МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Кафедра физики твердого тела

ОСНОВЫ ПРОЕКТИРОВАНИЯ ОБОРУДОВАНИЯ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению курсового проекта для обучающихся по направлению 14.03.01 «Ядерная энергетика и теплофизика» профиль «Техника и физика низких температур» очной формы обучения

УДК		
ББК.		

Составители:

К. Г. Королев

Основы проектирования оборудования атомных электростанций: методические указания по выполнению курсового проекта для обучающихся по направлению 14.03.01 «Ядерная энергетика и теплофизика» профиль «Техника и физика низких температур» очной формы обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: К.Г. Королев. — Воронеж: Изд-во ВГТУ, 2022. — 18 с.

В методических указаниях приводятся рекомендации по выполнению курсового проекта по дисциплине «Основы проектирования оборудования атомных электростанций» и основные требования к ее оформлению.

Методические указания подготовлены в электронном виде и содержатся в файле <u>МУ КП ОПОАЭС</u>.pdf.

Табл. 4. Ил. 13. Библиогр.: 5 назв.

УДК ... ББК ...

Рецензент – В.В. Ожерельев, канд. физ.-мат. наук, доц. кафедры технологии сварочного производства и диагностики ВГТУ

Рекомендовано методическим семинаром кафедры ФТТ и методической комиссией ФРТЭ Воронежского государственного технического университета в качестве методических материалов

- 1 Методика проектирования
- 1.1 Техническое задание

Тема проекта:

Расчет параметров тепловой схемы АЭС с промежуточной сепарацией, перегревом пара и регенеративным подогревом конденсата и питательной воды в соответствии с техническим заданием.

Требования:

- выполнить литературный обзор, посвященный оборудованию, входящему в состав расчетной схемы, в том числе конструктивные особенности и принципы работы;
- использовать бесплатную версию программы mini-REFPROP [3] для определения термодинамических параметров;
- разработать с помощью программы mini-REFPROP [3] Т-s и h-S диаграммы цикла;
- разработать расчетную математическую модель в компьютерной программе SMath Studio [4] и оформить в качестве Приложения к документу курсового проекта;
- выполнить чертеж одного из элементов оборудования расчетной тепловой схемы АЭС и составить пояснительную записку.

1.2 Задание на курсовой проект

Персональное техническое задание на курсовой проект уточнить у преподавателя. Расчет необходимо выполнить в компьютерной программе SMath Studio [4] или Mathcad [5]. Дополнительные требования по оформлению могут быть уточнены у преподавателя.

- 2 Методика расчета
- 2.1 Исходные данные

В качестве примера рассмотрим парогенератор АЭС, который вырабатывает пар в количестве D (кг/с), с параметрами P_0 (МПа), и $x_0 = 1,0$.

Uндивидуальные значения параметров D и P_0 необходимо уточнить у преподавателя.

В тепловой схеме АЭС за ЧВД турбины установлен сепаратор и паро-паровой перегреватель, на который поступает острый пар с параметрами P_0 , МПа, и $x_0=1,0$. Принципиальная тепловая схема представлена на рис. 1.

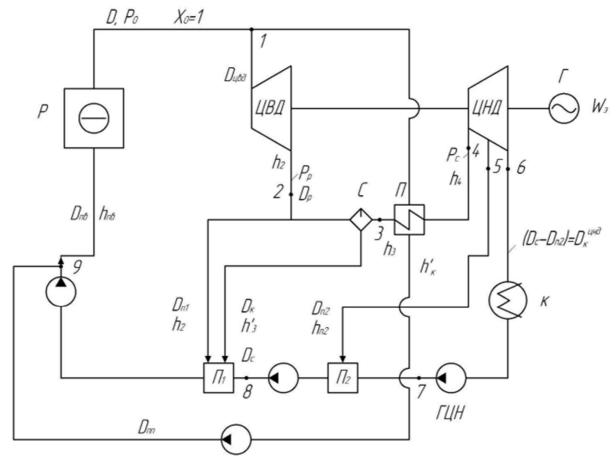
Давление пара за ЧВД турбины называется разделительным $P_{\rm p}$. Это давление равно $P_{\rm p}=0.12*P_0$. Давление в конденсаторе турбины $P_{\rm k}=5$ кПа. Недогрев пара за ЧВД в паро-паровом перегревателе $\Delta t_{\rm nn}=20$ К. Степень сухости пара после сепаратора на входе в паро-паровой перегреватель $x_{\rm c}=1.0$.

В регенеративной схеме турбоустановки АЭС поставлены два смешивающих подогревателя П1 и П2. В подогреватель П1 поступает пар после ЧВД турбины при давлении $P_{\rm p}$ (МПа). В подогреватель П2 поступает пар из ЧНД турбины при давлении $P_{\rm 2} = P_{\rm 2(опт)} = 0.15 * P_{\rm p}$.

Для приведённой схемы на рис. 1 и идеального цикла определить:

- термический КПД цикла;
- работу, совершаемую паром в турбине;
- количество теплоты, поступающей на совершение работы в машинный зал АЭС,
- расход пара для идеального цикла по всем элементам принципиальной тепловой схемы.

2.2 Методические указания


Температура пара перед ЧНД $t_{\rm чнд}=t_0-\Delta t_{\rm пп}$. Пар перед ЧНД перегретый. Сначала строим процесс расширения пара в турбине в h-s и T-s диаграммах. Затем находим расходы пара, идущего в промежуточный перегреватель, П1 и П2. После этого определяем расходы пара по отсекам турбины, полезную работу в цикле и термический КПД.

2.3 Решение

Для примера выберем следующие данные для расчёта принципиальной тепловой схемы (рис. 1):

$$\begin{split} &P_0 = 7.0 \text{ M}\Pi a; \, P_p = 0.12*P_0 = 0.84 \text{ M}\Pi a; \, P_\kappa = 5 \text{ k}\Pi a; \, \Delta t_{\pi\pi} = 20 \text{ K}; \\ &\eta_{oi}^{\text{\tiny YHA}} = 0.8; \, \eta_{oi}^{\text{\tiny YBA}} = 0.8; \, \eta_{\text{\tiny M}} = 0.98; \, \eta_{\text{\tiny \Gamma}} = 0.99; \, x_0 = x_c = 1.0; \, D = 500 \text{ kg/c}. \end{split}$$

Расставим характерные точки на принципиальной тепловой схеме (рис. 1), для которых необходимо определить параметры рабочего тела. Представим цикл блока в h-s и T-s диаграммах и определим параметры в характерных точках (см. рис. 2 и 3).

P — реактор; ЦВД — цилиндр высокого давления; ЦНД — цилиндр низкого давления; Γ — генератор электрического тока; C — сепаратор; Π — пароперегреватель; K — конденсатор; Π 1 и Π 2 — смешивающие подогреватели; Γ ЦН — главный циркуляционный насос.

Рисунок 1 - Принципиальная тепловая схема АЭС с промежуточной сепарацией, перегревом пара и регенеративным подогревом конденсата и питательной воды

Индексация для обозначения величин, относящихся к различным состояниям воды и пара:

- величина с индексом «'» относится к воде, нагретой до температуры кипения (насыщения);
 - величина с индексом «"» относится к сухому насыщенному пару;

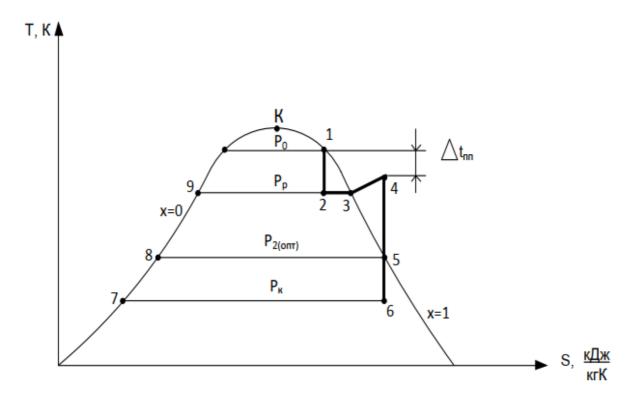


Рисунок 2 - Процесс расширения пара в турбоустановке АЭС в T-s диаграмме

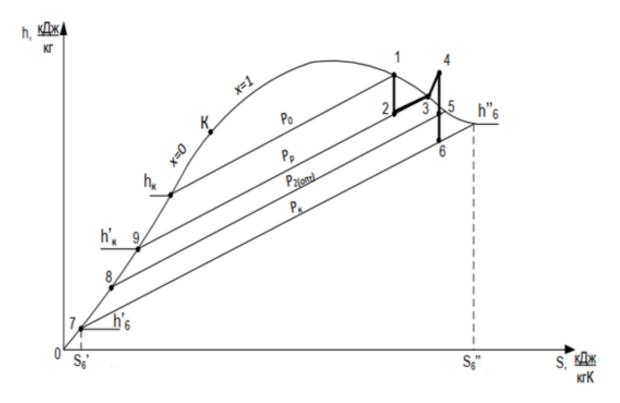


Рисунок 3 - Процесс расширения пара в турбоустановке АЭС в h-s диаграмме

Параметры в характерных точках процесса расширения пара в турбине и регенеративной схеме турбоустановки:

Точка 1

$$h_1 = f(P_0, x_0) = 2772,6 \frac{\kappa Дж}{\kappa \Gamma}$$
 $S_1 = f(P_0, x_0) = 5,8148 \frac{\kappa Дж}{\kappa \Gamma * K}$ $t_1 = f(P_0, x_0) = 558,98 \text{ K}$

Точка 2

$$h_2 = f(P_p, S_2)$$

$$S_2 = S_1$$

$$S_2' = f(P_p) = 2,0656 \frac{\kappa \text{M}}{\text{K}\Gamma * \text{K}}$$

$$S_2'' = f(P_p) = 6,6449 \frac{\kappa \text{M}}{\text{K}\Gamma * \text{K}}$$

$$x_2 = \frac{S_2 - S_2'}{S_2'' - S_2'} = 0,819$$

$$h_2' = f(P_p) = 729,78 \frac{\kappa \text{M}}{\text{K}\Gamma}$$

$$h_2'' = f(P_p) = 2770,3 \frac{\kappa \text{M}}{\text{K}\Gamma}$$

$$h_2 = [h_2' + x_2 * (h_2'' - h_2')]_{P_p} = 2400,4 \frac{\kappa \text{M}}{\text{K}\Gamma}$$

Точка 3

$$h_3 = f(P_p, x_3 = x_c) = 2770,3 \frac{\kappa Дж}{\kappa \Gamma}$$

Точка 4

$$t_4=t_1-\Delta t_{\Pi\Pi}=538,98~{
m K}$$
 $P_4=P_{
m p}$ $h_4=f(P_4,t_4)=2983,1rac{{
m к}{
m Д}{
m K}}{{
m K}{
m \Gamma}}$ $S_4=f(P_4,t_4)=7,0797rac{{
m k}{
m Д}{
m K}}{{
m K}{
m \Gamma}*{
m K}}$

Точка 5

$$P_5 = P_{2(\text{опт})} = 0,15 * P_{
m p} = 0,126 \ {
m M} \Pi {
m a}$$
 $S_5 = S_4$

Определим, в какой области находится точка 5: в области перегретого или влажного пара, для этого, пользуясь таблицами теплофизических свойств воды и водяного пара, определим энтальпию пара h_5 .

$$h_5 = f(P_{2(\text{опт})}, S_5)$$

откуда следует, что точка 5 находится в области влажного пара.

$$S_5' = f(P_5) = 1,3767 \frac{\kappa Дж}{\kappa \Gamma * K}$$

 $S_5'' = f(P_5) = 7,2813 \frac{\kappa Дж}{\kappa \Gamma * K}$

$$x_5 = \frac{S_5 - S_5'}{S_5'' - S_5'} = 0,9659$$

$$h_5 = [h_5' + x_5 * (h_5'' - h_5')]_{P_{2(\text{опт})}} = 2608,7 \frac{\text{кДж}}{\text{кг}}$$

Точка 6

Конец процесса расширения пара в турбине находится в точке 6, в области влажного пара. Между точками 4 и 6 имеем адиабатный процесс расширения пара в турбине, при этом

$$S_6 = S_4$$

$$P_6 = P_K$$

$$S_6' = f(P_6) = 0,4762 \frac{\kappa \text{Дж}}{\kappa \Gamma * K}$$

$$S_6'' = f(P_6) = 8,3938 \frac{\kappa \text{Дж}}{\kappa \Gamma * K}$$

$$x_2 = \frac{S_1 - S'}{S'' - S'} = 0,819$$

$$h_6' = f(P_6)$$

$$h_6'' = f(P_6)$$

Степень сухости пара в конце процесса расширения

$$x_6 = \frac{S_6 - S_6'}{S_6'' - S_6'} = 0,834$$

$$h_6 = h_{\kappa} = [h_6' + x_6 * (h_6'' - h_6')]_{P_{\kappa}} = 2158,6 \frac{\kappa \text{Дж}}{\kappa \Gamma}$$

Точка 7 Конденсат выходит из конденсатора турбины в точке 7:

$$P_7 = P_6 = P_{\kappa}$$

$$h_7 = h_7' = h_6' = f(P_7) = 137,75 \frac{\kappa Дж}{\kappa \Gamma}$$

Точка 8

Энтальпия конденсата на выходе из смешивающего подогревателя П2 соответствует энтальпии насыщения при давлении греющего пара Р2(опт):

$$h_8 = h_8' = h_5' = f(P_{2(\text{опт})}) = 445,33 \frac{\text{кДж}}{\text{кг}}$$

Точка 9

Точка 9 представляет собой точку выхода дренажа из подогревателя $\Pi1$. Энтальпия конденсата в точке 9 соответствует энтальпии насыщения при разделительном давлении P_p :

$$h_9 = h_3' = h_9' = f(P_p) = 729,78 \frac{\kappa Дж}{\kappa \Gamma}$$

Сепаратор

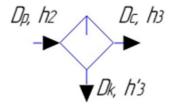


Рисунок 4 - Балансовая схема сепаратора

Уравнение теплового баланса сепаратора имеет вид:

$$D_{p} * h_{2} = D_{c} * h_{3} + D_{K} * h_{3}'$$

$$D_{c} = D_{p} * \frac{x_{2}}{x_{c}} = 0.8187 * D_{p}$$

$$D_{K} = D_{p} - D_{c} = 0.1813 * D_{p}$$
(2.1)

<u>Пароперегреватель</u>

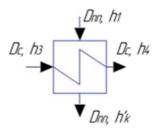


Рисунок 5 - Балансовая схема пароперегревателя

Уравнение теплового баланса пароперегревателя имеет вид:

$$D_{c} * (h_{4} - h_{3}) = D_{\Pi\Pi} * (h_{1} - h'_{\kappa})$$
(2.2)

$$h'_{\kappa} = f(P_1) = 1267,7 \frac{\kappa Дж}{\kappa \Gamma}$$

Регенеративный подогреватель П2

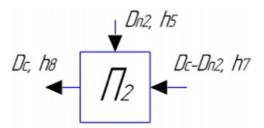


Рисунок 6 - Балансовая схема регенеративного подогревателя П2

Уравнение теплового баланса регенеративного подогревателя П2 имеет вид:

$$D_{\pi 2} * h_5 + (D_c - D_{\pi 2}) * h_7 = D_c * h_8$$
 (2.3)

где

$$D_{\kappa, \text{ЧНД}} = D_{\text{c}} - D_{\text{п2}};$$
 $D_{\kappa, \text{ЧНД}} + D_{\text{п2}} = D_{\text{c}} - D_{\text{п2}} + D_{\text{п2}} = D_{\text{c}}$

Регенеративный подогреватель П1

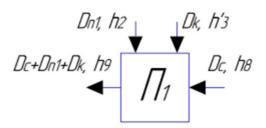
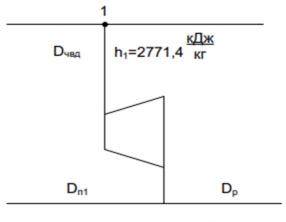


Рисунок 7 - Балансовая схема регенеративного подогревателя П1


Уравнение теплового баланса регенеративного подогревателя П1 имеет вид:

$$(D_{c} + D_{\pi 1} + D_{\kappa}) * h_{9} = D_{c} * h_{8} + D_{\pi 1} * h_{2} + D_{\kappa} * h_{3}'$$
(2.4)

Точка 1

Расходы пара на турбину $D_{\text{чнд}}$ и паро-паровой перегреватель $D_{\text{пп}}$ в сумме дают расход пара D из парогенератора в количестве 500 кг/с (см. рис. 8)

$$D = D_{\Pi\Pi} + D_{\Psi B A} = D_{\Pi\Pi} + D_{\Pi 1} + D_{p} = 500 \text{ kg/c}$$
 (2.5)

h₂=2399,4 қДж/кг

Рисунок 8 - Балансовая схема ЦВД турбины

Для определения D_{nn} необходимо совместно решить материально-тепловые балансовые уравнения для сепаратора (2.1):

$$D_{\rm p} * h_2 = D_c * h_3 + D_{\rm K} * h_3'$$

и найдем

$$D_{\rm K} = 0.1813 * D_{\rm p}.$$

Для пароперегревателя (2.2) из уравнения:

$$D_c * (h_4 - h_3) = D_{\Pi\Pi} * (h_1 - h'_{\kappa})$$

выразим $D_{\rm c}$ и получим

$$D_{\text{пп}} = 0.1158 * D_{\text{p}}$$
 $D_{\text{c}} = D_{\text{пп}} * (h_1 - h_{\text{K}}')/(h_4 - h_3) = 0.8189 * D_{\text{p}}$

Подставим найденные значения в выражение (2.4) и тогда:

$$D_{\pi 1} = 0.1394 * D_{p}$$

Рассмотрим уравнение материального баланса (2.5) и подставим в него найденные значения $D_{\Pi\Pi}, D_{\Pi}, D_{D}$:

$$D_{\text{пп}} + D_{\text{п1}} + D_{\text{p}} = 0.1158 * D_{\text{p}} + 0.1394 * D_{\text{p}} + D_{\text{p}} = 500$$

В результате найдем

 $D_{\rm p} = 398,34 \ {
m KF/c}$ $D_{\rm m1} = 55,53 \ {
m KF/c}$ $D_{\rm K} = 72,22 \ {
m KF/c}$ $D_{\rm mn} = 46,13 \ {
m KF/c}$ $D_{\rm c} = 326,20 \ {
m KF/c}$ $D_{\rm m2} = 40,60 \ {
m KF/c}$.

где D - расход пара, поступающего из парогенератора в машинный зал;

 $D_{\text{чвл}}$ - расход пара, поступающего в ЧВД турбины;

 $D_{\rm n1}$ - расход пара, поступающего в смешивающий подогреватель $\Pi 1$;

 $D_{\rm p}$ - расход пара, идущего из ЧВД и поступающего в сепаратор;

 $D_{\rm K}$ - расход дренажа, идущего из сепаратора в подогреватель $\Pi 1$;

 $D_{\text{пп}}$ - расход пара, поступающего в пароперегреватель СПП;

 $D_{\text{чнд}} = \text{D.c}$ - расход пара, поступающего в ЧНД турбины из сепаратора;

 $D_{\rm n2}$ - расход пара, идущего в подогреватель П2;

 $D_{\kappa,\text{чнд}}$ - расход пара, поступающего в конденсатор турбины.

Расход пара в конденсатор турбины

$$D_{\rm K.ЧНД} = 285,6 \, {\rm KF/c}$$

Расход питательной воды на входе в парогенератор для идеальной схемы равен выходу пара из парогенератора, т.е.

$$D_{\text{пв}} = D = 500 \text{ кг/c}$$

Проверим правильность выполнения расчетов $D_{\text{пв}}$ по балансу для схемы регенерации

$$D'_{\text{пв}} = D_{\text{к.чнд}} + D_{\text{п2}} + D_{\text{к}} + D_{\text{п1}} + D_{\text{пп}} = 500,08 \text{ кг/с}$$

Погрешность расчёта

$$\delta = \frac{D_{\text{IIB}} - D'_{\text{IIB}}}{D_{\text{IIB}}} = 0.016 \%$$

подтверждает, что точность расчёта достаточно высока.

Определим энтальпию питательной воды, как энтальпию после точки смешения двух потоков конденсата

$$D_{\text{пв}}*h_{\text{пв}} = \left(D_{\text{к.чнд}} + D_{\text{п2}} + D_{\text{к}} + D_{\text{п1}}\right)*h_9 + D_{\text{пп}}*h_{\text{к}}'$$
 $h_{\text{пв}} = 779,5 \text{ кДж/кг}$
 $D_{\text{чвл}} = D - D_{\text{пп}} = 453,87 \text{ кг/c}$

Найдем термический КПД цикла

$$\eta_t = \frac{W_0}{Q_3}$$

где W_0 – работа, совершаемая паром в идеальном цикле;

$$W_0 = D_{\text{\tiny YBM}} * (h_1 - h_2) + D_{\text{\tiny TI}2} * (h_4 - h_5) + D_{\text{\tiny YBM}} * (h_4 - h_6) = 558360 \text{ kBt}$$

 $Q_{\mathfrak{I}}$ — количестве теплоты, идущей на выработку электроэнергии в машинный зал АЭС

$$Q_{9} = D_{\text{IIB}} * (h_1 - h_{\text{IIB}}) = 996540 \text{ kBt}$$

В результате термический КПД цикла

$$\eta_t = 0.56.$$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Орлов, Г.Г. Тепловые и атомные электрические станции: учеб.-метод. пособие / Г.Г. Орлов, М.Ю. Зорин; под ред. Н.С. Работаевой; Иван. гос. энерг. ун-т. Иваново, 2015. 72 с.
- 2. Орлов, Г.Г. Расчет термодинамических циклов ТЭС: учеб.-метод. пособие / Г.Г. Орлов, М.Ю. Зорин; под ред. А.В. Мошкарина; Иван. гос. энерг. ун-т. Иваново, 2010.-37 с.
- 3. mini-REFPROP Version 10.0 NIST. Электрон. дан. Режим доступа: https://trc.nist.gov/refprop/MINIREF/MINIREF.HTM
- 4. SMath Studio SMath. Электрон. дан. Режим доступа: https://ru.smath.com/
- 5. Mathcad: математическое ПО для инженерных расчетов | Mathcad. Электрон. дан. Режим доступа: https://www.mathcad.com/

СОДЕРЖАНИЕ

1	Методика проектирования		
		Техническое задание	
		Задание на курсовой проект	
		дика расчета	
		Исходные данные	
		Методические указания	
		Решение	
		рафический список	

ОСНОВЫ ПРОЕКТИРОВАНИЯ ОБОРУДОВАНИЯ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению курсового проекта для обучающихся по направлению 14.03.01 «Ядерная энергетика и теплофизика» профиль «Техника и физика низких температур» очной формы обучения

Составители: Королев Константин Геннадьевич

Отпечатано в авторской редакции

Подписано к изданию 00.00.0000. Объем данных 225 Кб

ФГБОУ ВО «Воронежский государственный технический университет» 394026 Воронеж, Московский просп., 14

ФГБОУ ВО «Воронежский государственный технический университет»

СПРАВОЧНИК МАГНИТНОГО ДИСКА

(Кафедра физики твердого тела)

ОСНОВЫ ПРОЕКТИРОВАНИЯ ОБОРУДОВАНИЯ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению курсового проекта для обучающихся по направлению 14.03.01 «Ядерная энергетика и теплофизика» профиль «Техника и физика низких температур» очной формы обучения

Составители: К.Г. Королев

МУ КП ОПОАЭС.pdf (наименование файла)

225 Кб 00.00.0000 0,0 уч.-изд.л

<u>0,0 у</u> (дата)

(объем издания)