МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан факультета

Д.В. Панфилов

РАБОЧАЯ ПРОГРАММА

дисциплины

«Физика»

Направление подготовки 08.03.01 Строительство

Профиль Производство и применение строительных материалов, изделий и конструкций

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 4 года и 11 м.

Форма обучения очная $\underline{/}$ заочная

Год начала подготовки 2018

Авторы программы

Золототрубов Д.Ю.

Заведующий кафедрой физики

Тураева Т.Л.

Руководитель ОПОП

Усачев А.М.

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Целью освоения курса физики является ознакомление студентов с основными законами физики и возможностями их применения при решении задач, возникающих в их последующей профессиональной деятельности.

В результате освоения дисциплины «Физика» студент должен изучить физические явления и законы физики, границы их применимости, применение законов в важнейших практических приложениях; познакомиться с основными физическими величинами, знать их определение, смысл, способы и единицы их измерения; представлять себе фундаментальные физические опыты и их роль в развитии науки; знать назначение и принципы действия важнейших физических приборов.

Кроме того, студент должен приобрести навыки работы с приборами и оборудованием современной технической лаборатории; навыки использования различных методик физических измерений и обработки экспериментальных данных; навыки проведения адекватного физического и математического моделирования, а также применения методов физико-математического анализа к решению конкретных естественнонаучных и технических проблем.

1.2. Задачи освоения дисциплины

- изучение законов окружающего мира в их взаимосвязи;
- овладение фундаментальными принципами и методами решения научно-технических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
- формирование у студентов основ естественнонаучной картины мира;
- ознакомление студентов с историей и логикой развития физики и основных её открытий.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Физика» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Физика» направлен на формирование следующих компетенций:

ОПК-1 - Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-1	Знать основные физические явления и основные законы физики;
	границы их применимости, применение законов в важнейших
	практических приложениях; основные физические величины и
	физические константы, их определение, смысл, способы и

единицы их измерения; фундаментальные физические опыты и их роль в развитии науки; назначение и принципы действия важнейших физических приборов

Уметь объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; указать, какие законы описывают данное явление или эффект; истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ; работать с приборами и оборудованием современной физической лаборатории; использовать различные методики измерений и обработки экспериментальных данных; использовать методы адекватного физического и математического моделирования, а также применять методы физико-математического анализа к решению конкретных естественнонаучных и технических проблем

Владеть навыками использования основных общефизических законов и принципов в важнейших практических приложениях; навыками применения основных методов физико-математического анализа для решения естественнонаучных задач; навыками правильной эксплуатации основных приборов и оборудования современной технической лаборатории; навыками обработки и интерпретирования результатов эксперимента; навыками использования методов физического моделирования в инженерной практике.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Физика» составляет 6 з.е. Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Drawy wyo fivo y no fiony y	Всего	Семес	гры
Виды учебной работы	часов	1	2
Аудиторные занятия (всего)	108	54	54
В том числе:			
Лекции	36	18	18
Практические занятия (ПЗ)	36	18	18
Лабораторные работы (ЛР)	36	18	18
Самостоятельная работа	72	54	18
Часы на контроль	36	-	36
Виды промежуточной аттестации - экзамен, зачет	+	+	+
Общая трудоемкость:			
академические часы	216	108	108
зач.ед.	6	3	3

заочная форма обучения

Duwy woody of potenty	Всего	Семест	гры
Виды учебной работы	часов	1	2
Аудиторные занятия (всего)		10	12
В том числе:			
Лекции	8	4	4

Практические занятия (ПЗ)	8	4	4
Лабораторные работы (ЛР)	6	2	4
Самостоятельная работа	181	94	87
Часы на контроль	13	4	9
Виды промежуточной аттестации - экзамен, зачет	+	+	+
Общая трудоемкость:			
академические часы	216	108	108
зач.ед.	6	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

		очная форма обучения					_
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CP C	Всег о, час
1	Кинематика	Система отсчета. Перемещение, скорость, ускорение материальной точки. Виды движения. Уравнения движений. Нормальное и тангенциальное ускорения. Системы координат и их преобразования. Угловые скорость и ускорение. Связь линейных и угловых величин при вращательном движении.	2	2	2	4	10
2	Динамика поступатель- ного движения	Сила, виды сил. Результирующая сила. Законы Ньютона. Механическая система. Импульс, закон сохранения импульса. Механическая работа. Механическая энергия. Консервативные и диссипативные силы. Закон сохранения энергии. Упругий и неупругий удар.	2	2	2	4	10
3	Динамика вращательного движения	Момент инерции. Теорема Штейнера. Кинетическая энергия вращательного движения. Понятие момента сил. Основной закон динамики вращательного движения. Момент импульса. Закон сохранения момента импульса.	2	2	2	4	10
	Механические колебания и волны	Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний. Математический, физический, пружинный маятник. Энергия колебаний. Волновые процессы. Уравнение бегущей волны. Продольные и	2	2	2	4	10

		поперечные волны. Стоячие волны.					
	Молекулярная физика	Идеальный газ. Экспериментальные газовые законы. Основное уравнение МКТ. Распределения Максвелла и Больцмана. Барометрическая формула. Среднее число столкновений и средняя длина свободного пробега молекул. Явления переноса.	2	2	2	4	10
6	Термодинамика	Понятие о степенях свободы. Внутренняя энергия газа. Работа газа. Количество теплоты, теплоемкость. Первое начало термодинамики. Адиабатный процесс. Круговые процессы, цикл Карно. Энтропия. Второе начало термодинамики.	2	2	2	4	10
7	Электростатическое поле в вакууме	Точечный заряд. Закон Кулона. Напряженность электростатического поля. Теорема Гаусса для электростатического поля и ее применение. Циркуляция вектора напряженности. Потенциал, разность потенциалов. Связь напряженности и потенциала. Силовые линии и эквипотенциальные поверхности.	2	2	2	4	10
8	Электростатическое поле в веществе	Проводники в электростатическом поле. Электроемкость. Конденсаторы. Емкость плоского конденсатора. Энергия электростатического поля. Диэлектрики в электростатическом поле. Поляризация. Условия на границе раздела двух диэлектрических сред.	2	2	2	4	10
9	Постоянный ток	Электрический ток, сила и плотность тока. ЭДС и напряжение. Законы Ома в интегральной и дифференциальной форме. Сопротивление. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной форме. Правила Кирхгофа.	2	2	2	4	10
10	Магнитное поле	Характеристики магнитного поля. Закон Био-Савара-Лапласа. Магнитное поле прямого и кругового токов. Сила Ампера, сила Ло-	2	2	2	4	10

		ренца. Циркуляция вектора магнитной индукции. Соленоид. Магнитный поток.					
	Электромагнитная ин- дукция	Закон Фарадея, правило Ленца. Рамка с током в магнитном поле. Самоиндукция. Взаимная индукция. Индуктивность. Токи замыкания и размыкания цепи. Энергия магнитного поля.	2	2	2	4	10
12	Магнитные свойства вещества	Магнетики. Намагниченность. Условия на границе двух магнетиков. Ферромагнетики и их свойства. Магнитный гистерезис. Вихревое поле. Ток смещения. Уравнения Максвелла в интегральной форме.	2	2	2	4	10
13	Электромагнитные ко- лебания и волны	Идеальный электрический контур. Уравнение свободных колебаний в контуре. Формула Томсона. Затухающие электромагнитные колебания в контуре. Вынужденные колебания. Резонанс.	2	2	2	4	10
14	Волновая оптика	Основные законы оптики. Интерференция света. Методы наблюдения интерференции. Дифракция света: зоны Френеля, дифракция Френеля, дифракция Фраунгофера на щели и решетке. Дисперсия. Поляризация света. Закон Малюса. Закон Брюстера.	2	2	2	4	10
15	Квантовая оптика	Тепловое излучение и его характеристики. Закон Кирхгофа, закон Стефана-Больцмана, закон смещения Вина. Гипотеза Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Давление света. Эффект Комптона.	2	2	2	4	10
16	Квантовая механика	Длина волны де Бройля. Соотношения неопределенностей. Волновая функция. Общее и стационарное уравнение Шредингера.	2	2	2	4	10
17	Элементы физики атомов и молекул	Атом водорода в квантовой механике. Квантовые числа. Спин электрона. Схема энергетических уровней атома водорода. Формула Бальмера. Правила отбора.	2	2	2	4	10
18	Ядерная физика	Атомное ядро и его характери-	2	2	2	4	10

стики. Ядерные силы. α – распад β – распад. Радиоактивность. Закон радиоактивного распада. Ядерные реакции.					
Итого	36	36	36	72	180

заочная форма обучения

	заочная форма обучения						
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CP C	Всег о, час
1	Модомундамод фузуучо и	Система отсчета. Перемещение, скорость, ускорение материальной точки. Виды движения. Уравнения движений. Нормальное и тангенциальное ускорения. Системы координат и их преобразования. Угловые скорость и ускорение. Связь линейных и угловых величин при вращательном движении. Сила, виды сил. Результирующая сила. Законы Ньютона. Механическая система. Импульс, закон сохранения импульса. Механическая работа. Механическая энергия. Консервативные и диссипативные силы. Закон сохранения энергии. Упругий и неупругий удар. Момент инерции. Теорема Штейнера. Кинетическая энергия вращательного движения. Понятие момента сил. Основной закон динамики вращательного движения. Момент импульса. Закон сохранения момента импульса. Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний. Математический, физический, пружинный маятник. Энергия колебаний. Волновые процессы. Уравнение бегущей волны. Продольные и поперечные волны. Стоячие волны.	2	2	2	30	34
2	Молекулярная физика и термодинамика	Идеальный газ. Экспериментальные газовые законы. Основное уравнение МКТ. Распределения Максвелла и Больцмана. Барометрическая формула. Среднее число столк-	1	1	-	30	34

		новений и средняя длина сво-					
		бодного пробега молекул. Яв-					
		ления переноса. Понятие о сте-					
		пенях свободы. Внутренняя					
		энергия газа. Работа газа. Ко-					
		личество теплоты, теплоем-					
		кость. Первое начало термоди-					
		намики. Адиабатный процесс.					
		Круговые процессы, цикл Кар-					
		но. Энтропия. Второе начало					
		термодинамики.					
3	Электростатика и посто-	Точечный заряд. Закон Кулона.					
	янный ток	Напряженность электростати-					
	AIIIIBIA TOK	ческого поля. Теорема Гаусса					
		для электростатического поля и					
		ее применение. Циркуляция					
		вектора напряженности. По-					
		тенциал, разность потенциалов.					
		Связь напряженности и потенциала. Силовые линии и экви-					
		потенциальные поверхности.					
		Проводники в электростатиче-					
		ском поле. Электроемкость.					
		Конденсаторы. Емкость плос-	1	1		20	26
		кого конденсатора. Энергия	1	1	-	30	36
		электростатического поля. Ди-					
		электрики в электростатическом					
		поле. Поляризация. Условия на					
		границе раздела двух диэлек-					
		трических сред. Электрический					
		ток, сила и плотность тока. ЭДС					
		и напряжение. Законы Ома в					
		интегральной и дифференци-					
		альной форме. Сопротивление.					
		Работа и мощность тока. Закон					
		Джоуля-Ленца в интегральной и					
		дифференциальной форме.					
	<u> </u>	Правила Кирхгофа.					
4	Магнетизм	Характеристики магнитного					
		поля. Закон					
		Био-Савара-Лапласа. Магнит-					
		ное поле прямого и кругового					
		токов. Сила Ампера, сила Ло-					
		ренца. Циркуляция вектора					
		магнитной индукции. Соленоид.	2	2	2	30	34
		Магнитный поток. Закон Фара-	_				
		дея, правило Ленца. Рамка с					
		током в магнитном поле. Са-					
		моиндукция. Взаимная индук-					
		ция. Индуктивность. Токи за-					
		мыкания и размыкания цепи.					
		Энергия магнитного поля.					

	Магнетики. Намагниченность. Условия на границе двух магнетиков. Ферромагнетики и их свойства. Магнитный гистерезис. Вихревое поле. Ток смещения. Уравнения Максвелла в интегральной форме.					
5 Электромагнитные колебания и волновая оптика	Идеальный электрический контур. Уравнение свободных колебаний в контуре. Формула Томсона. Затухающие электромагнитные колебания в контуре. Вынужденные колебания. Резонанс. Основные законы оптики. Интерференция света. Методы наблюдения интерференции. Дифракция света: зоны Френеля, дифракция Френеля, дифракция Френеля, дифракция Фраунгофера на щели и решетке. Дисперсия. Поляризация света. Закон Малюса. Закон Брюстера.	1	1	2	30	32
6 Квантовая и ядерная физика	Тепловое излучение и его характеристики. Закон Кирхгофа, закон Стефана-Больцмана, закон смещения Вина. Гипотеза Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Давление света. Эффект Комптона. Длина волны де Бройля. Соотношения неопределенностей. Волновая функция. Общее и стационарное уравнение Шредингера. Атом водорода в квантовой механике. Квантовые числа. Спин электрона. Схема энергетических уровней атома водорода. Формула Бальмера. Правила отбора. Атомное ядро и его характеристики. Ядерные силы. а распада В распада. Радиоактивность. Закон радиоактивного распада. Ядерные реакции.	1	1	-	31	33
	Итого	8	8	6	181	203

5.2 Перечень лабораторных работ

- 1. Расчет погрешностей при измерении объема цилиндра. 2. Изучение движение тела, брошенного горизонтально.
- 3. Определение момента инерции крестообразного маятника.
- 4. Определение момента инерции крестообразного маятника (установка с электроникой).

- 5. Определение момента инерции маховика и момента сил трения.
- 6. Определение момента инерции тел с помощью трифилярного подвеса.
- 7. Определение момента инерции металлических колец при помощи маятника Максвелла (установка с электроникой).
- 8. Определение скорости полета пули с помощью баллистического маятника.
- 9. Изучение законов сохранения импульса и механической энергии на модели копра.
- 10. Определение модуля сдвига стальной проволоки методом крутильных колебаний (установка с электроникой).
- 11. Определение вязкости жидкости.
- 12. Определение скорости звука в воздухе методом стоячей волны.
- 13. Определение отношения теплоемкостей при постоянном давлении и постоянном объеме.
- 14. Исследование электростатического поля.
- 15. Определение сопротивления проводников с помощью мостика Уитстона.
- 16. Определение удельного сопротивления проводников.
- 17. Определение ЭДС источника методом компенсации.
- 18. Исследование релаксационных процессов при разрядке конденсаторов.
- 19. Определение горизонтальной составляющей индукции магнитного поля Земли.
- 20. Измерение вращательного момента, действующего на рамку с током в однородном магнитном поле.
- 21. Определение индукции магнитного поля в катушках Гельмгольца.
- 22. Изучение вынужденных электромагнитных колебаний.
- 23. Изучение интерференции света в тонких пленках. Кольца Ньютона.
- 24. Изучение дифракции света на дифракционной решетке.
- 25. Поляризация света. Проверка закона Малюса.
- 26. Изучение дисперсии света.
- 27. Исследование фотоэффекта.
- 28. Изучение спектра водорода и других газов.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

По дисциплине «Физика» предусмотрено выполнение контрольных работ в 1,2 семестрах. Примерная тематика контрольных работ:

Очная и заочная форма обучения

- К.р.№1. Физические основы механики.
- К.р.№2. Молекулярная физика и термодинамика. Электростатика.
- К.р.№3. Электромагнетизм. Колебания.
- К.р.№4. Волновая оптика. Квантовая физика.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕ-СТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

	I			
Компе-	Результаты обучения, ха-	Критерии	Аттестован	Не аттестован

тенция	рактеризующие	оценивания		
1 411-4111	сформированность компе-	V4		
ОПК-1	тенции Знать основные физические явления и основные законы физики; границы их применимости, применение законов в важнейших практических приложениях; основные физические константы, их определение, смысл, способы и единицы их измерения; фундаментальные физические опыты и их роль в развитии науки; назначение и принципы действия важнейших физических приборов	Тест Контрольные задания для защиты лабораторных работ Контрольная работа	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; указать, какие законы описывают данное явление или эффект; истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ; работать с приборами и оборудованием современной физической лаборатории; использовать различные методики измерений и обработки экспериментальных данных; использовать методы адекватного физического и математического моделирования, а также применять методы физико-математического анализа к решению конкретных естественнонаучных и технических проблем		Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками использования основных общефизических законов и принципов в важнейших практических приложениях; навыками применения основных методов физико-математического анализа для решения естест-	Тест Контрольные задания для защиты лабораторных работ Контрольная работа	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

веннонаучных задач; навы-
ками правильной эксплуата-
ции основных приборов и
оборудования современной
технической лаборатории;
навыками обработки и ин-
терпретирования результатов
эксперимента; навыками ис-
пользования методов физиче-
ского моделирования в инже-
нерной практике

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 1 семестре для очной и заочной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

((11)	е зачтено»			1
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ОПК-1	Знать основные физические явления и основные законы физики; границы их применимости, применение законов в важнейших практических приложениях; основные фи-	Тест Контрольные за- дания для защиты	теста на 40-100%	В тесте менее 40% правильных ответов Решено менее 3 заданий из 5
	приложениях, основные физиче- зические величины и физиче- ские константы, их определе- ние, смысл, способы и еди- ницы их измерения; фунда- ментальные физические опыты и их роль в развитии науки; назначение и принципы действия важнейших физиче-	дания для защиты лабораторных работ Контрольная работа	рианта из 5 Решение	Решение кон- трольной рабо- ты на неудов- летворительную оценку
	ских приборов Уметь объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимо-	Тест	Выполнение теста на 40-100% Ответ на 3-5	В тесте менее 40% правильных ответов
	действий; указать, какие законы описывают данное явление или эффект; истолковывать смысл физических величин и понятий; записывать уравнения для физиче-	Контрольные за- дания для защиты лабораторных работ	ответ на 3-3 заданий варианта из 5 Решение	заданий из 5 Решение кон-
	ских величин в системе СИ; работать с приборами и оборудованием современной физической лаборатории; использовать различные мето-	Контрольная работа	контрольной работы на удовле- творитель- ную оценку	трольной рабо- ты на неудов- летворительную оценку

Результаты промежуточного контроля знаний оцениваются во 2 семестре для очной и заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компетен ция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хор	Удовл.	Неудовл
ОПК-1	Знать основные физические явления и основные законы	Тест	10-12	7-9	4-6	Менее 4
	физики; границы их применимости, применение зако-	12 заданий				
	нов в важнейших практических приложениях; основ-					
	ные физические величины и физические константы, их					
	определение, смысл, спо-					
	собы и единицы их измерения; фундаментальные					
	физические опыты и их роль в развитии науки; на-					

	I		1		
значение и принципы дей-					
ствия важнейших физиче-					
ских приборов					
Уметь объяснить основные	Тест	10-12	7-9	4-6	Менее 4
наблюдаемые природные и		10 12	, ,	10	TVICITOC 1
техногенные явления и	12 заданий				
эффекты с позиций фун-					
даментальных физических					
взаимодействий; указать,					
какие законы описывают					
данное явление или эффект;					
истолковывать смысл фи-					
зических величин и поня-					
тий; записывать уравнения					
для физических величин в					
системе СИ; работать с					
приборами и оборудова-					
нием современной физи-					
ческой лаборатории; ис-					
пользовать различные ме-					
тодики измерений и обра-					
ботки экспериментальных					
данных; использовать ме-					
тоды адекватного физиче-					
ского и математического					
моделирования, а также					
применять методы физи-					
ко-математического ана-					
лиза к решению конкрет-					
ных естественнонаучных и					
технических проблем					
Владеть навыками исполь-	Тест	10-12	7-9	4-6	Менее 4
зования основных обще-		10 12	, ,	10	TVICITOC 1
физических законов и	12 заданий				
принципов в важнейших					
практических приложени-					
ях; навыками применения					
основных методов физи-					
ко-математического ана-					
лиза для решения естест-					
веннонаучных задач; на-					
выками правильной экс-					
плуатации основных при-					
боров и оборудования со-					
временной технической					
лаборатории; навыками					
обработки и интерпрети-					
рования результатов экс-					
перимента; навыками ис-					
пользования методов фи-					
зического моделирования в					
инженерной практике	<u> </u>				

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. Укажите характер движения материальной точки, если известно, что нормальное ускорение a_n =const, а тангенциальное ускорение a_τ =0.

Ответ: равномерное движение по окружности.

2. Движение тела на плоскости xOy описывается уравнениям x=t-3 и $y=10-2t^2$. По какой траектории движется тело? Чему равен модуль скорости в начальный момент времени?

Ответ: по параболе; 5 м/с

3. Мяч массой m, двигаясь со скоростью υ_0 , абсолютно упруго ударяется о стенку под углом α к ее поверхности. Определите, какой импульс получит стенка в результате соударения?

Ответ: $2mv_0 \sin \alpha$

4. Рассчитайте момент инерции однородного стержня массой 10 кг и длиной 1 м относительно оси, проходящей на расстоянии 25 см от одного его конца.

Ответ: $1,46 \text{ кг} \cdot \text{м}^2$.

5. Колебания материальной точки описываются уравнением $x=0,02\cos(2\pi t+0,25\pi)$, м. Запишите уравнение проекции ускорения на ось Ox для этой точки.

OTBET: $a_x = -0.08 \cdot \pi^2 \cos(2\pi t + 0.25\pi), \, M/c^2$.

6. Сравните работу идеального газа при расширении из одного состояния в изотермическом и адиабатном процессах?

Ответ: В изотермическом процессе газ совершит бОльшую работу.

7. Является ли эквипотенциальной плоскость симметрии S в поле точечных зарядов: a) $q_1=q_2=q$; б) $q_1=+q$; $q_2=-q$?

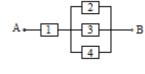
Ответ: а) нет; б) да.

 $\begin{array}{c|c}
\mathbf{g} & \mathbf{S} & \mathbf{q}_1 \\
\mathbf{q}_1 & \mathbf{q}_2
\end{array}$ $\begin{array}{c|c}
I_1 & I_2 \\
-1 & \mathbf{Q}_2
\end{array}$

- 8. Два бесконечно длинных прямолинейных проводника с противоположными токами (I_2 =2 I_1) лежат в плоскости, перпендикулярной плоскости рисунка. На каком участке находятся точки, в которых магнитная индукция равна нулю? Ответ: 1.
- 9. Как изменится мощность излучения абсолютно черного тела, если длина волны, на которую приходится максимум его испускательной способности, увеличится в 2 раза?

Ответ: уменьшится в 16 раз.

10. Активность A некоторого изотопа за 10 суток уменьшилась на 20%. Определить период полураспада этого изотопа. Ответ: 31 сут.


7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Точка движется согласно уравнению $S = 4 + 2t + 5t^2$, где S измеряется в метрах, а t в секундах. Определить расстояние, пройденное телом за первые 3 c, а также величину приобретенного ускорения. (Ответ: 51м; 10м/c^2).
- 2. Тонкостенный цилиндр скатывается с холма высотой 10 м. Какую линейную скорость будет иметь цилиндр у подножия холма? (Ответ: 10 м/с).
- 3. Кислород массой 160 г нагревают при постоянном давлении от 320 до 340 К. Определить количество теплоты, поглощенное газом, изменение внутренней энергии и работу расширения газа. (Ответ: 2908 Дж, 2077 Дж, 831 Дж).
- 4. В вершинах равностороннего треугольника со стороной 0,15 м находятся заряды по 3 нКл, причем два заряда отрицательные, а один положительный. Найти напряженность электрического поля в центре треугольника. (Ответ: 1079 В/м).

- 5. Амперметр с сопротивлением 0,2 Ом, присоединенный к источнику с ЭДС 1,5 В, показывает ток 5 А. Какой ток покажет этот амперметр, если его зашунтировать сопротивлением 0,1 Ом? (Ответ: 3 А).
- 6. По двум длинным параллельным проводникам, находящимся на расстоянии 20 см друг от друга, текут токи разного направления 2 А и 5 А. Чему равна магнитная индукция в точке, лежащей на середине отрезка, соединяющего эти проводники? (Ответ: 14 мкТл).
- 7. Постоянная дифракционной решетки в 4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол между первыми симметричными дифракционными максимумами. (Ответ: 29⁰).
- 8. Абсолютно черное тело имеет температуру 100°С. Какова будет температура тела, если в результате нагревания поток излучения увеличивается в 4 раза? (Ответ: 527 К).
- 9. При исследовании фотоэффекта с поверхности цинка (A_B =4эB) установлено, что при изменении частоты падающего света в 1,2 раза для прекращения фотоэффекта необходимо увеличить задерживающее напряжение в 1,6 раза. Определите частоту излучения в первом эксперименте. (Ответ: 1,45·10¹⁵Гц).
- 10. Электрон выбит из атома водорода, находящегося в основном состоянии, фотоном с энергией ε =17,7эB. Определите скорость электрона за пределами атома. (Ответ: 1,2 м/с).

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Тело бросают в горизонтальном направлении с башни высотой 20 м с некоторой начальной скоростью. Тело падает на расстоянии 30 м от основания башни. С какой начальной скоростью оно было брошено, и какую конечную скорость приобрело? Сопротивлением воздуха пренебречь. (Ответ: 15м/c, 25м/c).
- 2. Платформа в виде сплошного однородного диска вращается по инерции вокруг неподвижной вертикальной оси. На краю платформы стоит человек, масса которого в 4 раза меньше массы платформы. Как и во сколько раз изменится скорость вращения платформы, если человек перейдет ближе к центру на расстояние, равное 0,5 радиуса платформы? (Ответ: увеличится в 1,33 раза).
- 3. За счет 1 кДж теплоты, получаемой от нагревателя, машина, работающая по циклу Карно, совершает работу 0,5 кДж. Температура нагревателя 500 К. Определить температуру холодильника. (Ответ: 250 К).
- 4. К батареи с ЭДС $\varepsilon = 300$ В подключены два плоских конденсатора емкостью $C_1 = 2$ пФ и $C_2 = 3$ пФ. Определить заряд и напряжение U на пластинах каждого конденсатора при последовательном соединении. (Ответ: $3.6 \cdot 10^{-10}$ Кл, 180 В, 120 В).
- 5. Четыре проводника соединены по схеме, приведенной на рисунке. Напряжение между точками A и B равно 18 В. Сопротивления проводников: $R_1 = 1,6$ Ом, $R_2 = 4$ Ом, $R_3 = 6$ Ом, $R_4 = 12$ Ом. Определить общее сопротивление и силу тока в отдельных проводниках. (Ответ: 3,6 В; 2,5 A; 1,67 A; 0,83 A).

- 6. Прямоугольная рамка площадью 100 см^2 равномерно вращается с угловой скоростью 10 рад/с в однородном магнитном поле, индукция которого 0,4 Тл. Ось вращения находится в плоскости рамки и составляет 30^0 с направлением силовых линий поля. Найти максимальную ЭДС индукции в рамке. (Ответ: 0,02 B).
- 7. Колебательный контур состоит из конденсатора и катушки индуктивности. Определить частоту колебаний, возникающих в контуре, если максимальная сила тока в катушке 1,2 А, максимальная разность потенциалов на обкладках конденсатора 1200 В, энергия контура 1,1 мДж. (Ответ: 0,1 МГц).
- 8. Угол падения луча на поверхность жидкости 50° . Отраженный луч максимально поляризован. Определить угол преломления луча. (Ответ: 40°).
 - 9. Монохроматическое излучение с длиной волны, равной 500 нм, падает нормально на

плоскую зеркальную поверхность и давит на нее с силой $10 \ nH$. Определите число фотонов, ежесекундно падающих на эту поверхность. (Ответ: $3.8 \cdot 10^{18}$).

10. Электрон находится в одномерном потенциальном ящике шириной 1 нм в основном состоянии. Определите вероятность обнаружить электрон в крайней четверти ящика. (Ответ: 9%).

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Предмет физики. Физическая модель. Классическая механика. Кинематика. Система отсчета. Методы задания материальной точки. Связь координатного и векторного методов. Описание движения в классической механике.
- 2. Криволинейное движение. Средняя и мгновенная скорость. Равнопеременное движение.
- 3. Неравномерное криволинейное движение. Радиус кривизны. Тангенциальное и нормальное ускорения.
 - 4. Силы в механики. Правило сложения сил, действующих на материальную точку.
 - 5. Инерция тел. Мера инертности тела. Законы Ньютона. Импульс тела. Импульс силы.
- 6. Механическая система. Внутренние и внешние силы. Закон сохранения импульса механической системы.
 - 7. Работа и мощность. Работа однородной силы тяжести.
- 8. Кинетическая энергия поступательного движения. Потенциальная энергия. Связь потенциальной энергии с консервативной силой, действующей на материальную точку.
- 9. Полная энергия механической системы. Консервативные силы. Закон сохранения механической энергии.
- 10. Диссипативные силы. Работа диссипативных сил. Закон сохранения и превращения энергии.
 - 11. Абсолютно упругий и неупругий удар.
- 12. Абсолютно твердое тело физическая модель. Поступательное и вращательное движение твердого тела. Угловая скорость и угловое ускорение. Связь угловых и линейных величин.
- 13. Момент инерции. Определение момента инерции однородного стержня. Теорема Штейнера.
- 14. Работа и кинетическая энергия вращательного движения. Вывод основного закона динамики вращательного движения.
 - 15. Равнодействующая сила. Момент силы.
 - 16. Момент импульса. Закон сохранения момента импульса механической системы.
- 17. Статистический и термодинамический методы изучения строения вещества. Термодинамическая система. Термодинамические параметры. Молярная масса. Число Авогадро. Равновесные состояния и квазиравновесные процессы.
- 18. Идеальный газ физическая модель. Уравнение Клапейрона-Менделеева. Изопроцессы. Закон Дальтона.
- 19. Основное уравнение молекулярно-кинетической теории идеальных газов. Связь давления и температуры. Физический смысл давления и температуры.
- 20. Число степеней свободы молекулы. Распределение энергии по степеням свободы молекулы. Внутренняя энергия идеального газа.
 - 21. Работа газа при изменении его объема.
 - 22. Количество теплоты. Теплоемкость газа.
- 23. Первое начало термодинамики. Невозможность создания вечного двигателя первого рода.
- 24. Применение первого начала термодинамики для изотермического процесса. Работа газа при изотермическом процессе.
 - 25. Применение первого начала термодинамики для изохорического процесса. Мо-

лярная и удельная теплоемкость при V = const.

- 26. Применение первого начала термодинамики для изобарического процесса. Молярная и удельная теплоемкость при p = const. Уравнение Майера.
 - 27. Адиабатический процесс. Уравнение Пуассона.
 - 28. Круговые процессы. Тепловая машина, КПД. Холодильная машина.
 - 29. Цикл Карно и его КПД. Пути повышения КПД тепловых машин.
- 30. Второе начало термодинамики. Невозможность создания вечного двигателя второго рода.
 - 31. Энтропия. Ее статистический смысл.
 - 32. Третье начало термодинамики. Теорема Нернста.
- 33. Элементарный заряд. Точечный заряд. Закон сохранения электрического заряда. Электрическое поле. Закон Кулона.
- 34. Напряженность и потенциал электростатического поля. Эквипотенциальные поверхности, силовые линии.
 - 35. Принцип суперпозиции электростатических полей.
- 36. Поток вектора напряженности электрического поля. Теорема Остроградского-Гаусса.
 - 37. Циркуляция вектора напряженности электростатического поля.
 - 38. Применение теоремы Остроградского-Гаусса к расчету электрических полей.
 - 39. Связь напряженности и потенциала электростатического поля.
- 40. Электрическое поле внутри проводника и у его поверхности. Энергия электростатического поля.
 - 41. Электроемкость. Конденсаторы. Плоский конденсатор. Соединение конденсаторов.
- 42. Диполь. Полярные и неполярные молекулы. Поляризация диэлектриков. Виды поляризации. Свободные и связанные заряды.
- 43. Расчет напряженности электростатического поля внутри диэлектрика. Диэлектрическая проницаемость среды.
 - 44. Постоянный электрический ток, его характеристики и условия существования.
 - 45. Разность потенциалов, ЭДС, напряжение.
- 46. Законы Ома в интегральной форме. Сопротивление. Зависимость сопротивления от температуры.
 - 47. Тепловое действие тока. Закон Джоуля-Ленца.
 - 48. Законы Кирхгофа. Закон Ома и Джоуля-Ленца в дифференциальной форме.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Магнитное поле. Магнитная индукция. Закон Ампера.
- 2. Закон Био-Савара-Лапласа. Принцип суперпозиции для магнитных полей. Магнитное поле прямолинейного проводника с током. Магнитное поле кругового тока.
 - 3. Действие магнитного поля на движущийся заряд. Сила Лоренца.
 - 4. Контур с током в магнитном поле. Магнитный момент контура.
 - 5. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля.
 - 6. Работа перемещения проводника и контура с током в магнитном поле.
- 7. Явление электромагнитной индукции. Закон электромагнитной индукции и его вывод из закона сохранения энергии. Правило Ленца.
 - 8. Явление самоиндукции. Индуктивность.
 - 9. Токи при замыкании и размыкании цепи.
 - 10. Явление взаимной индукции. Взаимная индуктивность.
 - 11. Магнитная восприимчивость и магнитная проницаемость среды. Типы магнетиков.
 - 12. Ферромагнетики. Кривая намагничивания. Магнитный гистерезис.
- 13. Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний.

- 14. Физический и математический маятники.
- 15. Пружинный маятник. Энергия гармонических колебаний.
- 16. Электрический колебательный контур. Незатухающие электромагнитные колебания.
 - 17. Затухающие механические колебания. Апериодический процесс.
 - 18. Затухающие электромагнитные колебания.
 - 19. Вынужденные механические колебания. Резонанс.
 - 20. Сложение гармонических колебаний одинакового направления. Биения.
 - 21. Сложение взаимно перпендикулярных колебаний.
- 22. Волны. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Уравнение бегущей волны. Характеристики волны.
 - 23. Интерференция волн. Образование стоячих волн.
- 24. Электромагнитные волны, их основные свойства. Энергия электромагнитных волн. Поток энергии, вектор Умова-Пойнтинга.
- 25. Световые волны. Интерференция света. Геометрическая и оптическая разность хода. Условия максимума и минимума интерференций. Интерферометры.
- 26. Интерференция при отражении и прохождении света через тонкую пленку или пластинку.
 - 27. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.
 - 28. Дифракция на одной щели и на дифракционной решетке.
- 29. Дифракция рентгеновских лучей на кристаллической решетке. Исследование структуры кристаллов.
- 30. Естественный и поляризованный свет. Поляризация света при отражении. Закон Брюстера.
 - 31. Поляроиды и поляризационные призмы. Закон Малюса.
- 32. Тепловое излучение. Закон Кирхгофа Закон Стефана-Больцмана. Закон смещения Вина.
 - 33. Вешний фотоэффект и его законы. Фотоны. Уравнение Эйнштейна.
 - 34. Давление света. Опыт Лебедева.
 - 35. Двойное лучепреломление. Искусственная оптическая анизотропия.
 - 36. Эффект Комптона.
- 37. Волновые свойства частиц. Гипотеза де Бройля. Плоская волна де Бройля. Экспериментальные подтверждения волновых свойств частиц.
 - 38. Соотношения неопределенностей Гейзенберга.
 - 39. Волновая функция и ее статистическое толкование.
 - 40. Уравнение Шредингера. Собственные значения энергии. Собственные функции.
 - 41. Движение свободной частицы.
- 42. Частица в одномерной потенциальной яме. Квантование энергии. Принцип соответствия Бора.
 - 43. Гармонический осциллятор.
- 44. Прохождение частицы через одномерный потенциальный барьер, туннельный эффект.
- 45. Квантово-механическая модель атома водорода. Квантовые числа электрона в атоме водорода. Схема энергетических уровней атома водорода. Правила отбора.
- 46. Рентгеновские лучи. Сплошной спектр и характеристическое излучение. Закон Мозли.
- 47. Состав и характеристики атомного ядра. Ядерные силы. Дефект масс. Энергия связи. Удельная энергия связи.
 - 48. Радиоактивность. Закон радиоактивного распада.
 - 49. Виды и законы радиоактивных процессов.
- 50. Ядерные реакции. Законы сохранения в ядерных реакциях. Деление ядер. Синтез ядер.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 12 вопросов и задач. Каждый правильный ответ в тесте оценивается 1 баллом. Максимальное количество набранных баллов – 12.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 4 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 4 до 6 баллов.
 - 3. Оценка «Хорошо» ставится в случае, если студент набрал от 7 до 9 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 10 до 12 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы	Код контролируемой	Наименование
J\ <u>\</u> 11/11	(темы) дисциплины	компетенции	оценочного средства
1	Кинематика	ОПК-1	Тест Контрольные задания для защиты лабора- торных работ Устный опрос Контрольная работа
2	Динамика поступательного движения	ОПК-1	Тест Контрольные задания для защиты лабораторных работ Устный опрос Контрольная работа
3	Динамика вращательного движения	ОПК-1	Тест Контрольные задания для защиты лабораторных работ Устный опрос Контрольная работа
4	Механические колебания и волны	ОПК-1	Тест Контрольные задания для защиты лабораторных работ Устный опрос Контрольная работа
5	Молекулярная физика	ОПК-1	Тест Контрольные задания для защиты лабораторных работ Устный опрос Контрольная работа
6	Термодинамика	ОПК-1	Тест Контрольные задания для защиты лабора- торных работ Устный опрос Контрольная работа

	Электростатическое поле в	ОПК-1	Тест
	вакууме	Offic-1	Контрольные задания
	Вакуумс		для защиты лабора-
			торных работ
			Устный опрос
	D	ОПК-1	Контрольная работа
	Электростатическое поле в	OHK-1	Тест
	веществе		Контрольные задания
			для защиты лабора-
			торных работ
			Устный опрос
	——————————————————————————————————————	OFFIC 1	Контрольная работа
	Постоянный ток	ОПК-1	Тест
			Контрольные задания
			для защиты лабора-
			торных работ
			Устный опрос
			Контрольная работа
	Магнитное поле	ОПК-1	Тест
			Контрольные задания
			для защиты лабора-
			торных работ
			Устный опрос
			Контрольная работа
	Электромагнитная индукция	ОПК-1	Тест
			Контрольные задания
			для защиты лабора-
			торных работ
			Устный опрос
			Контрольная работа
	Магнитные свойства веще-	ОПК-1	Тест
	ства		Контрольные задания
			для защиты лабора-
			торных работ
			Устный опрос
			Контрольная работа
	Электромагнитные колеба-	ОПК-1	Тест
	ния и волны		Контрольные задания
			для защиты лабора-
			торных работ
			Устный опрос
			Контрольная работа
	Волновая оптика	ОПК-1	Тест
			Контрольные задания
			для защиты лабора-
			торных работ
			Устный опрос
			Контрольная работа
	Квантовая оптика	ОПК-1	Тест
	TOMITODUA OITHING		Контрольные задания
			для защиты лабора-
			торных работ
L		<u> </u>	торпыл раоот

		Устный опрос
		Контрольная работа
Квантовая механика	ОПК-1	Тест
		Контрольные задания
		для защиты лабора-
		торных работ
		Устный опрос
		Контрольная работа
Элементы физики атомов и	ОПК-1	Тест
молекул		Контрольные задания
		для защиты лабора-
		торных работ
		Устный опрос
		Контрольная работа
Ядерная физика	ОПК-1	Тест
		Контрольные задания
		для защиты лабора-
		торных работ
		Устный опрос
		Контрольная работа

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование (по теме или итоговое) осуществляется, либо при помощи компьютерной системы тестирования (в семестре), либо с использованием тест-заданий на бумажном носителе. Время тестирования 60 минут. Затем осуществляется проверка теста (автоматически программой) или экзаменатором и выставляется оценка согласно критериям. Тесты содержат задачи, как базового уровня сложности, так и повышенного.

К каждой лабораторной работе предложены пять вариантов по пять заданий, содержащих один теоретический вопрос и несколько качественных задач по теме лабораторной работы. Задания выполняются студентом дома. На занятии ведется устный опрос по решенным вариантам.

Контрольные работы содержат по 3 задачи. Контрольная работа может быть предложена в качестве домашней работы по индивидуальным вариантам.

Для студентов заочной формы обучения:

Контрольные работы представлены в отдельных учебно-методических пособиях в электронном виде. Каждая контрольная работа содержит 6 задач. Номера задач студент выбирает в таблице согласно варианту, соответствующему двум последним цифрам зачетной книжки.

Контрольная работа считается выполненной (зачтенной), если приведены решения в общем виде всех задач соответствующего варианта. Работа может быть зачтена с замечаниями при наличии не более двух ошибок в математических преобразованиях или вычислениях.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Трофимова Т.И. Курс физики. Москва. Academia, 2007 г.
- 2. Детлаф А.А., Яворский Б.М. Курс физики, М.: «Академия», 2007 г.
- 3. Савельев И.В. Курс общей физики: Т.1-5. М.: ООО «Издательство Арстель», 2003 г.
- 4. Волькенштейн В.С. Сборник задач по общему курсу физики. СПб.: Книжный мир,

- 5. Иродов И.Е. Задачи по общей физике. М.: «Академия», 1997 г.
- 6. Панкратова Е.А., Абрамов А.В. Механика. Методические указания к решению задач по физике для студентов всех строительных специальностей. Воронеж, ВГАСУ, 2009 г.
- 7. Панкратова Е.А., Абрамов А.В. Молекулярная физика и термодинамика. Методические указания к решению задач по физике для студентов всех строительных специальностей. Воронеж, ВГАСУ, 2009 г.
- 8. Тарханов А.К., Белко В. Н. Электричество и магнетизм. Методические указания к решению задач по физике для студентов всех строительных специальностей. Воронеж, $B\Gamma ACY$, 2009 г.
- 9. Сумец М.П., Кутищев С.Н. Колебания и волны. Методические указания к решению задач по физике для студентов всех строительных специальностей. Воронеж, ВГАСУ, 2009 г.
- 10. Золототрубов Д.Ю. Волновая оптика. Методические указания к решению задач по физике для студентов всех строительных специальностей. Воронеж, ВГАСУ, 2009 г.
- 11. Золототрубов Д.Ю. Квантовая природа излучения. Элементы квантовой механики и ядерной физики. Методические указания к решению задач по физике для студентов всех строительных специальностей. Воронеж, ВГАСУ, 2009 г.
- 12. Тарханов А.К., Назаров В.М., Золототрубов Ю.С. Электричество и магнетизм. Колебания. Практикум. Воронеж, ВГАСУ, 2007 г.
- 13. Белко В.Н., Никишина А.И., Тарханов А.К., «Электричество и магнетизм». Лабораторный практикум по физике. Воронеж. ВГАСУ, 2012 г.
- 14. Головинский П.А., Золототрубов Ю.С, Сумец М.П. Оптика и элементы квантовой физики. Практикум. Воронеж, ВГАСУ, 2007 г.
- 15. Абрамов А.В., Панкратова Е.А., Головинский П.А.. Механика. Молекулярная физика. Практикум, Воронеж, гос.-арх.-строит, ун-т. 2007г.
- 16. Никишина А.И., Тарханов А.К., Золототрубов Д.Ю., Алексеева Е.В. Механика. Молекулярная физика и термодинамика. Электростатика и постоянный ток: методические указания к изучению курса физики для студ. факультета заочного обучения. Воронеж. ВГАСУ, 2011.
- 17. Золототрубов Д.Ю., Алексеева Е.В., Никишина А.И., Тарханов А.К. Электромагнетизм. Колебания и волны. Квантовая природа излучения. Элементы квантовой механики и ядерной физики: методические указания к изучению курса физики для студ. факультета заочного обучения. Воронеж. ВГАСУ, 2011.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - 1. LibreOffice
 - 2. http://www.edu.ru/

Образовательный портал ВГТУ

- 3. БД ЭБС «ЛАНЬ»
- 4. ЭБС IPRbooks
- 5. «НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА eLIBRARY.RU»
- 6. ЭБС «Университетская библиотека онлайн»

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕ-НИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- 1. Комплект измерительных приборов: линейки, штангенциркули, микрометры, аналитические и электронные весы, механические и электронные секундомеры, амперметры, вольтметры, гальванометры, омметры.
 - 2. Генераторы звуковой частоты, осциллографы, выпрямители.
 - 3. Лабораторные установки по всем работам, предусмотренным учебным планом.
- 4. Для проведения некоторых лабораторных занятий требуется компьютерный класс с комплектом лицензионного программного обеспечения.
- 5. Для выполнения определенных лабораторных работ рекомендуется использовать учебный лабораторный комплекс «Электричество и магнетизм», совместимый с ПК, который снабжен специальным программным обеспечением.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Физике» читаются лекции, проводятся практические и лабораторные занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков решения задач. Занятия проводятся путем решения конкретных примеров задач в аудитории. Рассматриваются основные типы задач и методики их решений.

Лабораторные работы направлены на приобретение навыков проведения физического эксперимента, обработки результатов, оценки погрешности измерений. На занятиях лабораторного практикума идет практически индивидуальная работа с каждым студентом. Студенты получают экспериментальные подтверждения изучаемых физических законов. Обсуждаются и анализируются полученные результаты. В ряде случаев проводятся исследования физических явлений с использованием компьютерного моделирования. Перед выполнением работы проверяется готовность студента к ее выполнению, а после оформления работы проводится ее защита.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по со-

	ответствующей теме, ознакомится с соответствующим разделом учебника,		
	проработать дополнительную литературу и источники, решить задачи и		
	выполнить другие письменные задания.		
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения		
работа	учебного материала и развитию навыков самообразования. Самостоятель-		
	ная работа предполагает следующие составляющие:		
	- работа с текстами: учебниками, справочниками, дополнительной литера-		
	турой, а также проработка конспектов лекций;		
	- выполнение домашних заданий и расчетов;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций, олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в течение		
промежуточной	всего семестра. Интенсивная подготовка должна начаться не позднее, чем за		
аттестации	месяц-полтора до промежуточной аттестации. Данные перед зачетом, эк-		
	заменом, экзаменом три дня эффективнее всего использовать для повто-		
	рения и систематизации материала.		