- 1. Изучение микроструктуры конструкционных легированных сталей и материалов с особыми свойствами.

 - Изучение технологии литейного производства.
 изучение оборудования и методов обработки металлов давлением.
 Изучение оборудования и способов сварки.
- 5. Изучение оборудования и оснастки, применяемых для обработки металлов резанием.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусмат-

ривает выполнение курсовой работы в 7 семестре для очной формы обучения, в 9 семестре для заочной формы обучения.

6.1 Примерная тематика курсовой работы: <u>«Технологический процесс</u> изготовления детали (наименование детали)».

Задачи, решаемые при выполнении курсовой работы:

- •изучение основных технологических процессов машиностроительных производств;
 - анализ факторов, определяющих выбор способа получения заготовки;
- изучение зависимости способа получения заготовки от серийности выпуска деталей (экономические аспекты вида производства по необходимости).

Курсовая работа включат в себя расчетно-пояснительную записку.

- 6.2 Примерный перечень вопросов контрольной работы:
- 1. В составе стали имеются Ті и V. За счет чего достигается упрочнение при термической обработке такой стали?
- 2. Какой материал следует выбрать для шестерен коробки передач, если толщина зуба 6 мм? Изгибающее усилие в ножке зуба может доходить до 600 МПа. Твердость в поверхностном слое глубиной 1,5 мм должна быть не ниже 60 HRC. Какой должен быть режим термообработки детали?
- 3. Для изготовления ответственного изделия выбрана сталь 30ХГСА. В результате обработки она имеет предел прочности 2000 МПа. Расшифруйте марку стали, выберите режим ее обработки для получения заданного уровня прочности.
- 4. Сравните коррозионную стойкость сплава АМц и чистого алюминия. Объясните различие в коррозионной стойкости.
 - 5. Как можно повысить жаростойкость железа и стали?
- 6. Использование каких материалов позволяет повысить жаропрочность деталей механизмов?
- 7. Какие основные меры необходимо предпринять для снижения порога хладноломкости сталей.
- 8. Какую сталь рационально использовать для изготовления зубьев ковшей экскаваторов?
- 9. Какую структуру необходимо создать в сплаве для достижения высокого предела упругости и релаксационной стойкости?
 - 10. Какое строение макромолекул характерно для резины?
 - 11. Укажите признаки, характерные для композитов.
 - 12. Перечислите основные группы магнитотвердых материалов.
- 13. Назовите преимущества и недостатки аморфных металлов при использовании их в качестве магнитомягких материалов.
 - 14. Что такое эффект памяти формы и каков его механизм?
- 15. Что такое псевдоупругость? Почему первоначальное название этого эффекта (сверхупругость) некорректно?

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУ-

ТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность ком- петенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-2	их свойства и области применения; основные		Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь анализировать фазовые превращения при нагревании и охлаждении сплавов, пользуясь диаграммами состояния двойных систем	практических задач, написание курсовой ра-	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть практически- ми навыками работы на металлографиче- ском микроскопе	задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение ра- бот в срок, преду- смотренный в ра- бочих программах
ПК-20	ментацию, находящу-	практических занятиях,	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	для решения производственных задач; обобщать, анализировать, воспринимать информацию, сочетать теорию и практику	практических задач, написание курсовой ра- боты	Выполнение работ в срок, предусмотренный в ра- бочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть основами методов исследования, анализа и моделирования свойств материалов, физических и химических процессов них, обработки и модифицирования материалов; навыками выбора материалов для заданных условий	задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в ра- бочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

эксплуатации с учетом требований техноло-
гичности, экономич-
ности, надежности и
долговечности, эко-
логических послед-
ствий их применения

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6, 7 семестре для очной формы обучения, 8, 9 семестре для заочной формы обучения по двух/четырехбалльной системе:

«зачтено»

«не зачтено»

	не зачтено»			
Компе-	Результаты обучения,	Критерии		
тенция	характеризующие сформированность ком-	оценивания	Зачтено	Не зачтено
тенции	петенции	оценивания		
ОПК-2	знать основные груп-	Тест	Выполнение теста на	Выполнение менее
	пы и классы совре-		70-100%	70%
	менных материалов,			
	их свойства и области			
	применения; основные			
	закономерности фа-			
	зовых и структурных			
	превращений; марки-			
	ровку, классификацию			
	сплавов на основе же-			
	леза			
	уметь анализировать	Решение стандартных	Продемонстрирован вер-	Задачи не решены
	фазовые превращения	практических задач	ный ход решения в боль-	
	при нагревании и		шинстве задач	
	охлаждении сплавов,			
	пользуясь диаграм-			
	мами состояния			
	двойных систем			
	владеть практически-	-	Продемонстрирован вер-	Задачи не решены
	ми навыками работы		ный ход решения в боль-	
		предметной области	шинстве задач	
	ском микроскопе			
ПК-20	знать нормативную и	Тест	Выполнение теста на	Выполнение менее
	техническую доку-		70-100%	70%
	ментацию, находящу-			
	юся в открытом до-			
	ступе			
	уметь применять ос-	•	Продемонстрирован вер-	Задачи не решены
	новные типы совре-	практических задач	ный ход решения в боль-	
	менных материалов		шинстве задач	
	для решения произ-			
	водственных задач;			
	обобщать, анализиро-			
	вать, воспринимать			
	информацию, сочетать			
	теорию и практику		-	2
	владеть основами ме-	-	Продемонстрирован вер-	Задачи не решены
		задач в конкретной	ный ход решения в боль-	
	анализа и моделиро-	предметной области	шинстве задач	
	вания свойств мате-			
	риалов, физических и			
	химических процессов			
	в них, обработки и			
	модифицирования			

материалов; навыками	<u>'</u>	
выбора материалов	<u>'</u>	
для заданных условий	<u>'</u>	
эксплуатации с учетом	<u>'</u>	
требований техноло-	<u>'</u>	
гичности, экономич-	<u>'</u>	
ности, надежности и	<u>'</u>	
долговечности, эко-	<u>'</u>	
логических послед-	 	
ствий их применения		

ИЛИ

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

	«неудовлетвој	1	·	1		1
Компе - тенци я	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-2	знать основные группы и классы современных материалов, их свойства и области применения; основные закономерности фазовых и структурных превращений; маркировку, классификацию сплавов на основе железа		Выполнени е теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 70-80%	В тесте менее 70% правиль- ных отве- тов
			Задачи ре- шены в полном объеме и получены верные ответы	Продемонстрирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
		Решение прикладных задач в кон-кретной предметной области	Задачи ре- шены в полном объеме и получены верные ответы	Продемонстрирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ПК-20	современных ма- териалов для ре-		Выполнени е теста на 90- 100% Задачи решены в полном объеме и	Выполнение теста на 80- 90% Продемонстрирован верный ход решения всех, но не получен верный	Выполнение теста на 70- 80% Продемонстрирован верный ход решения в большинстве задач	В тесте менее 70% правильных ответов Задачи не решены
	шения производ- ственных задач; обобщать, анали-		получены верные ответы	ответ во всех за- дачах		

			1		
зировать, воспри-					
нимать информа-					
цию, сочетать тео-					
рию и практику					
владеть основами	Решение	Задачи ре-	Продемонстриро-	Продемонстриро-	Задачи
методов исследо-	прикладных	шены в	ван верный ход	ван верный ход	не решены
вания, анализа и	задач в кон-	полном	решения всех, но	решения в боль-	
моделирования	кретной	объеме и	не получен верный	шинстве задач	
	предметной	получены	ответ во всех за-		
лов, физических и		верные	дачах		
химических про-		ответы			
цессов в них, об-					
работки и моди-					
фицирования ма-					
териалов; навыками					
выбора материалов					
для заданных					
условий эксплуа-					
тации с учетом					
требований техно-					
логичности, эко-					
номичности,					
надежности и дол-					
говечности, эколо-					
гических послед-					
ствий их примене-					
ния					

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Какие основные направления по повышению конструктивной прочности детале конструкций существует в настоящее время?
 - А) проведение ХТО деталей;
 - В) проведение ТМО деталей;
 - С) использование мартенситно стареющих сталей;
 - D) создание композитов, упрочняемых нитевидными кристаллами.
 - 2. Чем обусловлена высокая прочность мартенситно стареющих сталей?
 - А) закалкой на мартенсит сталей, содержащих углерод;
- В) дисперсионным упрочнением легированного безуглеродистого мартенсита интер металлическими фазами, выделяющимися при старении;
 - С) мелкодисперсными продуктами распада легированного мартенсита.
 - 3. Что ограничивает широкое использование мартенситно стареющих сталей?
 - А) высокая степень легирования их дорогими элементами;
 - В) технологические трудности изготовления деталей из этих сплавов;
 - С) высокая стоимость материала.
 - 4. Что ограничивает широкое использование сталей, подвергаемых ТМО?
 - А) трудность осуществления деформации сталей на машиностроительных заводах;
- В) малая освоенность производства упрочненного ТМО проката на металлургически заводах:
 - С) высокая стоимость технологического процесса ТМО.

- 5. Детали из какой легирующей стали можно от температуры отпуска 600^{0} С охлаждат на воздухе?
 - A) 40XHP, 40XΓ;
 - B) 40X, 40ΓP, 30ΧΓC;
 - C) 45, 30XM.
- 6. Какую группу материалов составляют хромистые стали с содержанием хрома выш 12%?
 - А) нержавеющие стали;
 - В) жаростойкие стали;
 - С) инструментальные стали;
 - D) жаропрочные стали.
- 7. Использование каких материалов позволяет повысить жаропрочность деталей ме ханизмов?
 - А) материалов, имеющих высокую температуру рекристаллизации;
 - В) материалов, подверженных дисперсионному твердению;
 - С) материалов, подверженных упрочнению наклепом;
 - D) материалов, имеющих низкий коэффициент диффузии и самодиффузии.
 - 8. Как называется разрушение поверхности зубьев шестерен в процессе работы?
 - А) основидный износ;
 - В) питтинг;
 - С) выкрашивание;
 - D) фреттинг коррозия.
- 9. Какие стали и в каком состоянии следует использовать для изготовления изностой ких деталей?
 - А) низкоуглеродистые, закаленные;
 - В) высокоуглеродистые, высокоотпущенные;
- С) высокоуглеродистые, закаленные, низкоотпущенные стали или стали, подвергнуты поверхностному упрочнению XTO и термообработке.
 - 10. Какими методами можно повысить предел выносливости пружин?
 - А) закалкой;
 - В) поверхностным наклепом дробеструйной обработкой;
 - С) отпуском;
 - D) химико-термической обработкой.

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Для изготовления относительно мелких ответственных деталей, от которых требу ется высокая износостойкость и статическая прочность, решено использовать хромомар ганцевокремистую сталь.

Какой из приводимых режимов отпуска может это обеспечить? Отпуск при

- A) 250°C;
- B) 400°C;
- C) 180°C.
- 2. Сталь должна работать при температуре 1000°C. Сколько хрома необходимо дл создания нужной жаростойкости у аустенитной стали?
 - A) 5%;

- B) 10%;
- C) 18%.
- 3. На заводе решено использовать мелкозернистую сталь 18ХГТ для изготовлени шестерен коробки скоростей легковых автомобилей. Какой термической обработке должн подвергать шестерни, чтобы получить поверхностную твердость ≥ 60 HRC?
 - A) $\mu + 3.M + 0.180^{\circ}C$;
 - B) $\mu + 3.M + 0.550^{\circ}C$;
 - C) $\mu + 3.M. + 0.350^{\circ}C.$
- 4. Какое из предлагаемых решений может быть использовано для изготовления ше стерен с высокой изностойкостью (≥ 60 HRC) и прочностью?
 - А) сталь 40ХГ, провести закалку и низкий отпуск;
 - B) сталь 20X, 3. $+ 0.180^{\circ}$ C;
 - С) сталь 55ПП (индукционная закалка и низкий отпуск).
- 5. Иглы форсунок жидкого топлива должны иметь очень точные размеры и высокун изностойкость. Какой материал и какую термообработку для них рационально использовать
 - А) сталь 38 МЮА, азотирование при 650° C +3.+0,180 $^{\circ}$ C;
 - В) сталь 38XMЮА, азотирование при 500^{0} С;
 - С) сталь 38XMЮA, азотирование при 500^{0} C+ $3.+0,180^{0}$ С.
- 6. Щиты электродвигателей, куда впрессовываются шарикоподшипники, имею сложную конфигурацию. Какой материал и какая технология являются оптимальными дл их изготовления при условии, что $\sigma_{\rm B} \ge 120~{\rm MHa}$?
 - А) сталь Ст 3, штамповкой;
 - В) серый чугун СЧ15, литье с последующей механической обработкой;
 - С) ковкий чугун КЧ30-6, горячая ковка в штампах;
 - D) высокопрочный чугун ВЧ45, литье.
- 7. Какая термическая обработка и твердость являются оптимальными для деталей тип рессор и пружин?
 - A) закалка + отпуск, HRC 60-63;
 - В) закалка и низкий отпуск, НКС 58-60;
 - С) закалка и средний отпуск, HRC 39-44.
- 8. Какую сталь можно использовать для холодной навивки пружин без последующей закалки и отпуска?
 - A) сталь 65Γ ;
 - В) сталь 55СГ;
 - С) сталь 50ХФА;
 - D) «серебрянку» из стали У8.
- 9. Для точных приборов важно, чтобы упругость деталей их механизмов была малочувствительна к изменениям температуры. Какие материалы обладают этими свойствами?
 - А) инвар;
 - В) элинвар;
 - С) ковар;
 - D) платинит.
 - 10. Какое состояние соответствует рабочему состоянию резины?
 - А) высокоэластическое;

- В) стеклообразное;
- С) вязкотекучее;
- D) кристаллическое.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Как должна измениться твердость отожженной хромоникелевой аустенитной стал после закалки?
 - А) твердость должна увеличиться;
 - В) твердость должна уменьшиться;
 - С) твердость проходит через тах.
- 2. Какой материал следует использовать для изготовления лопаток газовых турбин работающих при 900° C?
 - А) сталь 1Х18Н10Т;
 - В) сплавы на основе никеля;
 - С) сплавы на основе молибдена;
 - D) сплавы на основе вольфрама.
- 3. Какую сталь рационально использовать для изготовления зубьев ковшей экскава торов?
 - A) сталь ШХ15,
 - В) сталь Г13Л;
 - С) сталь 1Х18Н9Т;
 - D) CT3.
 - 4. В каком состоянии используют изделия из изностойкой стали Г13?
 - A) в литом;
 - В) в прокатном;
 - С) в механически обработанном.
- 5. Какой материал обладает наивысшей изностойкостью при работе в условиях удар ного действия образивных частиц (песка)?
 - A) Ct3;
 - В) белый чугун;
 - С) твердый сплав ВК6;
 - D) сталь У10 в закаленном и низкоотпущенном состоянии;
 - Е) твердый сплав ВК3.
 - 6. Что означает число 15 в марке стали ШХ15?
 - А) содержание хрома в процентах;
 - В) содержание углерода;
 - С) содержание хрома, выраженного в десятых долях процента.
 - 7. Для изготовления каких деталей используют стали марок 50Г, 60С2, 50ХФА?
 - А) для валов и осей;
 - В) для пружин и рессор;
 - С) для инструментов.
 - 8. Какими свойствами должны обладать детали типа пружин и рессор?
 - А) высокой прочностью;
 - В) высокой твердостью и изностойкостью;
 - С) высоким пределом упругости, усталостной прочностью.

- 9. Какую сталь следует использовать для изготовления пружин клапанов двигателеі внутреннего сгорания?
 - A) сталь У7;
 - В) сталь 65Г;
 - С) сталь 60С2;
 - D) сталь 50XФА.
- 10. Какой брак при выполнении термообработки часто наблюдается у рессор из стали повышенным количеством кремния?
 - А) низкая твердость;
 - В) недостаточная прокаливаемость;
 - С) выгорание углерода в поверхностных слоях.

7.2.4 Примерный перечень вопросов для подготовки к зачету

Вопросы по разделам «Материалы, используемые в машиностроении»

- 1. Какие высокопрочные стали характеризуются наибольшей пластичностью?
- 2. От чего зависит уровень прочности среднеуглеродистых комплексно легированны низкоотпущенных сталей?
- 3. Чем достигается повышение вязкости среднеуглеродистых комплекс но-легированных низкоотпущенных сталей?
- 4. Какая термомеханическая обработка (BTMO или HTMO) позволяет достич наибольшего упрочнения в среднеуглеродистых сталях? Почему?
- 5. Какой легирующий элемент наиболее эффективно понижает порог хладноломкост сталей? Почему?
 - 6. Какие причины вызывают коррозию материалов?
- 7. Почему для изготовления покрытий в пищевой промышленности не используютс медные сплавы, несмотря на то, что они коррозионностойки во всех органических кислотах
- 8. По какой причине оловянистые латуни широко применяются в речном и морском судостроении?
- 9. Какова причина коррозионной стойкости таких непассивирующихся металлов, ка Au, Pt, Ag, Cu, Sn, Pb?
 - 10. Почему дуралюмины менее коррозионностойки, чем чистый алюминий?
- 11. Сравните коррозионную стойкость сплава АМц и чистого алюминия. Объяснит различие в коррозионной стойкости.
- 12. Каким требованиям должен удовлетворять легирующий элемент в высоколегиро ванных сталях, чтобы повысить их жаропрочность?
 - 13. Как можно повысить жаростойкость W, Мо?
 - 14. В каких условиях может осуществляться перемещение дислокации переползанием
- 15. Какой металл является более жаропрочным крупнозернистый или мелкозерни стый?
- 16. Какими способами при создании жаропрочных сплавов можно обеспечить эффек тивное торможение дислокаций?
- 17. Какая связь между жаропрочностью и температурой плавления металлов, входящи в состав сплавов?
 - 18. Перечислите основные критерии хладостойкости.
- 19. Назовите основные группы хладостойких материалов. Объясните различие и хладостойкости.
- 20. Какие основные меры необходимо предпринять для снижения порога хладнолом кости сталей.
 - 21. Как влияет углерод на уровень порога хладноломкости сталей.
 - 22. Какой тип связи между частицами в полимерном материале?

- 23. Укажите признаки, характерные для композитов.
- 24. Что представляют собой полиматричные композиты?
- 25. Как зависит прочность волокнистых композитов от схемы армирования?
- 26. Что представляют собой полиармированные композиты?
- 27. Укажите достоинства и недостатки эвтектических композиционных материалов пс сравнению с другими композиционными материалами.
 - 28. Как классифицируются композиционные материалы по структурному признаку?
 - 29. Перечислите основные требования, предъявляемые к магнитотвердым материалам
 - 30. Перечислите основные группы магнитнотвердых материалов.

7.2.5 Примерный перечень заданий для решения прикладных задач

Вопросы по разделам «Материалы, используемые в машиностроении»

- 1. Для изготовления изделия выбрана сталь O3H12K15M10 (мартенситно-стареющая) Расшифруйте марку стали, опишите режим ее термической обработки и изменения струк туры, обеспечивающие предел прочности 2500 МПа и относительное удлинение не мене 6%.
- 2. Для изготовления изделия выбрана сталь 25H25M4Г (трипсталь). Расшифруйт марку стали. Обоснуйте режим ее обработки и объясните изменения в структуре, обеспе чивающие предел текучести 1800 МПа и относительное удлинение 20%.
 - 3. Какие высокопрочные стали характеризуются наибольшей пластичностью?
- 4. От чего зависит уровень прочности среднеуглеродистых комплексно легированны низкоотпущенных сталей?
- 5. Чем достигается повышение вязкости среднеуглеро-дистых комплекс но-легированных низкоотпущенных сталей?
- 6. Расшифруйте марку высокопрочной среднеуглеродис-той комплекс но-легированной низкоотпущенной стали 30Х2ГСН2ВМ и объясните назначение легиру юших элементов.
- 7. Какая термомеханическая обработка (BTMO или HTMO) позволяет достич наибольшего упрочнения в среднеуглеродистых сталях? Почему?
- 8. Чем обусловлена высокая вязкость разрушения, характерная для метастабильны аустенитных сталей?
- 9. Какие легирующие элементы наиболее эффективно упрочняют феррит?
- 10. Какой легирующий элемент наиболее эффективно понижает порог хладноломкост сталей? Почему?
- 11. Для изготовления деталей, работающих в контакте с крепкими кислотами, выбран сталь 15X28. Расшифруйте состав и определите класс стали. Объясните причину введени хрома и обоснуйте выбор этой стали для данных условий работы.
 - 12. Какие причины вызывают коррозию материалов?
- 13. Почему для изготовления покрытий в пищевой промышленности не используютс медные сплавы, несмотря на то, что они коррозионностойки во всех органических кислотах
- 14. По какой причине оловянистые латуни широко применяются в речном и морском судостроении?
- 15. Как можно повысить электродный потенциал медного сплава и тем самым повы сить его коррозионную стойкость?
- 16. Какова причина коррозионной стойкости таких непассивирующихся металлов, каг Au, Pt, Ag, Cu, Sn, Pb?
 - 17. Какова причина коррозионной стойкости пассивирующихся металлов?
 - 18. Почему дуралюмины менее коррозионностойки, чем чистый алюминий?
- 19. Сравните коррозионную стойкость сплава АМц и чистого алюминия. Объяснит различие в коррозионной стойкости.
 - 20. Объясните высокую коррозионную стойкость сплавов АМг6, АЛ8.

- 21. Каким требованиям должен удовлетворять легирующий элемент в высоколегиро ванных сталях, чтобы повысить их жаропрочность?
- 22. Сравните жаростойкость чистой меди и латуни ЛАН59-3-2. Объясните причин различия в жаростойкости.
 - 23. Как можно повысить жаростойкость железа и стали?
 - 24. Как можно повысить жаростойкость W, Мо?
 - 25. В каких условиях может осуществляться перемещение дислокации переползанием
- 26. Как изменяется жаропрочность сплава с увеличением значения коэффициент диффузии Д и энергии активации диффузии (самодиффузии) Q?
- 27. Какой металл является более жаропрочным крупнозернистый или мелкозерни стый?
- 28. Какими способами при создании жаропрочных сплавов можно обеспечить эффек тивное торможение дислокаций?
- 29. Какая связь между жаропрочностью и температурой плавления металлов, входящи в состав сплавов?
 - 30. Перечислите основные критерии хладостойкости.
- 31. Сравните хладостойкость таких материалов, как 40X, 12X18H10T, ОН6, АМп Объясните различие.
- 32. Назовите основные группы хладостойких материалов. Объясните различие в и хладостойкости.
- 33. Какие основные меры необходимо предпринять для снижения порога хладнолом кости сталей.
 - 34. Как влияет углерод на уровень порога хладноломкости сталей.
- 35. Какую структуру необходимо создать в сплаве для достижения высокого предел упругости и релаксационной стойкости?
 - 36. Перечислите основные методы выращивания монокристаллов.
- 37. Укажите причины, по которым иногда не удается вырастить монокристаллы и собственных расплавов.
 - 38. Какой тип связи между частицами в полимерном материале?
- 39. Как можно охарактеризовать полимерный материал с точки зрения его физического состояния?
 - 40. Укажите признаки, характерные для композитов.
 - 41. Что представляют собой полиматричные композиты?
- 42. К чему может привести активное химическое взаимодействие между фазами в композиционном материале?
 - 43. Как зависит прочность волокнистых композитов от схемы армирования?
 - 44. Что представляют собой полиармированные композиты?
- 45. Какими способами можно уменьшить межфазное химическое взаимодействие в композиционных материалах?
- 46. Укажите достоинства и недостатки эвтектических композиционных материалов пс сравнению с другими композиционными материалами.
 - 47. Как классифицируются композиционные материалы по структурному признаку?
 - 48. Назовите способы получения материалов с прямоугольной петлей гистерезиса.
 - 49. Перечислите основные требования, предъявляемые к магнитотвердым материалам
- 50. От чего зависит величина коэрцитивной силы однодоменного неравновесного кристалла?
- 51. Сформулируйте основные требования к составу и структуре магнитнотвердых материалов.
 - 52. Перечислите основные группы магнитнотвердых материалов.
 - 53. Перечислите условия, способствующие образованию аморфных фаз.
- 54. Назовите способы получения аморфных материалов и объясните их физическук сущность.

- 55. Объясните особенности превращений в аморфных материалах при нагреве.
- 56. Как рассчитать критическую скорость охлаждения при закалке из жидкого состояния.
- 57. Перечислите основные факторы, оказывающие влияние на склонность веществ в аморфизации при закалке из жидкого состояния.
- 58. Чем можно объяснить более высокие механические свойства аморфных материалов по сравнению с кристаллическими?
- 59. Почему аморфные металлы обладают аномально высокими антикоррозионными свойствами?
 - 60. Назовите основные области применения сплавов с ЭПФ и ПУ.

Вопросы по разделам «Технологические процессы в машиностроении»

«Основы металлургического производства»

- 1. Производство стали в кислородных конвертерах.
- 2. Производство стали в мартеновских печах.
- 3. Шихтовые материалы для доменной печи и характер процессов, протекающих в ней.
 - 4. Свойства металлов и сплавов.
- 5. Исходные материалы для производства стали и основные периоды плавки в сталеплавильных агрегатах.
 - 6. Исходные материалы для производства металлов и сплавов (руды и флюсы).
- 7. Исходные материалы для производства металлов и сплавов (топливо и огнеупорные материалы).
 - 8. Назначение доменной печи и её конструкция.
 - 9. Производство стали в электропечах.
 - 10. Способы разливки стали.

«Основы технологии литейного производства»

- 1. Конструкция и назначение литниковой системы.
- 2. Модельно-опочная оснастка.
- 3. Литьё по выплавляемым моделям.
- 4. Литейные свойства металлов и сплавов.
- 5. Формовочные и стержневые смеси: назначение, состав, свойства и приготовление.
- 6. Машинная формовка.
- 7. Разновидность ручной формовки.
- 8. Литье в оболочковые формы.
- 9. Виды литья в металлические формы.
- 10. Основные этапы технологического процесса получения отливок.

«Основы технологии обработки металлов давлением»

- 1. Процесс прессования.
- 2. Основные факторы, влияющие на пластичность.
- 3. Классификация прокатных станов по расположению клетей.
- 4. Особенности горячей объёмной штамповки.
- 5. Коэффициенты деформации при ОМД.
- 6. Особенности горячей объёмной штамповки в зависимости от конструкции штампа.
- 7. Свободная ковка. Операции пластического деформирования.
- 8. Основные виды ОМД и условия для их выполнения.
- 9. Классификация прокатных станов по количеству валков в клети.
- 10. Особенности прокатки листовой стали.
- 11. Разработка технологического процесса получения поковок свободной ковкой.
- 12. Продольная прокатка. Схема процесса.

- 13. Классификация прокатных станов по назначению.
- 14. Процесс волочения.
- 15. Горячая объемная штамповка. Основные виды.

«Основы технологии сварочного производства»

- 1. Классификация видов сварки.
- 2. Автоматическая электродуговая сварка.
- 3. Газовая сварка.
- 4. Электрошлаковая сварка.
- 5. Стыковая контактная сварка.
- 6. Классификация видов электродуговой сварки.
- 7. Виды сварных соединений и швов.
- 8. Сущность процессов сварки и условия для их выполнения.
- 9. Точечная контактная сварка.
- 10. Новейшие виды сварки.

«Обработка металлов резанием»

- 1. Формообразование поверхностей деталей резанием. Схема обработки.
- 2. Метод обработки точением. Работы, выполняемые на токарных станках.
- 3. Метод обработки сверлением. Работы, выполняемые на сверлильных станках.
- 4. Метод обработки фрезерованием. Работы, выполняемые на фрезерных станках.
- 5. Метод обработки шлифованием. Работы, выполняемые на шлифовальных станках.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест - карточкам. Студенту выдается карточка с пятью вопросами. Правильный ответ на каждый вопрос только один. За правильный ответ студент получает один балл. У каждого студента свой вариант. Некоторые вопросы в разных вариантах могут повторяться, так как являются приоритетными.

Максимальное количество набранных баллов – 5.

Шкала оценивания:

Оценка «зачтено» выставляется студенту, набравшему 3-5 баллов.

Оценка «не зачтено», выставляется студенту, набравшему менее 3 баллов.

Экзамен проводится по билетам, каждый из которых содержит 3 теоретических вопроса и 1 практический вопрос (задачу). Каждый правильный ответ на теоретический вопрос оценивается 1 баллом, практический вопрос (задача) оценивается в 2 балла. Максимальное количество набранных баллов – 5.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 3 баллов.
 - 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал 3 балла.
 - 3. Оценка «Хорошо» ставится в случае, если студент набрал 4 балла.
 - 4. Оценка «Отлично» ставится в случае, если студент набрал 5 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы	Код контролируемой	Наименование оценочного	
J¶≌ 11/11	(темы) дисциплины	компетенции	средства	
1	Конструкционные материалы.	ОПК-2, ПК-20	Тест, контрольная работа,	
			защита лабораторных ра-	
			бот, защита курсовой ра-	
			боты	
2	Материалы с особыми свой-	ОПК-2, ПК-20	Тест, контрольная работа,	
	ствами.		защита лабораторных ра-	
			бот, защита курсовой ра-	
			боты	

3	Основы литейного производ- ОПК-2, ПК-20 ства.	Тест, контрольная работа, защита лабораторных работ, защита курсовой работы
4	Обработка металлов давлением. ОПК-2, ПК-20	Тест, контрольная работа, защита лабораторных работ, защита курсовой работы
5	Получение изделий сваркой и ОПК-2, ПК-20 пайкой.	Тест, контрольная работа, защита лабораторных работ, защита курсовой работы
6	Обработка металлов резанием. ОПК-2, ПК-20	Тест, контрольная работа, защита лабораторных работ, защита курсовой работы

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1 Арзамасов Б.И., Макаров В.И. Материаловедение: Учебник для высших технических учебных заведений. М.: Из-во МГТУ Баумана, 2002. 384 с.
- 2 Горелик С.С., Дашевский М.Я. Материаловедение полупроводников и диэлектриков М.: Металлургия, 1988. –574 с.
 - 3 Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Металлургия, 1990. 493 с.
- 4 Антипов Б.Л., Сорокин В.С., Терехов В.А. Материалы электронной техники. Задачи и вопросы. М.: Высшая школа, 1990. 208 с.
 - 5 Геллер Ю.А., Рахштадт А.Г. Материаловедение. М.: Металлургия, 1984. 384 с.
 - 6 Мозберг Р.К. Материаловедение. М.: Высшая школа, 1991. 448 с.
 - 7 Тихонов А.С. и др. Применение эффекта памяти формы в современном машино-

строении. – М.: Машиностроение, 1981. – 299 с.

8 Калачев Б.А., Ливанов В.А., Елагин В.И. Металловедение и термическая обработка цветных металлов и сплавов. – М.: Металлургия, 1981. – 387 с.

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Рекомендуемая литература в виде электронных ресурсов представлена на сайте ВГТУ (научно-техническая библиотека): http://catalog.vorstu.ru/

- Информационно-правовые порталы «Консультант плюс» (http://www.consultant.ru), «Гарант» (http://www.garant.ru/);
 - Библиотека ГОСТов, стандартов и нормативов (http://www.infosait.ru/);
 - Электронная информационно-образовательная среда ВГТУ (http://eios.vorstu.ru)

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой

Учебные лаборатории:

«Лаборатория металлографического анализа»

«Лаборатория механических испытаний»

«Лаборатория термической обработки»

Дисплейный класс, оснащенный компьютерными программами для проведения лабораторного практикума

Лаборатория, оборудованная проектором и интерактивной доской

Натурные лекционные демонстрации:

- Комплект элементарных ячеек;
- Комплекты образцов сталей, чугунов, цветных металлов;
- Атласы металлографические;
- Комплекты фотографий микроструктур сталей и чугунов.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Материалы и технологические процессы в машиностроении» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков рационального выбора материала по заданным условиям получения материала, эксплуатации изделия; расчета механических характеристик материала. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсовой работы изложена в учебно-методическом пособии. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой ра-

боты, зашитой курсовой работы.

Вид учебных	боты, защитой курсовой работы.				
занятий	Деятельность студента				
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать				
Практическое	преподавателю на лекции или на практическом занятии. Конспектирование рекомендуемых источников. Работа с конспектом				
занятие	лекций, подготовка ответов к контрольным вопросам, просмотр реко-				
	мендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.				
Лабораторная	Лабораторные работы позволяют научиться применять теоретические				
работа	знания, полученные на лекции при решении конкретных задач. Чтобы				
	наиболее рационально и полно использовать все возможности лабора-				
	торных для подготовки к ним необходимо: следует разобрать лекцию				
	по соответствующей теме, ознакомится с соответствующим разделом				
	учебника, проработать дополнительную литературу и источники, ре-				
	шить задачи и выполнить другие письменные задания.				
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения				
работа	учебного материала и развитию навыков самообразования. Самостоя-				
	тельная работа предполагает следующие составляющие:				
	- работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;				
	- выполнение домашних заданий и расчетов;				
	- выполнение домашних задании и расчетов, - работа над темами для самостоятельного изучения;				
	- участие в работе студенческих научных конференций, олимпиад;				
	- подготовка к промежуточной аттестации.				
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в				
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не				
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные				
·	перед зачетом, экзаменом, экзаменом три дня эффективнее всего ис-				
	пользовать для повторения и систематизации материала.				