МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Небольсин В.А. «26» марта 2019г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Автоматизация проектирования оптических систем»

Направление подготовки 16.04.01 ТЕХНИЧЕСКАЯ ФИЗИКА

Профиль Компоненты и устройства оптоэлектроники

Квалификация выпускника магистр

Нормативный период обучения 2 года

Форма обучения очная

Год начала подготовки <u>2019</u>

Автор программы	Los Grand	/Бондаренко Д.А./
И.о. заведующего кафедрой физики твердого тела	All-	/Костюченко А.В. /
Руководитель ОПОП	My	_/Коротков Л.Н. /

Воронеж 2019

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Освоение навыков работы в системах автоматизированного проектирования оптических систем.

1.2. Задачи освоения дисциплины

- 1. Изучение методов оценки качества оптических изображений.
- 2. Освоение основных навыков работы в системах автоматизированного проектирования оптических систем.
- 3. Автоматизированный расчет оптических и акустооптических систем.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Автоматизация проектирования оптических систем» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Автоматизация проектирования оптических систем» направлен на формирование следующих компетенций:

- ПК-5 Способность к моделированию программными методами оптических устройств и систем
- ПК-7 готовность осваивать и применять современные физикоматематические методы и методы искусственного интеллекта для решения профессиональных задач, составлять практические рекомендации по использованию полученных результатов.

Компетенция	Результаты обучения, характеризующие сформированность компетенции						
ПК-5	знать основные типы оптических систем и теорию аберраций третьего порядка. уметь проводить габаритные и аберрационные расчеты оптических систем						
	владеть стандартными программными средствами компьютерн моделирования оптических систем.						
ПК-7	знать методы и критерии оптимизации процесса проектирования акустооптических систем.						
	<u>уметь</u> использовать адаптированные для оптических систем физикоматематические методы для автоматизированной оптимизации элементов акустооптических приборов и устройств. <u>владеть</u> методами анализа физических процессов в элементах оптических приборов.						

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Автоматизация проектирования оптических систем» составляет 2 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

D	Daara waaan	Семестр	
Виды учебной работы	Всего часов	3	
Аудиторные занятия (всего)	58	58	
В том числе:			
Лекции	34	34	
Практические занятия (ПЗ)	16	16	
Лабораторные работы (ЛР)	8	8	
Самостоятельная работа	14	14	
Курсовая работа	-	-	
Часы на контроль	-	-	
Виды промежуточной аттестации -	+		
зачет	+	+	
Общая трудоемкость:			
академические часы	72	72	
зач.ед.	2	2	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	l						_
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Вс его , час
1	Структура и качество оптического изображения	Оценка качества оптического изображения. Функция рассеяния точки. Оптическая передаточная функция. Частотно-контрастная характеристика. Фазо-контрастная характеристика. Дифракционная структура изображения. Влияние аберраций на ОПФ. Критерии Рэлея, Фуко, Марешаля. Критерии качества для визуального, лазерного и оптико-электронного прибора.	2	-	-	-	2
2		Чертежи оптических деталей. Требования к материалу. Требования к точности изготовления оптических поверхностей. Конструктивные параметры. Технические требования на чертежах ОД. Виды и обозначения оптических покрытий. Оформление чертежа сборочной единицы. Правила выполнения оптических схем. Базирование оптических элементов. Обозначение центрировки оптических элементов.	4	-	-	-	4
3	Автоматизированная коррекция оптических систем	Постановка задачи автоматизированной коррекции. Метод Ньютона. Модифицированный метод Ньютона. Метод наименьших квадратов.	6	2	-	-	8

	Модифицированный метод наименьших квадратов. Метод градиента. Метод Лагранжа. Выбор коррекционных параметров. Выбор корригируемых функций.					
	Введение в САПР ОС. Lens Data Editor, Glass Cataloge, Wavelengths, Field, Merit Function Editor. Layout. MTF, Spot Diagram. Longitudinal Aberration, Field Curvature and Distorsion. Тонкие линзы (Surfaces). Телескопические системы Галилея и Кеплера (REAY, Distance Variables). Положительные и отрицательные линзы . Standart Surfaces, EFFL / MFE, Radius Variables. Характеристики линз (Cardinal Points). Хроматизм положения. Расчет двухлинзового несклеенного объектива. Оптическая система лупы и микроскопа. Расчет окуляра Гюйгенса. Двухкратная коррекция сферической аберрации и комы для лазерной сканирующей системы. Трехкратная коррекция сферической аберрации в лазерной коллимирующей системе. Объективы тепловизионных					
4	системе. Объективы тепловизионных камер. Расчет двухполевого объектива для диапазона 3-5 мкм. Панкратические объективы для тепловизионных камер. Гибридные оптические элементы. Расчет конденсора с апланатическими менисками. Подгонка радиусов пробных стекол. Test Plates Fitting. Расчет телескопа Галилея. Расчет телескопа-расширителя пучка для лазера. Расчет проекционного объектива. Расчет допусков на оптические системы. Тоlerance Data Editor. Оптические системы с акустооптическими элементами. Описание акустооптического взаимодействия. Использование пользовательской поверхности (UserSurface) моделирования работы АО элемента. Расчет объектива с акустооптическим перестраиваемым фильтром.	22	14	8	14	58
	Итого	34	16	8	14	72

5.2 Перечень лабораторных работ

Лабораторная работа №1. Исследование сферической аберрации и комы одиночной линзы.

Лабораторная работа №2. Расчет конденсора с апланатическиими линзами. Лабораторная работа №3. Расчет линзового проекционного объектива.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Выполнение курсовых и контрольных работ не предусматривается.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	r r		Аттестов ан	Не аттестован
ПК-5	оптических систем и	Активная работа на практических занятиях, отвечает на теоретические вопросы при защите лабораторных работ		Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь проводить габаритные и аберрационные расчеты оптических систем	Результаты опроса на практических занятиях.		Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть стандартными программными средствами компьютерного моделирования оптических систем.	Умение обрабатывать экспериментальные данные в рамках существующих моделей прибора.		Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-7	Знать методы и критерии оптимизации процесса проектирования акустооптических систем. Уметь использовать адаптированные для оптических систем физикоматематические методы для	Активная работа на практических занятиях, отвечает на теоретические вопросы при защите лабораторных работ Результаты опроса на практических занятиях.		

автоматизированной		
оптимизации		
элементов		
акустооптических		
приборов и		
устройств.		
Владеть методами	Умение обрабатывать	
анализа физических	экспериментальные данные в	
процессов в	рамках существующих моделей	
элементах	прибора.	
оптических		
приборов.		

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 2 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неуловлетворительно»

«неудовлетворительно».						
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-5	знать основные типы оптических систем и теорию аберраций третьего порядка.	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	уметь проводить габаритные и аберрационные расчеты оптических систем	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	_	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
ПК-7	Знать методы и критерии оптимизации процесса проектирования акустооптическ их систем.	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	Уметь использовать адаптированны е для оптических	Решение стандартных практических задач	Задачи решены в полном объеме и получены	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве	Задачи не решены

систем физико-		верные		задач	
математические		ответы			
методы для					
автоматизирова					
нной					
оптимизации					
элементов					
акустооптическ					
их приборов и					
устройств.					
Владеть	Решение	Задачи	Продемонстр ирован	Продемонстр	Задачи не
методами	прикладных	решены в	верный ход решения	ирован	решены
анализа	задач в	полном	всех, но не получен	верный ход	
физических	конкретной	объеме и	верный ответ во всех	решения в	
процессов в	предметной	получены	задачах	большинстве	
элементах	области	верные		задач	
оптических		ответы			
приборов.					

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- **1.** Разрешающая способность, определяется как максимальная пространственная частота периодического тест-объекта, состоящего из черно-белых штрихов в изображении которого еще различимы штрихи, называется критерием ...
- а) Релея;
- б) Фуко;
- в) Марешаля;
- г) идеального изображения.
- 2. Предельное качество изображения ограничено ...
- а) длиной волны излучения;
- б) фокусным расстоянием оптической системы;
- в) диаметром входного зрачка;
- г) дифракционным пределом.
- 3. Просветляющее покрытие на чертеже оптической детали обозначается
 - a) (
 - 0) (1
 - <u>B)</u> &
 - г) (Т
- 4. Ухудшение качества изображения при наличии децентрировки вызвано
- а) сферической аберрацией;
- б) комой;

- в) астигматизмом;
- г) дисторсией.
- 5. При автоматизированной коррекции оптических систем не применяют
- а) метод Ньютона;
- б) метод наименьших квадратов;
- в) метод градиентного спуска;
- г) метод темного поля.

6. Задний фокальный отрезок относится к ...

- а) конструктивным параметрам линзы;
- б) кардинальным элементам линзы;
- в) спектральным характеристикам материала линзы;
- г) характеристикам оптического материала линзы.

7. Построение углочастотной зависимости при расчете акустооптического устройства выполняют для ...

- а) выявления зависимости между углом Брэгга и частотой электрического сигнала, подводимого к пьезопреобразователю;
- б) определения оптимальной рабочей области акустооптического взаимодействия;
- в) выявления зависимости между углом Брэгга и частотой электромагнитной волны, распространяющейся в кристалле;
- г) определения затухания акустической волны.

8. Основной редактор конструктивных параметров оптической системы в САПР ОС Zemax называется ...

- a) Prescription Data;
- б) Lens Data Editor;
- в) Ray Fan;
- г) Wavelength Data.

9. Оптическая система, предмет и изображения для которой расположены в бесконечности называются ...

- а) проекционными системами;
- б) конденсорами;
- в) микроскопами;
- г) телескопическими системами.

10. Концентрическо-апланатический мениск свободен от сферической аберрации для...

- а) одной из точек поля;
- б) всех точек поля;
- в) двух точек поля;
- г) осевой точки поля.

7.2.2 Примерный перечень заданий для решения стандартных задач

- выбора критерия оценки оптической системы, 1. Стоит задача осуществляющей построение изображения со сложной пространственной структурой. Необходимо выбрать подходящий критерий для оценки качества изображений из списка:
- а) критерий Релея;
- б) критерий Фуко;
- в) критерий Марешаля;
- г) идеального изображения.
- 2. Скорость сдвиговой волны в парателлурите в плоскости (110) с углом среза 9⁰ равна ...
- a) 710 m/c;
- б) 692 м/с;
- в) 820 м/c;
- г) 617 м/с.
- 3. Выбрать форму поверхности зеркала, обеспечивающего получение идеального изображения для точечного предмета, расположенного в бесконечности. любом относительного при значении отверстия оптической системы.
- а) эллипс:
- б) гипербола;
- в) парабола;
- г) сфера.
- 4. Угол сноса энергии звуковой волны относительно направления волнового вектора звуковой волны для угла среза 18.9^{0} равен
- a) 45° ;
- $6) 50^{0}$:
- $^{\circ}$ 90°:
- Γ) 57⁰.
- 5. Угловой диапазон сканирования акустооптического дефлектора при скорости звуковой волны в материале 651 м/с на длине волны излучения 1064 нм в полосе частот управления 64-96 МГц составляет ...
- a) 4.5° ;
- 6) 3^{0} ; B) 6^{0} ;
- Γ) 9⁰.
- 6. Поверхностный параметр Р для плоско-выпуклой линзы с показателем преломления 1,5 равен ...

а) 6; б) 3; в) 12; г) <u>9</u> .
7. Положение входного и выходного зрачков в оптической системе определяется пересечениями оптической оси а) главного луча, б) верхнего полевого луча; в) апертурного луча; г) нижнего полевого луча.
8. Толщина согласующего слоя индия при сварке пьезопреобразователя из ниобата лития X-среза на кристалл парателлурита равна а) 30 мкм; б) 1,4 мкм; в) 5,6 мкм; г) 2,8 мкм.
9. Внутренний угол вспомогательного луча для линзы с показателем преломления 1,5, рассчитанной на минимум сферической аберрации, равен а) 0.34 ; б) 0.57 ; в) 1.1 ; г) 0.76 .
10. Угол среза кристалла парателлурита при скорости упругих волн в плоскости (110) 692 м/с равен а) 6^0 ; б) 9^0 ; в) 12^0 ; г) 18^0 .
7.2.3 Примерный перечень заданий для решения прикладных задач
1. Стоит задача выбора формы линзы, обеспечивающей качественную работу для предмета в бесконечности. Из предложенных вариантов наиболее подходящей является а) плоско-выпуклая линза; б) линза, рассчитанная на минимум сферической аберрации;

2. Угол Брэгга при «е-о» взаимодействии в парателлурите для

в) выпукло-плоская;

г) концентрическая линза.

акустооптического фильтра с углом среза 9^0 на длине волны $0,63$ мкм и углом дифракции $9,52^0$ составляет а) $12,7^0$; б) $10,9^0$; в) $9,1^0$; г) $15,8^0$.
3. Расстояние между тонкими объективом и окуляром в телескопе Галилея с увеличением 5^x и фокусным расстоянием окуляра -20 мм равно а) 100 мм ; б) 120 мм ; в) 80 мм ; г) 60 мм .
4. Общее увеличение микроскопа при увеличении объектива и окуляра 5 х и 10 х соответственно равно а) 15; б) <u>50;</u> в) 5; г) 25.
5. Эквивалентная оптическая сила системы из двух линз с оптическими силами 2 дптр и расстоянием 100 мм между ними равна а) 3,6 дптр; б) 4 дптр; в) 5,8 дптр; г) 2 дптр.
 6. При расчете проекционного объектива устранению подлежит а) сферическая аберрация; б) сферическая аберрация и кома; в) сферическая аберрация, кома, астигматизм и кривизна поля; г) сферическая аберрация, кома, астигматизм, кривизна поля и дисторсия. 7. Для окуляра телескопической системы угловое разрешение не имеет
7. для окуляра телескопической системы угловое разрешение не имеет смысла получать лучше а) 0,5 угл мин; б) 2 угл мин; в) <u>1 угл мин;</u> г) 0,1 угл мин.
8. При размере предмета и полученного изображения 10 мм и - 5 мм соответственно коэффициент линейного увеличения равен а) 0,5 ; б) ;

- B) -2;
- Γ) -0.5.
- 9. Показатель преломления стекла марки К8 на длине волны 1064 нм равен ...
- a) 1,415;
- б) 1,645;
- в) 1,506;
- г) 1,703.
- 10. Показатели преломления парателлурита для обыкновенной и необыкновенной длин волн на длине волны 0,63 мкм равны соответственно ...
- a) <u>2,26 и 2,41;</u>
- б) 2,41 и 2,26;
- в) 2,57 и 2,75;
- г) 2,49 и 2,33;

7.2.5 Примерный перечень вопросов для подготовки к зачету

- 1. Оценка качества оптического изображения. Функция рассеяния точки.
- 2. Оптическая передаточная функция. Частотно-контрастная характеристика. Фазо-контрастная характеристика.
- 3. Дифракционная структура изображения.
- 4. Влияние аберраций на ОПФ.
- 5. Критерии Рэлея, Фуко, Марешаля.
- 6. Критерии качества для визуального, лазерного и оптико-электронного прибора.
- 7. Чертежи оптических деталей. Требования к материалу.
- 8. Чертежи оптических деталей. Требования к точности изготовления оптических поверхностей.
- 9. Конструктивные параметры, указываемые на чертежах оптический деталей и сборочных единиц.
- 10. Технические требования на чертежах оптических деталей.
- 11. Виды и обозначения оптических покрытий.
- 12. Оформление чертежа сборочной единицы.
- 13. Правила выполнения оптических схем.
- 14. Базирование оптических элементов. Обозначение центрировки оптических элементов.
- 15. Постановка задачи автоматизированной коррекции.

- 15. Метод Ньютона. Модифицированный метод Ньютона.
- 16. Метод наименьших квадратов. Модифицированный метод наименьших квадратов.
- 17. Метод градиента. Метод Лагранжа.
- 18. Выбор коррекционных параметров.
- 19. Выбор корригируемых функций.
- 20. Назначение и структура САПР ОС.
- 21. Основные редакторы САПР ОС: Lens Data Editor, Glass Cataloge, Wavelengths, Field, Merit Function Editor. Layout. MTF, Spot Diagram. Longitudinal Aberration, Field Curvature and Distorsion.
- 22. Расчет телескопических систем Галилея и Кеплера.
- 23. Положительные и отрицательные линзы. (Standart Surfaces, параметры EFFL / MFE, Radius Variables).
- 24. Кардинальные точки оптической системы (Cardinal Points).
- 25. Хроматизм положения. Методика расчета двухлинзового несклеенного объектива.
- 26. Оптическая система лупы и микроскопа.
- 27. Расчет окуляра Гюйгенса.
- 28. Двухкратная коррекция сферической аберрации и комы для лазерной сканирующей системы.
- 29. Трехкратная коррекция сферической аберрации в лазерной коллимирующей системе.
- 30. Объективы тепловизионных камер. Расчет двухполевого объектива для диапазона 3-5 мкм.
- 31. Панкратические объективы для тепловизионных камер. Гибридные оптические элементы.
- 32. Расчет конденсора с апланатическими менисками. Подгонка радиусов пробных стекол (инструмент Test Plates Fitting).
- 33. Расчет телескопа-расширителя пучка для лазера.
- 34. Расчет проекционного объектива.
- 35. Расчет допусков на оптические системы. Редактор Tolerance Data Editor.
- 36. Оптические системы с акустооптическими элементами.
- 36. Описание акустооптического взаимодействия.
- 37. Использование пользовательской поверхности (UserSurface) моделирования работы АО элемента.
- 38. Виды оптических систем для работы с акустооптическими фильтрами. Преимущества и недостатки.
- 39. Расчет оптической системы с акустооптическим перестраиваемым фильтром.

7.2.5 Примерный вопросов для подготовки к экзамену.

Учебной программой по дисциплине «Автоматизация проектирования оптических систем» экзамен не предусматривается.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

(Например: Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов — 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы	Код контролируемой	Наименование
J\2 11/11	(темы) дисциплины	компетенции	оценочного средства
		ПК-5	Тест, контрольная работа,
1	Структура и качество		защита лабораторных
1	оптического изображения		работ, защита реферата,
	•		требования к курсовому
			проекту
	Разработка оптических схем	ПК-5	Тест, контрольная работа,
	и чертежей на оптические		защита лабораторных
2	детали.		работ, защита реферата,
	детали.		требования к курсовому
			проекту
		ПК-5	Тест, контрольная работа,
	Артомотизирования		защита лабораторных
3	Автоматизированная		работ, защита реферата,
	коррекция оптических систем		требования к курсовому
			проекту
		ПК-5	Тест, контрольная работа,
			защита лабораторных
4	Расчет оптических систем		работ, защита реферата,
			требования к курсовому
			проекту

оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- **8.1** Перечень учебной литературы, необходимой для освоения дисциплины
- 1. С.А.Родионов. Основы оптики. Конспект лекций. С-Пб, 2000.
- 2. А. П. Грамматин, Г. Э. Романова, О.Н. Балаценко. Расчет и автоматизация проектирования оптических систем. Учебное пособие. СПб: НИУ ИТМО, $2013.-128~{\rm c}.$
- 3. А.Гаршин. Расчет термонерасстраиваемых инфракрасных объективов с использованием дифракционных поверхностей. Научно-технический вестник информационных технологий, механики и оптики. Т.18. №6, 2018.
- 4. Patent US5691847. Athermalized and achromatized optical systems employing diffractive optic element, 1994.
- 5. А.П.Грамматин. Методические указания к лабораторным работам. С-Пб, 2008.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Microsoft Word, MathCAD, Microsoft Excel, Internet Explorer.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Научно-учебная лаборатория кафедры ФТТ с научноисследовательскими измерительными стендами, комплексами и оборудованием, компьютерный класс. (аудитории 226, 226а первого корпуса ВГТУ).

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Автоматизация проектирования оптических систем» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета акустооптических дефлекторов, фильтров и модуляторов. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсовой работы изложена в учебнометодическом пособии. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой работы, защитой курсовой работы.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать

	лекцию по соответствующей теме, ознакомится с соответствующим
	разделом учебника, проработать дополнительную литературу и
	источники, решить задачи и выполнить другие письменные задания.
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения
работа	учебного материала и развитию навыков самообразования.
	Самостоятельная работа предполагает следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные
	перед экзаменом три дня эффективнее всего использовать для
	повторения и систематизации материала.