МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан строительного факультета

Панфилов Д.В. 2017 г.

РАБОЧАЯ ПРОГРАММА дисциплины

«СТРОИТЕЛЬНАЯ МЕХАНИКА»

Б1.В.ОД.12

Направление подготовки (специальность): 08.03.01 - «Строительство»

Профиль (Специализация): «Промышленное и гражданское строительство»

Квалификация (степень) выпускника: бакалавр

Нормативный срок обучения: 4 года

Форма обучения: очная

Автор программы _______ ст. преподаватель Рыдченко Д.Г. Программа обсуждена на заседании кафедры строительной механики «<u>30</u>» <u>08</u> 20/1 года Протокол № / Зав. кафедрой Сехурия к.т.н., доц. С. В. Ефрюшин

Воронеж 2017

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Дисциплина «Строительная механика» **имеет своей целью**: дать современному специалисту необходимые представления, а также приобрести навыки в области анализа работы и расчета конструкций и их отдельных элементов, выполненных из различных материалов, на прочность, жесткость и устойчивость при различных воздействиях с использованием современного вычислительного аппарата.

1.2. Задачи освоения дисциплины

Задачей дисциплины «Строительная механика» является:

-вооружить будущего специалиста необходимыми знаниями для анализа работы и расчета строительных конструкций и их отдельных элементов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина <u>«Строительная механика» (Б1.В.ОД.12)</u> относится к обязательным дисциплинам вариативной части учебного плана.

Требования к входным знаниям, умениям и компетенциям студента, необходимым для изучения данной дисциплины.

Изучение дисциплины «Строительная механика» требует основных знаний, умений и компетенций студента по дисциплинам: математика, физика, информатика, теоретическая механика, техническая механика.

Дисциплина «Строительная механика» предшествует следующим дисциплинам: Металлические конструкции, включая сварку; Железобетонные и каменные конструкции; Конструкции из дерева и пластмасс.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Процесс изучения дисциплины <u>«Строительная механика»</u> направлен на формирование следующих компетенций:

- способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и математического (компьютерного) моделирования, теоретического и экспериментального исследования (ОПК-1);
- способностью выявлять естественную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь их для решения соответствующий физико-математический аппарат (ОПК-2).
- владением методами проведения инженерных изысканий, технологией проектирования деталей и конструкций в соответствии с техническим заданием с использованием универсальных и специализированных программновычислительных комплексов и систем автоматизированных проектирования (ПК-2)

В результате изучения дисциплины студент должен:

Знать:

основные методы и практические приемы расчета реальных конструкций и их элементов из различных материалов по предельным расчетным состояниям на различные воздействия.

Уметь:

грамотно составить расчетную схему сооружения, произвести ее кинематический анализ, выбрать наиболее рациональный метод расчета при различных воздействиях, найти распределение усилий и напряжений, обеспечить необходимую прочность и жесткость его элементов с учетом реальных свойств конструкционных материалов, используя современную вычислительную технику.

Владеть:

навыками проведения кинематического анализа расчетной схемы сооружения; определения внутренних усилий, напряжений и перемещений в элементах статически определимых и неопределимых систем современными методами при различных воздействиях.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Строительная механика» составляет $\underline{8}$ зачетных единиц.

Вид учебной работы	Всего	Семе	естры
	часов	5	6
Аудиторные занятия (всего)	108/-	54/-	54/-
В том числе:			
Лекции	36/-	18/-	18/-
Практические занятия (ПЗ)	72/-	36/-	36/-
Лабораторные работы (ЛР)	-/-	-/-	-/-
Самостоятельная работа (всего)	108/-	54/-	54/-
В том числе:			
Курсовой проект (работа)	-/-	-/-	-/-
Контрольная работа	/-	-/-	-/-
Вид промежуточной аттестации (зачет, экзамен)	Экзамен/- 72/-	Экзамен/ - 36/-	Экзамен/- 36/-
Общая трудоемкость час	288/-	144/-	144/-
зач. ед.	8/-	4/-	4/-

Примечание: здесь и далее числитель — очная/знаменатель — заочная формы обучения.

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины

No	Наименование	Содержание раздела		
Π/Π	раздела			
	дисциплины			
5-й семестр / 6-й семестр				

	T 2 1 1 11	
1	Классификация расчётных	Классификация элементов сооружений (массивы, стержни,
	схем и воздействий.	пластинки, оболочки); воздействий (силовые,
	Кинематический и	кинематические, температурные).
	структурный анализ.	Классификация расчетных схем по структуре (балки,
		фермы, рамы, арки, комбинированные системы); по
		статическим признакам (статические определимые и
		неопределимые, статически противоречивые); по
		кинематическим свойствам (геометрически изменяемые и
		неизменяемые, мгновенно изменяемые).
		Основные положения кинематического анализа (понятия о
		числе степеней свободы, диске, узле, стержне, шарнире,
		кратном шарнире). Вывод формул для определения числа
		степеней свободы и числа избыточных связей.
		Анализ геометрической структуры. Примеры образования
		геометрически неизменяемых, геометрически изменяемых и
		мгновенно – изменяемых систем.
2	Расчёт статически	Определение усилий в многопролётных шарнирных
	определимых стержневых	балках, ферм, рам, арках.
	систем	Порядок расчета многопролетной шарнирной балки,
		понятие о монтажной (поэтажной) схеме.
		Классификация ферм. Условия безмоментности стержней.
		Аналитическое определение усилий от узловой нагрузки из
		условий равновесия узлов, частей фермы и
		комбинированным способом. Признаки нулевых стержней.
		Классификация рам по способу опирания, определение
		опорных реакций. Обобщение понятий внутренних усилий и
		способы построения эпюр в рамах. Проверки.
		Типы арок, очертание осей. Вывод формул для
		определения усилий трехшарнирной арки при расчете на
		вертикальную нагрузку. Рациональная ось.
3	Теория линий влияния.	Принцип суперпозиции в линейных системах. Понятие о
	Основы расчета на	линии влияния. Построение линий влияний усилий в
	временную нагрузку.	простых балках, МШБ и фермах. Размерности ординат
		линий влияния. Определение усилий по линиям влияния от
		различных нагрузок. Определение по линиям влияния
		опасного положения временной и подвижной нагрузки.
4	Общие теоремы об	Понятие о действительной (собственной) и возможной
	упругих системах.	(дополнительной) работах. Теорема о взаимности работ и ее
	Определение	следствия. Принцип возможных перемещений. Групповые
	перемещений.	силы и обобщенные перемещения. Линейно и нелинейно
		деформируемые системы, типы нелинейностей.
		Универсальное обозначение перемещений.
		Вывод формулы Мора для определения перемещений от
		всех видов воздействий: нагрузки, смещения связей и
		изменения температуры. Правило Верещагина для
		вычисления интегралов Мора. Примеры перемножения
		эпюр по правилу Верещагина.
5	Расчет статически	Заданная и основная системы. Условия их статической и
	неопределимых систем	кинематической эквивалентности. Канонические уравнения
	методом сил.	метода сил, истолкование и определение коэффициентов и
		свободных членов уравнений. Их проверки. Построение
		окончательных эпюр, кинематические проверки.
		Определение перемещений в статически неопределимых
		системах (теорема Уманского). Учёт симметрии.
		energian (respense a manerolo). A let enimerphin.

		Рациональный выбор основной системы для расчёта неразрезной балки. Уравнение трёх моментов. Понятие об			
		объемлющих (огибающих) эпюрах.			
6	Расчет статически неопределимых систем методом перемещений.	Заданная и основная системы. Условия их статической и кинематической эквивалентности. Канонические уравнения метода перемещений, истолкование и определение коэффициентов и свободных членов уравнений. Их проверки. Построение окончательных эпюр, кинематические проверки.			
7	Смешанный метод расчёта стержневых систем	Расчет статически неопределимой рамы смешанным методом на заданную нагрузку.			
8	Расчёт стержневых систем на устойчивость.	Пример расчета рамы по деформированной расчетной схеме. Расчет устойчивости рамы методом перемещений.			
9	Основные положения матричных методов расчета.	Матричное представление основных уравнений строительной механики (уравнений равновесия, совместности деформаций и физических соотношений) для			
10	Основы расчета упругих систем методом конечных элементов (МКЭ).	плоской стержневой системы. Пример расчета плоской стержневой системы с изгибаемыми элементами методом конечных элементов. Формирование глобальной матрицы жесткости стержневой системы, учет условий закрепления.			

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

№ п/п	Наименование обеспечиваемых (последую-	№ № разделов данной дисциплины, необходимых для изучения обеспечиваемых (последующих) дисциплин				
	щих) дисциплин	1-2	3-4	5-6	7-8	9-10
1	Металлические конструкции, включая сварку	+	+	+	+	+
2	Железобетонные и каменные конструкции	+	+	+	+	+
3	Конструкции из дерева и пластмасс	+	+	+	+	+

5.3. Разделы дисциплин и виды занятий

No	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π			зан.	зан.		час.
1	Классификация расчётных схем и					1.0.1
	воздействий. Кинематический и	2/-	4/-	-/-	4/-	10/-
	структурный анализ.					
2	Расчёт статически определимых	6/-	14/-	-/-	8/-	28/-
	стержневых систем			•		
3	Теория линий влияния. Основы расчета на	2/-	9/-	-/-	4/-	15/-
	временную нагрузку.			•		
4	Общие теоремы об упругих системах.	4/-	9/-	-/-	4/-	17/-
	Определение перемещений.					
5	Расчет статически неопределимых систем	4/-	8/-	-/-	8/-	20/-
	методом сил.				·	·
6	Расчет статически неопределимых систем	4/-	6/-	-/-	17/-	27/-

	методом перемещений.					
7	Смешанный метод расчёта стержневых	2/-	4/-	-/-	17/-	23/-
	систем					
8	Расчёт стержневых систем на	4/-	6/-	-/-	14/-	24/-
	устойчивость.	·		·	·	
9	Основные положения матричных методов	4/-	6/-	-/-	16/-	26/-
	расчета.	·		·		
10	Основы расчета упругих систем методом	4/-	6/-	-/-	16/-	26/-
	конечных элементов (МКЭ).	'+ /-	0/-	-/-	10/-	20/-

5.4. Лабораторный практикум Не предусмотрен

5.5. Практические занятия

№ п/п	№ раздела дисциплины	Тематика практических занятий	Трудо- емкость (час)
1	1	Кинематический анализ расчетных схем сооружений.	3/-
2	2	Расчет многопролетной шарнирной балки (МШБ) на постоянную нагрузку. Формирование монтажной схемы, построение эпюр поперечных сил и изгибающих моментов.	3/-
3	2	Определение усилий в стержнях ферм от постоянной нагрузки аналитическими методами (вырезания узлов, проекций, моментных точек, комбинированным методом).	3/-
4	2		
5	2	Расчет трехшарнирной арки на вертикальную нагрузку.	3/-
6	3	Построение линий влияния опорных реакций, поперечных сил и изгибающих моментов для МШБ. Определение усилий по линиям влияния от действия постоянной и временной нагрузок.	5/-
7	3	Построение линий влияния усилий в стержнях ферм. Определение усилий по линиям влияния от действия постоянной и временной нагрузок.	5/-
8	4	Определение перемещений от нагрузки. Использование правила Верещагина для определения перемещений.	7/-
9	4	Определение перемещений от изменения температуры и смещения опор.	3/-
10	5	Расчет статически неопределимой рамы методом сил на действие заданной нагрузки. Промежуточные и окончательные проверки.	3/-
11	5	Расчет статически неопределимой рамы методом сил на действие изменения температуры и смещения опор. Учет симметрии.	3/-
12	5	Расчет неразрезной балки на постоянную нагрузку и смещение опор с помощью уравнений трех моментов.	3/-
13	6	Расчет статически неопределимых рам методом перемещений на действие заданной нагрузки.	5/-
14	7	Расчет статически неопределимой рамы смешанным методом на заданную нагрузку.	3/-

15	8	Пример расчета рамы по деформированной расчетной схеме.	3/-
16	8	Расчет устойчивости рамы методом перемещений.	3/-
17	9	Матричное представление основных уравнений строительной механики (уравнений равновесия, совместности деформаций и физических соотношений) для плоской стержневой системы.	6/-
18	10	Пример расчета плоской стержневой системы с изгибаемыми элементами методом конечных элементов. Формирование глобальной матрицы жесткости стержневой системы, учет условий закрепления.	6/-

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ, КУРСОВЫХ И КОНТРОЛЬНЫХ РАБОТ

Не предусмотрены

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО И ПРОМЕЖУТОЧНОГО КОНТРОЛЯ ЗНАНИЙ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Перечень компетенций с указанием этапов их формирования процессе освоения образовательной программы.

№	Компетенция	Форма контроля	семестр
п/п	(общепрофессиональная - ОПК)		
1	ОПК -1. Использование основных законов естественнонаучных дисциплин в профессиональной деятельности, применяет методы математического анализа и математического (компьютерного) моделирования, теоретического и экспериментального исследования.	Расчетно-графические работы №1-3 (РГР) Экзамен	5/-,6/-
2	ОПК -2. Способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физикоматематический аппарат.	Расчетно-графические работы №1-3 (РГР) Экзамен	5/-,6/-
3	ПК-2. Владением методами проведения инженерных изысканий, технологией проектирования деталей и конструкций в соответствии с техническим заданием с использованием универсальных и специализированных программновычислительных комплексов и систем автоматизированных проектирования	Расчетно-графические работы №1-3 (РГР) Экзамен	5/-,6/-

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Дескриптор	Показатель оценивания			Форм	а конт	роля	
компетенци и		РГР	КЛ	КР	T	Зачет	Экза мен
Знает	Основные методы и практические приемы расчета реальных конструкций и их элементов из различных материалов по предельным расчетным состояниям на различные воздействия. (ОПК-1, ОПК-2; ПК-2).	+	-	-	-	-	+
Умеет	Грамотно составить расчетную схему сооружения, произвести ее кинематический анализ, выбрать наиболее рациональный метод расчета при различных воздействиях, найти распределение усилий и напряжений, обеспечить необходимую прочность и жесткость его элементов с учетом реальных свойств конструкционных материалов, используя современную вычислительную технику. (ОПК-1, ОПК-2; ПК-2).	+	-	-	-	-	+
Владеет	Навыками проведения кинематического анализа расчетной схемы сооружения; определения внутренних усилий, напряжений и перемещений в элементах статически определимых и неопределимых систем современными методами при различных воздействиях.(ОПК-1, ОПК-2, ПК-2).	+	-	-	-	-	+

7.2.1.Этап текущего контроля знаний

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по пятибалльной шкале с оценками:

- «отлично»;
- «хорошо»;
- «удовлетворительно»;
- «неудовлетворительно»;
- «не аттестован».

Дескрипто	Показатель оценивания	Оценка	Критерий
p			оценивания
компетенц			

ии				
Знает	Основные методы и практические приемы расчета реальных конструкций и их элементов из различных материалов по предельным расчетным состояниям на различные воздействия. (ОПК-1, ОПК-2; ПК-2).			
Умеет	Грамотно составить расчетную схему сооружения, произвести ее кинематический анализ, выбрать наиболее рациональный метод расчета при различных воздействиях, найти распределение усилий и напряжений, обеспечить необходимую прочность и жесткость его элементов с учетом реальных свойств конструкционных материалов, используя современную вычислительную технику. (ОПК-1, ОПК-2; ПК-2).		занятий. Выполненные РГР на оценки «отлично».	
Владеет	Навыками проведения кинематического анализа расчетной схемы сооружения; определения внутренних усилий, напряжений и перемещений в элементах статически определимых и неопределимых систем современными методами при различных воздействиях.(ОПК-1, ОПК-2, ПК-2).			
Знает	Основные методы и практические приемы расчета реальных конструкций и их элементов из различных материалов по предельным расчетным состояниям на различные воздействия. (ОПК-1, ОПК-2; ПК-2).	хорошо	Полное или частичное посещение лекционных и практических	
Умеет	Грамотно составить расчетную схему сооружения, произвести ее кинематический анализ, выбрать наиболее рациональный метод расчета при различных воздействиях, найти распределение усилий и напряжений, обеспечить необходимую прочность и жесткость его элементов с учетом реальных свойств конструкционных материалов, используя современную вычислительную технику. (ОПК-1, ОПК-2; ПК-2).		занятий. РГР на оценки «хорошо».	
Владеет	Навыками проведения кинематического анализа расчетной схемы сооружения; определения внутренних усилий, напряжений и перемещений в элементах статически определимых и неопределимых систем современными методами при различных воздействиях. (ОПК-1, ОПК-2, ПК-2).			
Знает	Основные методы и практические приемы расчета реальных конструкций и их элементов из различных материалов по предельным расчетным состояниям на различные воздействия. (ОПК-1, ОПК-2; ПК-2).	удовлетво рительно	Полное или частичное посещение лекционных и практических	
Умеет	Грамотно составить расчетную схему сооружения, произвести ее кинематический анализ, выбрать наиболее рациональный метод расчета при различных воздействиях, найти		занятий. Удовлетворител ьное выполненные	

Владеет	распределение усилий и напряжений, обеспечить необходимую прочность и жесткость его элементов с учетом реальных свойств конструкционных материалов, используя современную вычислительную технику. (ОПК-1, ОПК-2; ПК-2). Навыками проведения кинематического анализа расчетной схемы сооружения; определения внутренних усилий, напряжений и перемещений в элементах статически определимых и		РГР.
	неопределимых систем современными методами при различных воздействиях. (ОПК-1, ОПК-2, ПК-2).		
Знает	Основные методы и практические приемы расчета реальных конструкций и их элементов из различных материалов по предельным расчетным состояниям на различные воздействия. (ОПК-1, ОПК-2; ПК-2).	неудовлет ворительн о	Частичное посещение лекционных и практических занятий.
Умеет	Грамотно составить расчетную схему сооружения, произвести ее кинематический анализ, выбрать наиболее рациональный метод расчета при различных воздействиях, найти распределение усилий и напряжений, обеспечить необходимую прочность и жесткость его элементов с учетом реальных свойств конструкционных материалов, используя современную вычислительную технику. (ОПК-1, ОПК-2; ПК-2).		Неудовлетворит ельно выполненные РГР.
Владеет	Навыками проведения кинематического анализа расчетной схемы сооружения; определения внутренних усилий, напряжений и перемещений в элементах статически определимых и неопределимых систем современными методами при различных воздействиях. (ОПК-1, ОПК-2, ПК-2).		
Знает	Основные методы и практические приемы расчета реальных конструкций и их элементов из различных материалов по предельным расчетным состояниям на различные воздействия. (ОПК-1, ОПК-2; ПК-2).	не аттестова н	Непосещение лекционных и практических занятий. Не выполненные
Умеет	Грамотно составить расчетную схему сооружения, произвести ее кинематический анализ, выбрать наиболее рациональный метод расчета при различных воздействиях, найти распределение усилий и напряжений, обеспечить необходимую прочность и жесткость его элементов с учетом реальных свойств конструкционных материалов, используя современную вычислительную технику. (ОПК-1, ОПК-2; ПК-2).		РГР.
Владеет	Навыками проведения кинематического анализа расчетной схемы сооружения; определения внутренних усилий, напряжений и перемещений в элементах статически определимых и		

неопределимых систем современными методами	
при различных воздействиях.(ОПК-1, ОПК-2,	
ПК-2).	

7.2.2. Этап промежуточного контроля знаний

В пятом и шестом семестрах результаты промежуточного контроля знаний (экзамен) оцениваются по четырехбальной шкале с оценками:

- «отлично»;
- «хорошо»;
- «удовлетворительно»;
- «неудовлетворительно».

Дескрипто р компетенц	Показатель оценивания	Оценка	Критерий оценивания
ии			
Знает	Фундаментальные основы строительной механики, включая кинематический и структурный анализ расчетных схем, методы расчета статически определимых и неопределимых стержневых систем, теорию линий влияния, теорию определения перемещений, основы теории устойчивости(ОПК-1, ОПК-2).	отлично	Студент демонстрирует полное понимание заданий. Все требования, предъявляемые к заданию
Умеет	Самостоятельно использовать практические методы определения внутренних усилий, перемещений, анализа устойчивости стержневых систем, содержащиеся в учебной и справочной литературе. Расширять свои познания в области строительной механики(ОПК-1, ОПК-2).		выполнены.
Владеет	Первичными навыками и основными методами решения стандартных задач расчета усилий, перемещений и устойчивости стержневых систем (ОПК-1, ОПК-2).		
Знает	Фундаментальные основы строительной механики, включая кинематический и структурный анализ расчетных схем, методы расчета статически определимых и неопределимых стержневых систем, теорию линий влияния, теорию определения перемещений, основы теории устойчивости (ОПК-1, ОПК-2).	хорошо	Студент демонстрирует значительное понимание заданий. Все требования, предъявляемые к заданию выполнены.
Умеет	Самостоятельно использовать практические методы определения внутренних усилий, перемещений, анализа устойчивости стержневых систем, содержащиеся в учебной и справочной литературе. Расширять свои познания в области строительной механики(ОПК-1, ОПК-2).		
Владеет	Первичными навыками и основными методами решения стандартных задач расчета усилий,		

	перемещений и устойчивости стержневых систем (ОПК-1, ОПК-2).		
Знает	Фундаментальные основы строительной механики, включая кинематический и структурный анализ расчетных схем, методы расчета статически определимых и неопределимых стержневых систем, теорию линий влияния, теорию определения перемещений, основы теории устойчивости (ОПК-1, ОПК-2).	удовлетво рительно	Студент демонстрирует частичное понимание заданий. Большинство требований, предъявляемых
Умеет	Самостоятельно использовать практические методы определения внутренних усилий, перемещений, анализа устойчивости стержневых систем, содержащиеся в учебной и справочной литературе. Расширять свои познания в области строительной механики(ОПК-1, ОПК-2).		к заданию выполнены.
Владеет	Первичными навыками и основными методами решения стандартных задач расчета усилий, перемещений и устойчивости стержневых систем (ОПК-1, ОПК-2).		
Знает	Фундаментальные основы строительной механики, включая кинематический и структурный анализ расчетных схем, методы расчета статически определимых и неопределимых стержневых систем, теорию линий влияния, теорию определения перемещений, основы теории устойчивости (ОПК-1, ОПК-2).	неудовлет ворительн о	1. Студент демонстрирует небольшое понимание заданий. Многие требования, предъявляемые к заданию не
Умеет	Самостоятельно использовать практические методы определения внутренних усилий, перемещений, анализа устойчивости стержневых систем, содержащиеся в учебной и справочной литературе. Расширять свои познания в области строительной механики(ОПК-1, ОПК-2).		выполнены. 2. Студент демонстрирует непонимание заданий. 3. У студента
Владеет	Первичными навыками и основными методами решения стандартных задач расчета усилий, перемещений и устойчивости стержневых систем (ОПК-1, ОПК-2).		нет ответа. Не было попытки выполнить задание.

7.3. Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

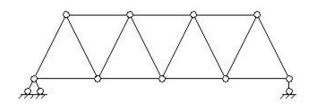
7.3.1. Примерная тематика упражнений и РГР

- РГР № 1 «Расчет статически определимой плоской фермы »
- РГР № 2 «Расчет статически определимой плоской рамы».
- РГР № 3 «Расчет статически неопределимой плоской рамы методом сил».

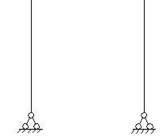
7.3.2. Примерная тематика и содержание КР

Не предусмотрено учебным планом.

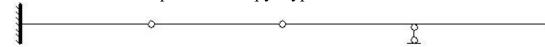
7.3.3. Вопросы для коллоквиумов


Не предусмотрены учебным планом.

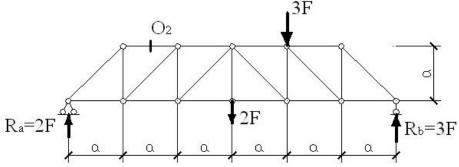
7.3.4. Задания для тестирования


Типовые тестовые задания для оценки знаний при защите РГР

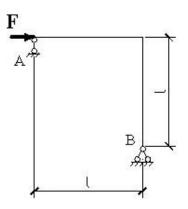
К какому виду относится изображенная на рисунке стержневая система?


- 1) балка;
- 2) рама;
- 3) ферма;
- 4) арка;
- 5) комбинированная система

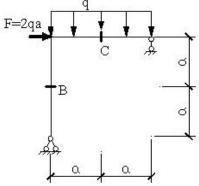
1. Определите число избыточных связей стержневой системы

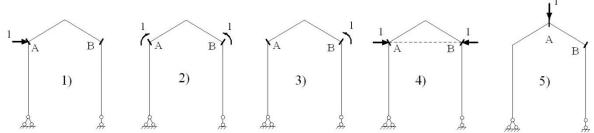


2. Выполните анализ геометрической структуры и дайте заключение



- 1) геометрически изменяемая;
- 2) мгновенно изменяемая;
- 3) геометрически неизменяемая
- 3. Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?
 - 1) метод проекций;
 - 2) метод моментных точек (метод Риттера);
 - 3) метод вырезания узлов;
 - 4) комбинированный метод

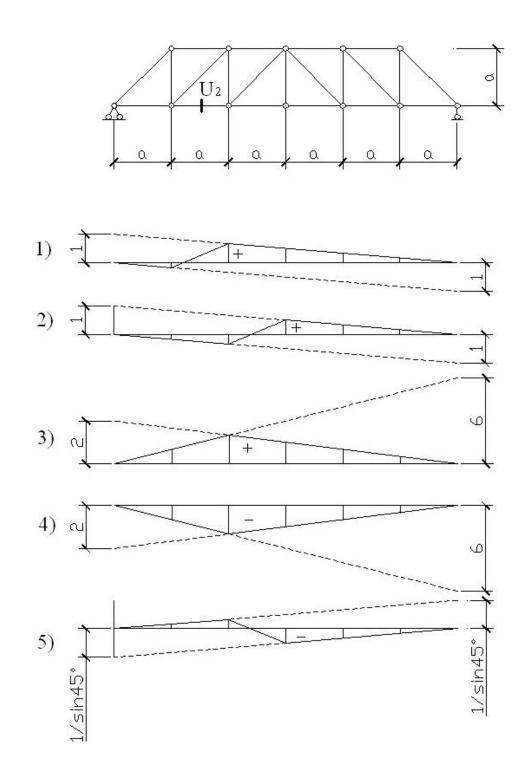

4. Определите усилие в стержне O_2


- 1) 0; 2) -F; 3) -2F; 4) 1.5F; 5) 2F
- 5. Определите реакцию опоры A

- 1) 3F; 2) 0.5F; 3) 2F; 4) 0; 5) -F
- **6.** Определите поперечную силу в сечении B

- 1) qa; 2) 3qa; 3) 0.5qa; 4) 1.5qa; 5) 2qa
- 7. Выберите правильное вспомогательное состояние для определения горизонтального перемещения сечения A

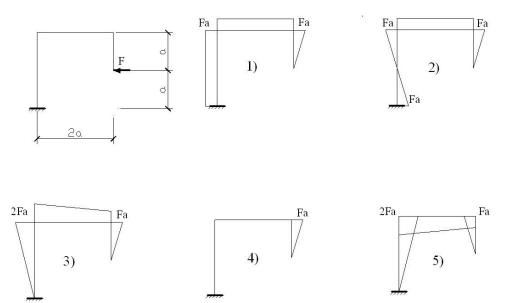
8. Укажите уравнения трех моментов для расчета неразрезной балки на действие заданной нагрузки


1)
$$\Delta_i = \sum_l \frac{Mm_i}{EI} ds$$
;

2)
$$\Delta_i = \sum \alpha \int_l m_i \Delta t' ds + \sum \alpha \int_l n_i \Delta t_0 ds$$
;

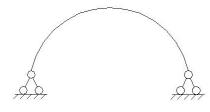
3)
$$\Delta_i = -\sum_{j=1}^n r_{ji} c_j$$
;

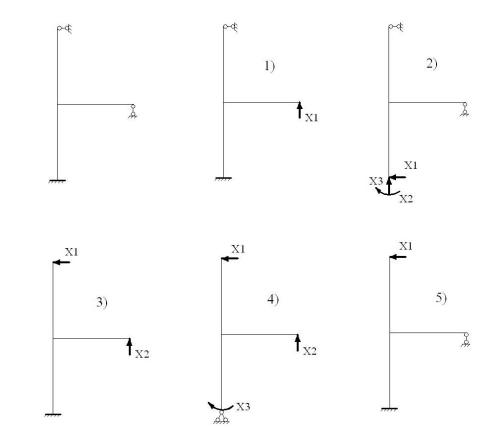
4)
$$l_n x_{n-1} + 2(l_n + l_{n+1})x_n + l_{n+1}x_{n+1} = -6\left(\frac{S_n^A}{l_n} + \frac{S_n^B}{l_{n+1}}\right);$$


- 5) $l_n x_{n-1} + 2(l_n + l_{n+1})x_n + l_{n+1}x_{n+1} = -6EI(\Theta_{n+1} + \Theta_n)$
- **9.** Укажите правильное очертание линии влияния усилия в стержне U_2

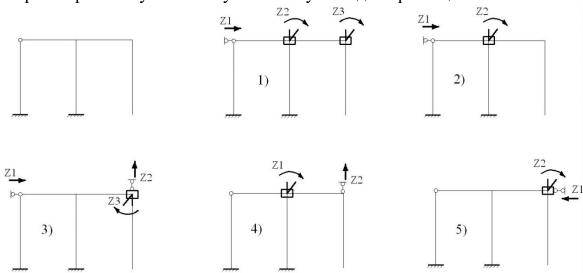
10. Назовите основные неизвестные при расчете неразрезной балки

- 1) усилия и реакции в избыточных связях;
- 2) перемещения узлов;
- 3) реакции в избыточных связях и перемещения узлов;
- 4) перемещения по направлению отброшенных связей;
- 5) реакции наложенных связей


11. Укажите правильную эпюру изгибающих моментов

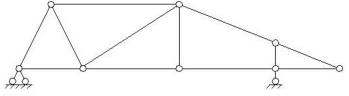

12.Определите угол поворота сечения C, используя правило Верещагина

1)
$$\frac{2Fa^2}{3EI}$$
; 2) $\frac{3Fa^2}{2EI}$; 3) $\frac{4Fa^2}{2EI}$; 4) $\frac{5Fa^2}{4EI}$; 5) $\frac{3Fa^2}{4EI}$ EJ


- **13.**Укажите правильную формулировку физического смысла свободных членов канонических уравнений метода перемещений
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
- 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей
- 14.К какому виду относится изображенная на рисунке стержневая система?
 - 1) балка;
 - 2) рама;
 - 3) ферма;
 - 4) арка;
 - 5) комбинированная система


15. Выберите правильную основную систему метода сил

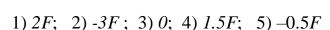
16. Выберите правильную основную систему метода перемещений

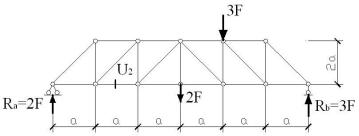


17. Определите число избыточных связей стержневой системы

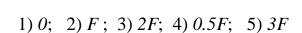
18. Выполните анализ геометрической структуры и дайте заключение

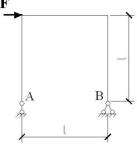
- 1) геометрически изменяемая;
- 2) мгновенно изменяемая;
- 3) геометрически неизменяемая.

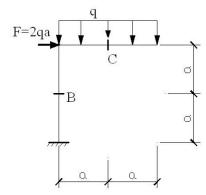



19. Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?

- 1) метод проекций;
- 2) метод моментных точек (метод Риттера);




- 4) комбинированный метод
- **20.**Определите усилие в стержне U_2

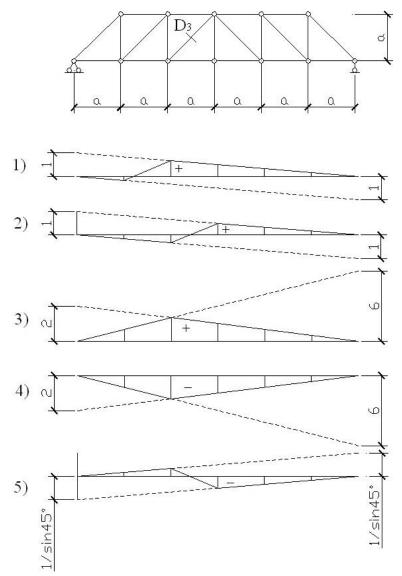

21.Определите вертикальную составляющую опорной реакции в опоре B

22.Определите изгибающий момент в сечении C

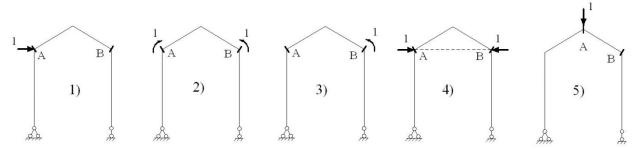
1) 0; 2)
$$4qa^2$$
; 3) $2.5qa^2$; 4) $0.5qa^2$; 5) $3qa^2$

23. Укажите уравнения трех моментов для расчета неразрезной балки на действие заданной нагрузки

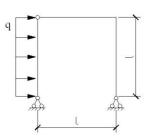
1)
$$\Delta_i = \sum_i \int_{I} \frac{Mm_i}{EI} ds$$
;

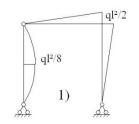

1)
$$\Delta_i = \sum_l \int_l \frac{Mm_i}{EI} ds$$
; 2) $\Delta_i = \sum_l \alpha \int_l m_i \Delta t' ds + \sum_l \alpha \int_l n_i \Delta t_0 ds$;

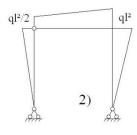
3)
$$\Delta_i = -\sum_{i=1}^n r_{ji} c_j;$$

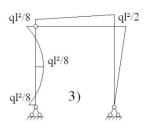

3)
$$\Delta_i = -\sum_{i=1}^n r_{ji} c_j$$
; 4) $l_n x_{n-1} + 2(l_n + l_{n+1}) x_n + l_{n+1} x_{n+1} = -6 \left(\frac{S_n^A}{l_n} + \frac{S_n^B}{l_{n+1}} \right)$;

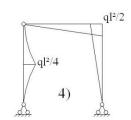
5)
$$l_n x_{n-1} + 2(l_n + l_{n+1}) x_n + l_{n+1} x_{n+1} = -6EI(\Theta_{n+1} + \Theta_n)$$

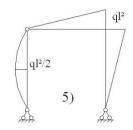

24. Укажите правильное очертание линии влияния усилия в стержне D_3

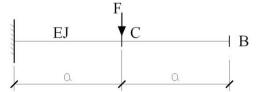


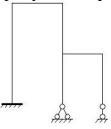

25.Выберите правильное вспомогательное состояние для определения взаимного смещения сечений A и B




- **26.** Укажите правильную формулировку физического смысл специальных коэффициентов r'_{ki} смешанного метода
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей
- 27. Укажите правильную эпюру изгибающих моментов

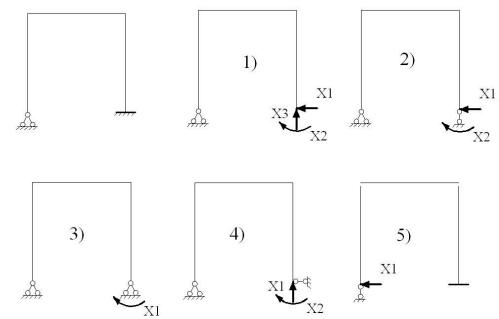


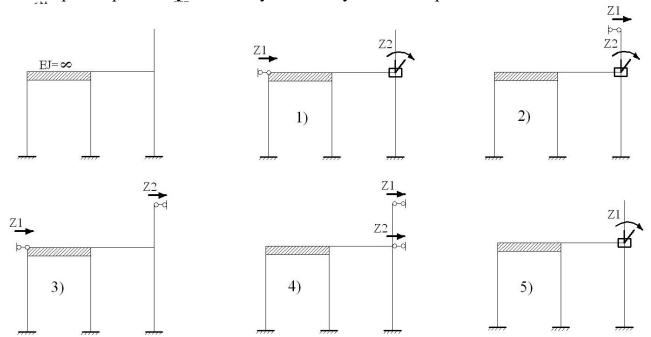




28.Определите вертикальное перемещение точки B, используя правило Верещагина

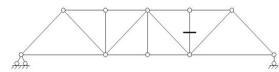
1)
$$\frac{5Fa^3}{6EI}$$
; 2) $\frac{5Fa^3}{3EI}$; 3) $\frac{2Fa^3}{3EI}$; 4) $\frac{4Fa^3}{3EI}$; 5) $\frac{4Fa^3}{5EI}$


- **29.** Укажите правильную формулировку физического смысла свободных членов канонических уравнений метода сил
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
- 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей
- 30.К какому виду относится изображенная на рисунке стержневая система?
 - 1) балка;
 - 2) рама;
 - 3) ферма;
 - 4) арка;
 - 5) комбинированная система.

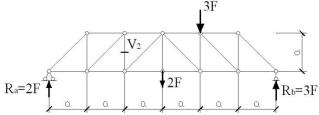

- 31. Выполните анализ геометрической структуры и дайте заключение
 - 1) геометрически изменяемая;
 - 2) мгновенно изменяемая;
 - 3) геометрически неизменяемая

32. Выберите правильную основную систему метода сил

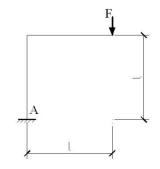
33. Выберите правильную основную систему метода перемещений



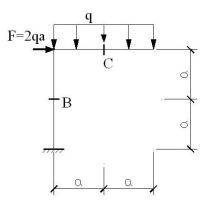
34. Определите число избыточных связей стержневой системы


1) 3; 2) 0; 3) 1; 4) 5; 5) 2

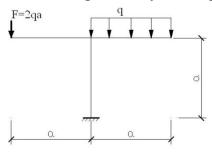
- **35.**Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?
 - 1) метод проекций;
 - 2) метод моментных точек (метод Риттера);
 - 3) метод вырезания узлов;
 - 4) комбинированный метод

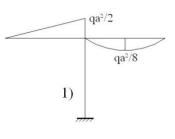


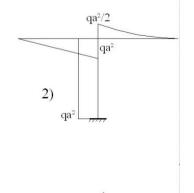
1) 3F; 2) 0; 3) 2F; 4) 4F; 5) 2.5F

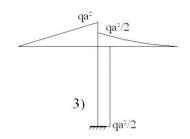

37.Определите опорный момент в заделке A

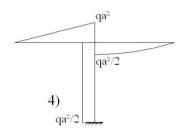
1) 0; 2) 0.5Fl; 3) Fl; 4) 1.5Fl; 5) 2Fl

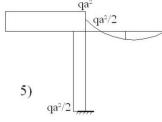


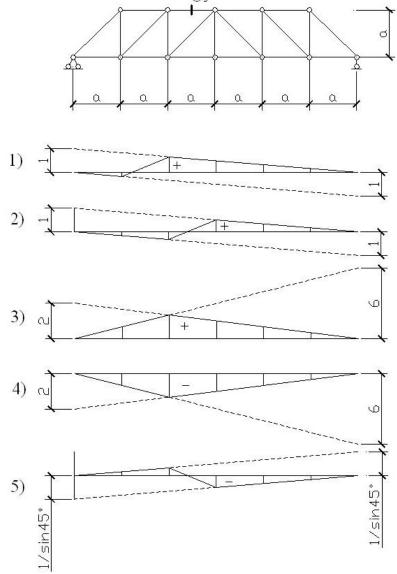

38.Определите изгибающий момент в сечении B

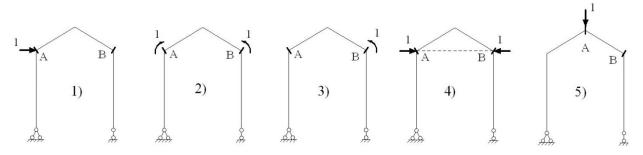

1) 0; 2) $4qa^2$; 3) $2.5qa^2$; 4) $0.5qa^2$; 5) $3qa^2$




39. Укажите правильную эпюру изгибающих моментов







40. Укажите правильное очертание линии влияния усилия в стержне O_3

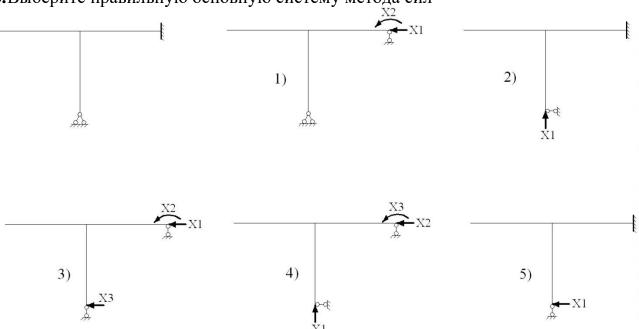
41. Выберите правильное вспомогательное состояние для определения взаимного угла поворота сечений A и B

42. Укажите формулу Мора для определения перемещений от действия заданной нагрузки

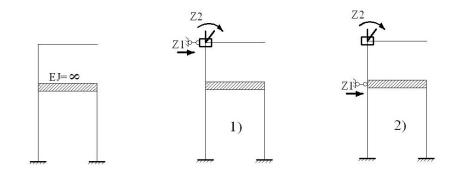
1)
$$\Delta_i = \sum_{l} \int \frac{Mm_i}{EI} ds$$
; 2) $\Delta_i = \sum_{l} \alpha \int_{l} m_i \Delta t' ds + \sum_{l} \alpha \int_{l} n_i \Delta t_0 ds$

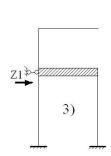
1)
$$\Delta_{i} = \sum_{l} \int_{l} \frac{Mm_{i}}{EI} ds$$
; 2) $\Delta_{i} = \sum_{l} \alpha \int_{l} m_{i} \Delta t' ds + \sum_{l} \alpha \int_{l} n_{i} \Delta t_{0} ds$; 3) $\Delta_{i} = -\sum_{j=1}^{n} r_{ji} c_{j}$; 4) $l_{n} x_{n-1} + 2(l_{n} + l_{n+1}) x_{n} + l_{n+1} x_{n+1} = -6 \left(\frac{S_{n}^{A}}{l_{n}} + \frac{S_{n}^{B}}{l_{n+1}} \right)$;

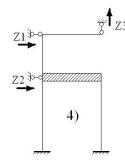
5)
$$l_n x_{n-1} + 2(l_n + l_{n+1})x_n + l_{n+1}x_{n+1} = -6EI(\Theta_{n+1} + \Theta_n)$$

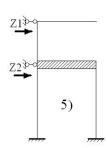

43. Определите угол поворота сечения В, используя правило Верещагина

1)
$$\frac{Fl^2}{4EI}$$
; 2) $\frac{Fl^2}{EI}$; 3) $\frac{Fl^2}{3EI}$; 4) $\frac{3Fl^2}{4EI}$; 5) $\frac{Fl^2}{2EI}$

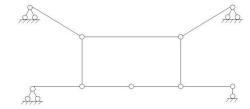


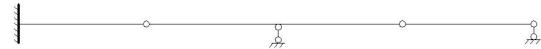

- 44. Назовите основные неизвестные смешанного метода
- 1) усилия и реакции в избыточных связях;
- 2) перемещения узлов;
- 3) реакции в избыточных связях и перемещения узлов;
- 4) перемещения по направлению отброшенных связей;
- 5) реакции наложенных связей
- **45.** Укажите правильную формулировку физического смысла коэффициентов канонических уравнений метода сил
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
- 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей


46. Выберите правильную основную систему метода сил



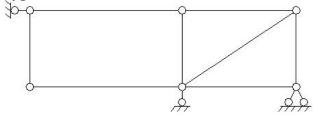
47. Выберите правильную основную систему метода перемещений



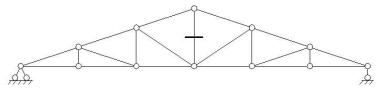


48.К какому виду относится изображенная на рисунке стержневая система?

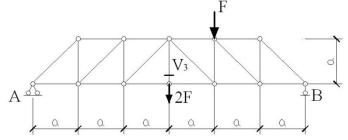
- 1) балка;
- 2) рама;
 - 3) ферма;
 - 4) арка;
 - 5) комбинированная система


49. Определите число избыточных связей стержневой системы

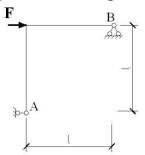
1) 3; 2) 0; 3) 1; 4) 5; 5) 2


50. Выполните анализ геометрической структуры и дайте заключение

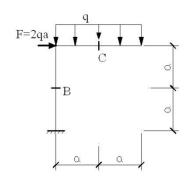
- 1) геометрически изменяемая;
- 2) мгновенно изменяемая;
- 3) геометрически неизменяемая


51. Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?

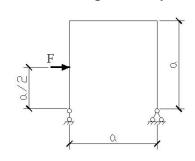
- 1) метод проекций;
- 2) метод моментных точек (метод Риттера);
- 3) метод вырезания узлов;
- 4) комбинированный метод

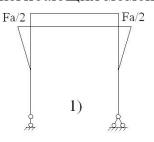

52.Определите усилие в стержне V₃

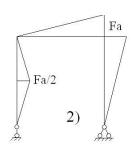
1) 0; 2) 2F; 3) F; 4) 4F; 5) 2.5F

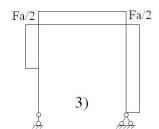

53.Определите вертикальную составляющую опорной реакции в опоре B

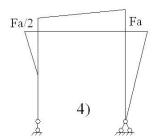
1) F; 2) 3F; 3) 2F; 4) 0; 5) 0.5F

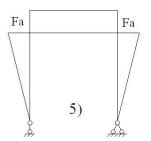


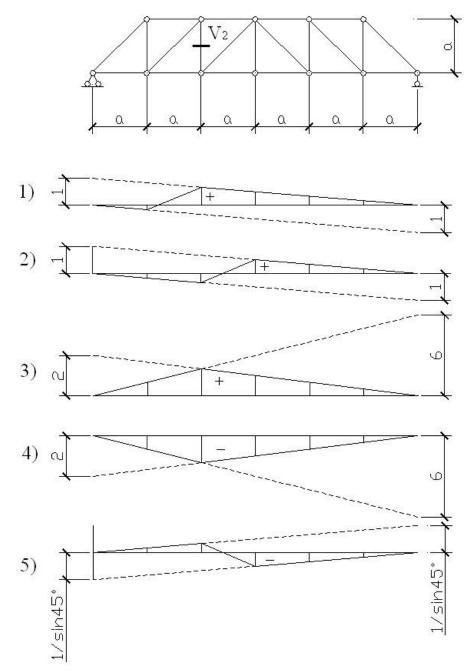

54.Определите продольную силу в сечении B

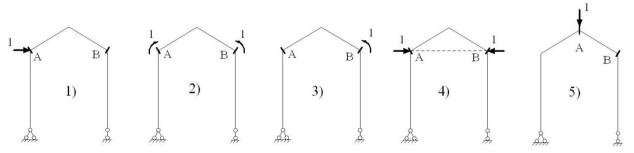

1) -2qa; 2) 0; 3) -3qa; 4) 4qa; 5) 2.5qa




55. Укажите правильную эпюру изгибающих моментов







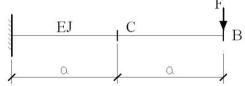
56. Укажите правильное очертание линии влияния усилия в стержне V_2 при езде поверху

57.Выберите правильное вспомогательное состояние для определения вертикального перемещения сечения A

58. Укажите формулу Мора для определения перемещений от действия смещения опор в рамах

1)
$$\Delta_i = \sum_i \int_{I} \frac{Mm_i}{EI} ds$$
;

2)
$$\Delta_i = \sum \alpha \int_I m_i \Delta t' ds + \sum \alpha \int_I n_i \Delta t_0 ds$$
;

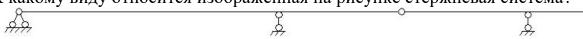

3)
$$\Delta_i = -\sum_{j=1}^n r_{ji} c_j$$
;

4)
$$l_n x_{n-1} + 2(l_n + l_{n+1})x_n + l_{n+1}x_{n+1} = -6\left(\frac{S_n^A}{l_n} + \frac{S_n^B}{l_{n+1}}\right);$$

5)
$$l_n x_{n-1} + 2(l_n + l_{n+1})x_n + l_{n+1}x_{n+1} = -6EI(\Theta_{n+1} + \Theta_n)$$

59.Определите вертикальное перемещение точки C, используя правило Верещагина

1)
$$\frac{5Fa^3}{3EI}$$
; 2) $\frac{2Fa^3}{3EI}$; 3) $\frac{8Fa^3}{3EI}$; 4) $\frac{4Fa^3}{3EI}$; 5) $\frac{4Fa^3}{5EI}$

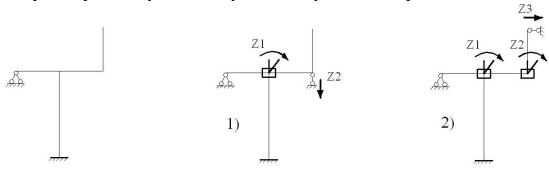

60. Назовите основные неизвестные метода перемещений

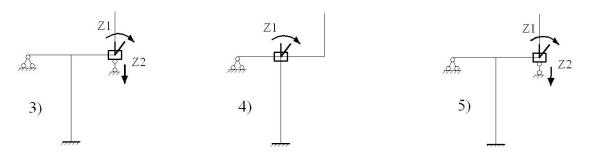
- 1) усилия и реакции в избыточных связях;
- 2) перемещения узлов;
- 3) реакции в избыточных связях и перемещения узлов;
- 4) перемещения по направлению отброшенных связей;
- 5) реакции наложенных связей

61. Укажите правильную формулировку физического смысла специального коэффициента δ_{ik} смешанного метода

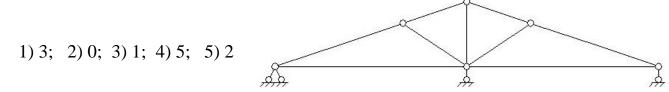
- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
- 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей

62.К какому виду относится изображенная на рисунке стержневая система?

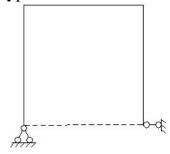



- 1) балка;
- 2) рама;
- 3) ферма;
- 4) арка;
- 5) комбинированная система

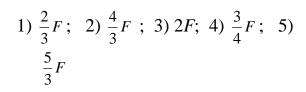
63. Выберите правильную основную систему метода сил

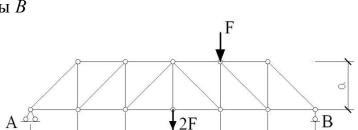


64. Выберите правильную основную систему метода перемещений

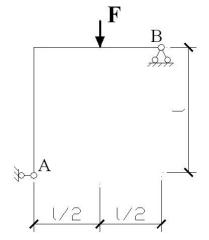


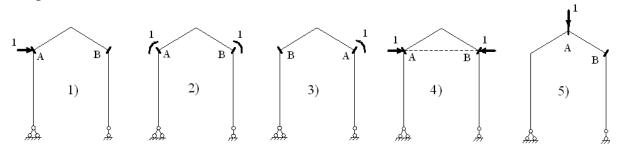
65. Определите число избыточных связей стержневой системы



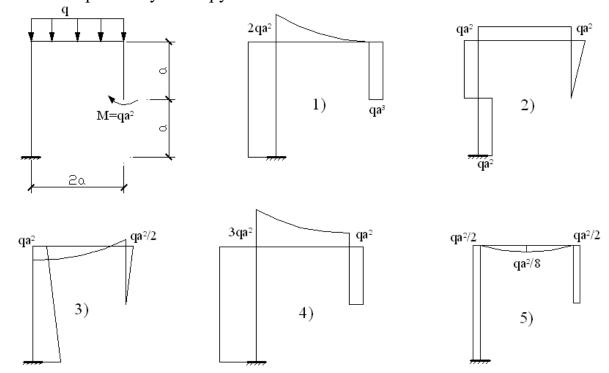

66. Выполните анализ геометрической структуры и дайте заключение

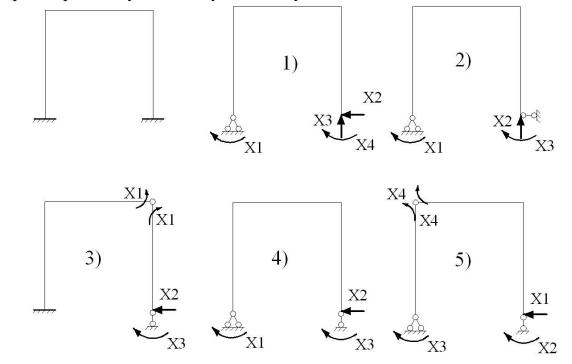
- 1) геометрически изменяемая;
- 2) мгновенно изменяемая;
- 3) геометрически неизменяемая

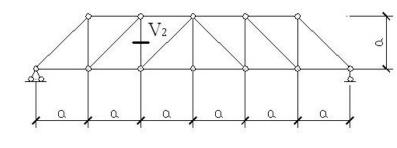

- **67.**Какой метод следует применять для определения усилия в отмеченном стержне аналитическим путем?
 - 1) метод проекций;
 - 2) метод моментных точек (метод Риттера);
 - 3) метод вырезания узлов;
 - 4) комбинированный метод
- **68.**Определите опорную реакцию опоры B

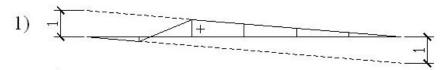


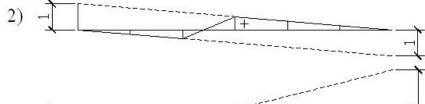
69.Определите реакцию опоры A

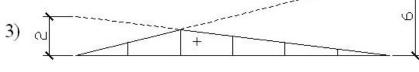

1) F; 2) 1.5F; 3) 3F; 4) 0.5F; 5) 0

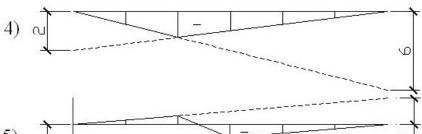

70.Выберите правильное вспомогательное состояние для определения угла поворота сечения A

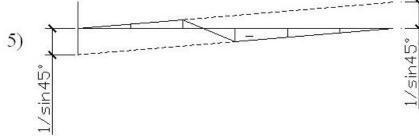

71. Укажите правильную эпюру моментов




72. Выберите правильную основную систему метода сил




73. Укажите правильное очертание линии влияния усилия в стержне V_2 при езде понизу



74. Укажите формулу Мора для определения перемещений от действия изменения температуры

1)
$$\Delta_i = \sum_{l} \frac{Mm_i}{EI} ds$$
;

2)
$$\Delta_i = \sum \alpha \int_s m_i \Delta t' ds + \sum \alpha \int_s n_i \Delta t_0 ds$$
;

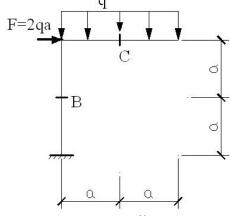
3)
$$\Delta_i = -\sum_{j=1}^n r_{ji} c_j$$
;

4)
$$l_n x_{n-1} + 2(l_n + l_{n+1})x_n + l_{n+1}x_{n+1} = -6\left(\frac{S_n^A}{l_n} + \frac{S_n^B}{l_{n+1}}\right);$$

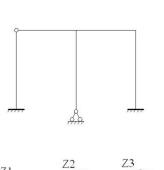
5) $l_n x_{n-1} + 2(l_n + l_{n+1}) x_n + l_{n+1} x_{n+1} = -6EI(\Theta_{n+1} + \Theta_n)$

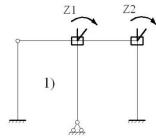
75.Определите вертикальное перемещение точки B, используя правило Верещагина

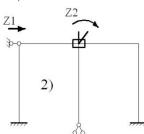
1)
$$\frac{Fl^3}{6EI}$$
; 2) $\frac{Fl^3}{3EI}$; 3) $\frac{2Fl^3}{3EI}$; 4) $\frac{Fl^3}{4EI}$; 5) $\frac{Fl^3}{2EI}$

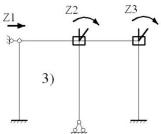

76. Назовите основные неизвестные метода сил

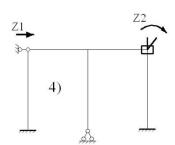
- 1) усилия и реакции в избыточных связях;
- 2) перемещения узлов;
- 3) реакции в избыточных связях и перемещения узлов;
- 4) перемещения по направлению отброшенных связей;
- 5) реакции наложенных связей

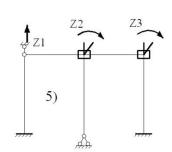

77. Укажите правильную формулировку физического смысла коэффициентов канонических уравнений метода перемещений


- 1) перемещения по направлению отброшенных связей от нагрузки;
- 2) перемещения по направлению отброшенных связей от единичных значений основных неизвестных;
- 3) реакции наложенных связей от нагрузки;
- 4) реакции наложенных связей от единичных смещений;
- 5) реакции наложенных связей от единичных силовых факторов, приложенных по направлению отброшенных связей;
 - 6) перемещения по направлению отброшенных связей от единичных смещений наложенных связей
- **78.**Определите поперечную силу в сечении C


1) qa; 2) 3qa; 3) 0.5qa; 4) 1.5qa; 5) 2qa




79. Выберите правильную основную систему метода перемещений



7.3.5. Вопросы для подготовки к зачету

Не предусмотрены учебным планом.

7.3.6. Вопросы для подготовки к экзамену

- 1. Определение усилий в плоских статически неопределимых стержневых системах методом перемещений. Кинематический анализ, определение степени кинематической неопределимости. Основная система. Канонические уравнения метода перемещений и их смысл. Определение коэффициентов и свободных членов. Построение окончательных эпюр усилий и их проверки.
- 2. Учёт симметрии при расчёте рам методом перемещений. Расчёт рам с бесконечно жёсткими элементами. Комбинированный метод расчёта симметричных рам.
- 3. Сопоставление метода сил и метода перемещений (на примере рамы). Определение усилий в плоских статически неопределимых стержневых системах смешанным методом. Выбор основной системы. Канонические уравнения смешанного метода и их смысл.
- 4. Определение коэффициентов и свободных членов канонических уравнений смешанного метода и их проверки. Построение окончательных эпюр усилий и их проверки.
- 5. Неразрезные балки. Определение усилий от постоянных нагрузок. Кинематический анализ. Выбор основной системы. Вывод уравнений трёх моментов и их смысл. Построение окончательных эпюр усилий и определение опорных реакций. Определение усилий в неразрезных балках от осадки опор.
- 6. Объемлющие эпюры изгибающих моментов в неразрезной балке от временной нагрузки. Построение объемлющих эпюр от совместного действия постоянных и временных нагрузок. Пример практического применения объемлющих эпюр.
- 7. Определение усилий в плоских рамах с использованием деформированной расчетной схемы методом перемещений. Основные допущения. Пример расчёта сжато-изогнутого стержня. Понятие о устойчивости первого и второго рода.
- 8. Расчёт плоских рам на устойчивость методом перемещений. Основные допущения. Учёт симметрии при расчётах рам на устойчивость.
- 9. Топология стержневой конструкции. Представление геометрической и физической информации для элементов. Матричные формы записей уравнений равновесия, совместности деформаций и физических соотношений.
- 10. Виды конечных элементов и условия сопряжения между ними. Представление основных зависимостей в матричной форме. Использование локальных и глобальной систем координат. Основные типы конечных элементов и их применение: КЭ для стержня, плоской задачи, КЭ для изгиба плит.

7.3.4. Паспорт фонда оценочных средств

№	Контролируемые разделы	Код контролируемойкомпетенции	Наименование
п/п	(темы) дисциплины	(или ее части)	оценочного
			средства

1	Классификация расчётных	ОПК-1, ОПК-2, ПК-2	РГР №1
	схем и воздействий.		Экзамен
	Кинематический и		OKSUMEII
	структурный анализ.		
2	Расчёт статически	ОПК-1, ОПК-2, ПК-2	РГР №2
	определимых стержневых		Экзамен
	систем		OKSUMEII
3	Теория линий влияния.	ОПК-1, ОПК-2, ПК-2	РГР №2
	Основы расчета на		Экзамен
	временную нагрузку.		3 KSMM211
4	Общие теоремы об упругих	ОПК-1, ОПК-2, ПК-2	Экзамен
	системах. Определение		
	перемещений.		
5	Расчет статически	ОПК-1, ОПК-2, ПК-2	РГР №3
	неопределимых систем		Экзамен
	методом сил.		
6	Расчет статически	ОПК-1, ОПК-2, ПК-2	РГР №3
	неопределимых систем		Экзамен
	методом перемещений.		GRSunten
7	Смешанный метод расчёта	ОПК-1, ОПК-2, ПК-2	Экзамен
	стержневых систем		
8	Расчёт стержневых систем на	ОПК-1, ОПК-2, ПК-2	Экзамен
	устойчивость.		
9	Основные положения	ОПК-1, ОПК-2, ПК-2	Экзамен
	матричных методов расчета.		
10	Основы расчета упругих	ОПК-1, ОПК-2, ПК-2	Экзамен
	систем методом конечных		
	элементов (МКЭ).		

7.4. Порядок процедуры оценивания знаний, умений, навыков и (или)опыта деятельности на этапе промежуточного контроля знаний

Экзамен может проводиться в устной и (или) письменной форме. При проведении экзамена обучающемуся предоставляется 60минутнаподготовку. Опрос обучающегося по билету на устном экзамене не должен превышать двух астрономических часов. С экзамена снимается материал тех РГР, которые обучающийся выполнил в течение семестра на «хорошо»и «отлично».

Во время проведения экзамена обучающиеся могут пользоваться программойдисциплины, а также вычислительной техникой.

8. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№	Наименование	Вид издания	Автор (авторы)	Год	Место хранения
п/п	издания	(учебник,		издания	и количество
		учебное			
		пособие,			
		методические			
		указания,			

		компьютерная программа)			
1	Строительная механика	Учебние	Дарков А.В., Шапошников Н.Н.	1986г.	Библиотека – 359 экз.
2	Строительная механика. Расчёт статически определимых многопролётных балок (пример расчета)	Учебно- методическое пособие	Кидакоев А.М.	2014г.	Электронный ресурс
3	Строительная механика. Динамика и устойчивость сооружений	Учебник	Смирнов А.Ф. Александров А.В.	1984г.	Библиотека — 298 экз.
4	Строительная механика. Стержневые системы	Учебник	Смирнов А.Ф. Александров А.В.	1981г.	Библиотека — 330 экз.
5	Строительная механика [Электронный ресурс]: контрольные задания и методические указания к их выполнению	Электрон. текстовые данные	Электронный ресурс	2011r.	Электронный ресурс

9. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

<u>№</u> п\п	Наименование издания	Вид издания (учебник, учебное пособие, методические указания, компьютерная программа)		Год издания	Место хранения и количество
1	Расчет многопролетной шарнирной балки	Методические указания	Мухтаров Р.А.	2007	Библиотека — 200 экз.

2	Расчет фермы	Методические указания	А.Н. Аверин, Г.Е. Габриелян, Л.В. Панина	2006	Библиотека – 250 экз.
3	Расчет статически определимой балочной фермы с использованием линий влияния	Методические указания	Барченкова Н.А.	2006	Библиотека – 180 экз.
4	Расчет статически определимой рамы с вычислением перемещений	Методические указания	Гриднев С.Ю.	2003	Библиотека – 150 экз.
5	Расчет статически неопределимой рамы методом сил	Методические указания	Мальцев Р.И.	1989	Библиотека – 120 экз.
6	Расчет статически неопределимой рамы методом перемещений	Методические указания	Мальцев Р.И.	1993	Библиотека – 150 экз.

10.УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕДИСЦИПЛИНЫ

10.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная литература:

- 1. Дарков А.В. ,Шапошников Н.Н. Строительная механика [Текст] : учебник для строит. спец. вузов. 8-е изд., перераб. и доп. М. : Высш. шк., 1986 (М. : МПО "Первая Образцовая тип. им. А. А. Жданова" Союзполиграфпрома при Гос. ком. СССР по делам изд-в, полиграфии и кн. торговли, 1986). 606 с. : ил. Библиогр.: с. 601. 1-40.
- 2. Кидакоев А.М. Строительная механика. Расчёт статически определимых многопролётных балок (пример расчета) [Электронный ресурс]: учебнометодическое пособие для студентов по направлению подготовки 270800.62 «Строительство» (профиль «Промышленное и гражданское строительство»)/ Кидакоев А.М., Шайлиев Р.Ш.— Электрон. текстовые данные.— Черкесск: Северо-Кавказская государственная гуманитарно-технологическая академия, 2014.— 25 с.— Режим доступа: http://www.iprbookshop.ru/27237.— ЭБС «IPRbooks», по паролю.

ISSN: 2227-8397

Дополнительная литература:

- 1. Смирнов А.Ф. Александров А.В. и др.. Строительная механика. Динамика и устойчивость сооружений [Текст] : учебник / под ред. А. Ф. Смирнова. Москва : Стройиздат, 1984. 415 с. : ил. Библиогр.: с. 409-411 (52 назв.). 0-70.
- 2. Смирнов А.Ф. Александров А.В. и др.. Строительная механика. Стержневые системы [Текст] : учебник / под ред. А. Ф. Смирнова. Москва : Стройиздат, 1981. 512 с. : ил. Библиогр.: с. 500 (15 назв.). 1-10.
- 3. Строительная механика [Электронный ресурс]: контрольные задания и методические указания к их выполнению/ Электрон. текстовые данные.— Йошкар-Ола: Марийский государственный технический университет, Поволжский государственный технологический университет, ЭБС АСВ, 2011.— 124 с.— Режим доступа: http://www.iprbookshop.ru/22597.— ЭБС «IPRbooks», по паролю. ISSN: 2227-8397

10.2. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем:

- 1. Консультирование по средством электронной почты.
- 2. Использование презентаций при проведении лекционных занятий.
- 3. Базы данных, информационно-справочные и поисковые системы.

10.3. Перечень ресурсов информационно -телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля):

- 1. Электронный каталог библиотеки ВГАСУ.
- 2. http: <u>www.vgasu.vrn</u>. ru ВГАСУ. Учебно-методические разработки кафедры строительной механики.
- 3. http://www.I-exam.ru. (Интернет тренажеры (ИТ)). Разработанные НИИ мониторинга качества образования.
- 4. http://www.fepo. ru. (репетиционное тестирование при подготовке к федеральному Интернет экзамену).
- 5. Библиотека программ, разработанная на кафедре строительной механики для выполнения РГР.
- 6. Программные комплексы по МКЭ «ЛИРА», «STARK-ES»

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА.

Требования к условиям реализации дисциплины

№ п/п	Вид аудиторного фонда	Требования
1	Лекционная аудитория	Аудитория должна быть оборудована как обычной доской, так и техническими средствами для реализации мультимедийной технологии проведения лекции (проектор, экран, или интерактивная доска, Note-book.
2	Компьютерные классы.	Оснащение специализированной учебной мебелью. Оснащение техническими средствами обучения: ПК с возможностью подключения к локальным сетям и

		Интернету. Наличие ВТ из расчёта один ПК на одного
		студента.
3	Аудитория для практических	Аудитория должна быть оборудована как обычной доской,
	занятий.	так и техническими средствами для реализации
		мультимедийной технологии проведения практических
		занятий (проектор, экран, или интерактивная доска, Note-
		book, или друг ПК).

Перечень материально-технического обеспечения дисциплины:

№ π/π	Вид и наименование оборудования	Вид занятий	Краткая характеристика
1	IBMPC-совместимые	Практические заня-	Процессор серии не ниже PentiumIV.
	персональные	тия.	Оперативная память не менее 512 Мбайт.
	компьютеры.		ПК должны быть объединены локальной
			сетью с выходом в Интернет.
2	Мультимедийные	Лекционные занятия.	Мультимедиа-проектор, компьютер,
	средства.		оснащенный программамиPowerPoint,
			AdobeReader и экран для демонстрации
			электронных презентаций.
3	Учебно-наглядные	Лекционные и прак-	Плакаты, наглядные пособия,
	пособия.	тические занятия	иллюстрационный материал.

12. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ (образовательные технологии)

При реализации дисциплины должны использоваться следующие образовательные технологии:

№ п/п	Наименование технологии	Вид занятий	Краткая характеристика
1	Интерактивная форма обучения.	Лекции, практические занятия.	Технология интерактивного обучения - это совокупность способов целенаправленного усиленного взаимодействия преподавателя и обучающегося, создающего условия для их развития. Современная интерактивная технология широко использует компьютерные технологии, мультимедийную технику и компьютерные сети.
2	Самостоятельное изучение учебной, учебно-методической и справочной литературы.	занятия,	Самостоятельное изучение учебнометодической и справочной литературы позволит студенту осознанно выполнять задания и вести последующие свободные дискуссии по освоенному материалу. Самостоятельная работа предполагает активное использование компьютерных технологий и сетей, а также работу в библиотеке.
3	Метод проблемного изложения материала.	Лекции, практические занятия.	При проблемном изложении материала осуществляется снятие (разрешение) последовательно создаваемых в учебных целях проблемных ситуаций (задач). При рассмотрении каждой задачи препо-

	даватель задает соответствующие вопросы
	и совместно со студентами формулирует
	итоговые ответы. Данный метод
	способствует развитию самостоятельного
	мышления обучающегося и направлен на
	формирование творческих способностей.

Для повышения интереса к дисциплине и развития культуры целесообразно сообщать на лекциях сведения из истории предмета и информацию о вкладе российских ученых в теорию расчета сооружений. Важным условием успешного освоения дисциплины «Строительная механика» является самостоятельная работа студентов. Для осуществления индивидуального подхода к студентам и создания условий ритмичности учебного процесса рекомендуются индивидуальные расчетнографические работы в группах, контрольные работы и тестирование, которые являются не только формами промежуточного контроля, но и формами обучения, так как позволяют своевременно определить уровень усвоения студентами разделов программы и провести дополнительную работу.

Информационные ресурсы используются при реализации следующих видов занятий:

№ π/π	Наименование информационных ресурсов	Вид занятий	Краткая характеристика
1	Учебники и учебные пособия (включая электронные)	Самостоятельная работа студента.	Перечень учебников и учебных пособий приведен в разделе 10 рабочей учебной программы
2	Базы данных	Практические занятия, самостоятельная работа.	Выполнение аудиторных и индивидуальных заданий.
3	Интернет-ресурсы	Самостоятельная работа студента.	Интернет-ресурсы включают удаленные системы тестирования знаний, справочники и базы данных.

Методические рекомендации для обучающихся по освоению дисциплины

Вид учебных	Деятельность студента
занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практическом занятии.
Практические занятия	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Выполнение расчетно-графических заданий,

	решение задач по алгоритму.
Расчетно- графическая работа	Знакомство с основной и дополнительной литературой, включаясправочные издания, конспект основныхположений, терминов, сведений, требующих запоминания иявляющихся основополагающими в этой теме. Составлениеаннотаций к прочитанным литературным источникам.
Подготовка к экзамену	При подготовке к экзамену необходимо ориентироваться на конспекты лекций, рекомендуемую литературу, решение задач на практических занятиях и выполненные РПР.

Программа составлена в соответствии с требованиями ФГОС ВО с учетом рекомендаций и ОПОП ВО по направлению подготовки 08.03.01 «Строительство» Руководитель ОПОП к.т.н., проф. Ткаченко А.Н. (занимаемая должность, ученая степень и звание) (подпись) (инициалы, фамилия) Рабочая программа одобрена учебно-методической комиссией строительного факультета « 30 » 08 2017 г., протокол № Председатель: к.э.н., проф. Власов В.Б. учёная степень и звание, подпись -инициалы, фамилия Эксперт директор <u>Болотских</u> Л. В. (подпись) (инициалы, фамилия) (занимаемая должность)

> М П организации