МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Кафедра теплогазоснабжения и нефтегазового дела

ТЕПЛОГЕНЕРИРУЮЩИЕ УСТАНОВКИ И МИНИ-ТЭЦ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению практических занятий и курсовой работы для студентов направления подготовки 13.04.01 «Теплоэнергетика и теплотехника» (программа магистерской подготовки «Теплоэнергетика и теплотехника») всех форм обучения

Составитель Д. Н. Китаев

Теплогенерирующие установки и мини-ТЭЦ: методические указания к выполнению практических занятий и курсовой работы для студентов направления подготовки 13.04.01 «Теплоэнергетика и теплотехника» (программа магистерской подготовки «Теплоэнергетика и теплотехника») всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост. Д. Н. Китаев. – Воронеж: Изд-во ВГТУ, 2023. – 28 с.

В методических указаниях приводятся варианты практических расчетов теплогенерирующих установок.

Предназначены для студентов направления подготовки 13.04.01 «Теплоэнергетика и теплотехника» (программа магистерской подготовки «Теплоэнергетика и теплотехника») всех форм обучения.

Методические уазания подготовлены в электронном виде и содержатся в файле MУ_ТУиМ_ПР_КР.pdf.

Ил. 2. Табл. 7. Библиогр.: 13 назв.

УДК 621.1(07) ББК 31.361я7

Рецензент – Т. В. Щукина, канд. техн. наук, доцент кафедры жилищно-коммунального хозяйства ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

ВВЕДЕНИЕ

Котлом называют конструктивно объединенный в одно целое комплекс устройств, служащих для получения пара или нагревания воды под давлением за счет тепловой энергии, выделяемой от сжигания топлива в собственной топке при протекании технологического процесса, или путем преобразования электрической энергии.

Котельная установка представляет собой котел (котлоагрегат) совместно с горелочными, топочными тягодутьевыми устройствами, механизмами для удаления продуктов горения и использования тепловой энергии уходящих газов (экономайзерами, воздухоподогревателями и т.д.) и оснащенный средствами автоматического регулирования, контроля и сигнализации процесса выработки теплоносителя заданных параметров.

Важную роль в процессе проектирования котельных установок играет умение осуществлять практические расчеты. Методикам практических расчетов посвящены данные методические указания. Они способствуют развитию практических навыков в расчетах теплогенерирующих установок.

Данные методические указания предназначены для аудиторной и самостоятельной работы студентов магистратуры направления подготовки 13.04.01 «Теплоэнергетика и теплотехника» всех форм обучения. Также полезны для других направлений, изучающих дисциплины, связанные источниками теплоснабжения и специалистов, осуществляющих практические расчеты. Приведенные в методических указаниях примеры расчетов способствуют лучшему усвоению теоретического материала и комплексному анализу полученных результатов.

В методических указаниях рассматриваются вопросы выбора типа и числа водогрейных котлов, расчета и выбора тягодутьевых устройств, поверочного расчета дымовой трубы при естественной тяге. Рассмотрены методики расчета нормативов запасов топлива в котельной, определения затрат на собственные нужды и расчета себестоимости выработки теплоты.

Данные методические указания составлены с учетом современных нормативов в области котельных установок.

Вариант для расчетов студент принимает по заданию преподавателя. В каждом разделе есть таблицы с исходными данными, необходимыми для расчета.

1. ВЫБОР ТИПА И ЧИСЛА ВОДОГРЕЙНЫХ КОТЛОВ

Выбрать тип и число котлов водогрейной котельной для потребителей второй категории надежности. Процент собственных нужд котельной $d_{ch}=1,5\%$, потери в тепловых сетях $d_{nom}=2\%$. Максимальную тепловую нагрузку отопления Q_o^{\max} , вентиляции Q_s^{\max} , горячего водоснабжения в отопительный Q_{cgc}^{α} и неотопительный Q_{cgc}^{α} периоды, расчетную температуру для проектирования отопления t_h , принять по табл. 1.1.

Таблица 1.1 Исходные данные для выбора типа и числа котлов

No	$t_{\scriptscriptstyle H}$,	Н	агрузк	и, М	Вт	$N_{\overline{0}}$	$t_{\scriptscriptstyle H},$	Н	агрузь	си, М	Вт
	°C	$Q_o^{ m max}$	$Q_{\scriptscriptstyle e}^{\scriptscriptstyle ext{max}}$	$Q^{\scriptscriptstyle 3}_{\scriptscriptstyle {\it \scriptscriptstyle \it EBC}}$	$Q^{^{^{arDeta}}}_{^{archi e c}}$		°C	$Q_o^{ m max}$	$Q_{\scriptscriptstyle e}^{\scriptscriptstyle ext{max}}$	$Q^{\scriptscriptstyle 3}_{\scriptscriptstyle {\it \scriptscriptstyle \it EBC}}$	$Q^{\scriptscriptstyle \it I}_{\scriptscriptstyle \it \it$
1	-15	1,4	0,15	0,28	0,224	16	-30	9,5	0,9	1,9	1,52
2	-16	2,5	0,2	0,5	0,4	17	-31	10	0,95	2	1,6
3	-17	3	0,25	0,6	0,48	18	-32	10,5	1	2,1	1,68
4	-18	3,5	0,3	0,7	0,56	19	-33	11	1,05	2,2	1,76
5	-19	4	0,35	0,8	0,64	20	-34	11,5	1,1	2,3	1,84
6	-20	4,5	0,4	0,9	0,72	21	-35	12	1,15	2,4	1,92
7	-21	5	0,45	1	0,8	22	-36	12,5	1,2	2,5	2
8	-22	5,5	0,5	1,1	0,88	23	-37	13	1,25	2,6	2,08
9	-23	6	0,55	1,2	0,96	24	-38	13,5	1,3	2,7	2,16
10	-24	6,5	0,6	1,3	1,04	25	-39	14	1,35	2,8	2,24
11	-25	7	0,65	1,4	1,12	26	-40	14,5	1,4	2,9	2,32
12	-26	7,5	0,7	1,5	1,2	27	-41	15	1,45	3	2,4
13	-27	8	0,75	1,6	1,28	28	-42	15,5	1,5	3,1	2,48
14	-28	8,5	0,8	1,7	1,36	29	-43	16	1,55	3,2	2,56
15	-29	9	0,85	1,8	1,44	30	-44	16,5	1,6	3,3	2,64

При авариях (отказах) в системе централизованного теплоснабжения в течение всего ремонтно-восстановительного периода должна обеспечиваться подача теплоты на отопление и вентиляцию жилищно-коммунальным и промышленным потребителям второй и третьей категорий в размерах, указанных в табл. 1 [1]. В дальнейшем минимальное значение подачи тепла будем обозначать Δ .

Расчетная тепловая мощность котельной Q_p определяется как сумма максимальных часовых расходов тепловой энергии на отопление, вентиляцию и кондиционирование, средних часовых расходов тепловой энергии на горячее водоснабжение и расходов тепловой энергии на технологические цели. При определении расчетной тепловой мощности котельной должны учитываться

также расходы тепловой энергии на собственные нужды котельной, потери в котельной и в тепловых сетях с учетом энергетической эффективности системы [2].

Определяем суммарную мощность котельной Q, по тепловой нагрузке в отопительном периоде

$$Q = Q_o^{\text{max}} + Q_e^{\text{max}} + Q_{cec}^{3}$$
, MBT. (1.1)

Определяем потери в сетях Q_{nom}

$$Q_{nom} = \frac{d_{nom}Q}{100}, \text{ MBT.}$$
 (1.2)

Определяем затраты на собственные нужды котельной

$$Q_{cH} = \frac{d_{cH}Q}{100}$$
, MBT. (1.3)

Находим расчетную тепловую мощность котельной в отопительном периоде $Q_p^{\it on}$ по формуле

$$Q_p^{on} = Q + Q_{nom} + Q_{cH}, \text{ MBT.}$$
 (1.4)

Необходимо определить расчетную тепловую мощность котельной в неотопительный период $Q_p^{\text{ноп}}$ по формулам (1.1)-(1.4), учитывая отсутствие отопительной и вентиляционной нагрузки.

Число и производительность котлов, установленных в котельной, следует выбирать, обеспечивая [2] расчетную производительность и стабильную работу котлов при минимально допустимой нагрузке в теплый период года.

В первом приближении принимаем минимально возможное количество котлов n, регламентированное [2].

Находим единичную мощность одного котла

$$N_1 = \frac{Q_p^{on}}{n} , \text{MBT.}$$
 (1.5)

По каталогу водогрейных котлов подбираем n котлов одинаковой мощности $N_{1\kappa am}$, соблюдая условия $N_{1\kappa am} \ge N_1$.

Установленная мощность котельной составит:

$$Q_{vcm} = nN_{1\kappa am} , \text{MBT.}$$
 (1.6)

При выходе одного котла из строя оставшиеся обеспечат:

$$N_{n-1} = \frac{N_{1\kappa am}}{Q_{os}} 100\% , \qquad (1.7)$$

где Q_{os} – суммарная нагрузка отопления и вентиляции.

Необходимо сравнить полученное значение с нормативным Δ . Если $N_{n-1} \ge \Delta$, то проверяют минимальную загрузку котла в летний период. В противном случае, необходимо увеличить число котлов (n+1) и повторить вычисления по формулам (1.5)-(1.7).

В летний период загрузка котла составит

$$\frac{Q_p^{\text{hon}}}{N_{1_{\kappa am}}} 100\%. \tag{1.8}$$

Полученное значение загрузки котла в неотопительный период не должно быть меньше минимального значения, указанного в паспорте котла. Если загрузка котла меньше допустимой, то необходимо принять большее число котлов (n+2) и повторить расчет по формулам (1.5)-(1.8).

2. РАСЧЕТ И ВЫБОР ТЯГОДУТЬЕВЫХ УСТРОЙСТВ КОТЕЛЬНОЙ

2.1. Дутьевой вентилятор

Подобрать дутьевой вентилятор к котлу, имеющему воздухоподогреватель. Конфигурация воздушного тракта представлена на рисунке. Воздуховод выполнен из стали диаметром d=200мм, длина от решетки до вентилятора составляет A,м, от вентилятора до горелки B,м.

Расход топлива B_p , температуру воздуха t_{xe} , теоретически необходимое количество воздуха для сжигания топлива V_e^0 принять по табл. 2.1. Коэффициент избытка воздуха в топке $\alpha_m=1,1$, сопротивление горелочного устройства $\Delta h_{ev}=800\Pi$ а, воздухоподогревателя $\Delta h_{en}=100\Pi$ а, вентилятора $\Delta h_{eem}=300\Pi$ а.

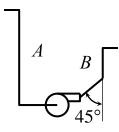


Рис. 2.1. Расчетная схема воздушного тракта

TT	~	
Исуолные панные	πης βείθους πντέρβους βρητίπο	TON2
телодиые данные	для выбора дутьевого вентиля	ιυρα

№	A,	В,	B_p ,	t_{xe} ,	V_{ϵ}^{0} ,	No	A,	В,	B_p ,	t_{xe} ,	V_e^0 ,
312	M	M	т/ч	\sim	$M^3/K\Gamma$	312	M	M	т/ч	°C	$M^3/K\Gamma$
1	1	2	1	35	6,1	16	8,5	9,5	3,9	20	7,7
2	1,5	2,5	1,2	34	6,2	17	9	10	4,2	19	7,8
3	2	3	1,4	33	6,4	18	9,5	10,5	4,4	18	7,9
4	2,5	3,5	1,6	32	6,5	19	10	11	4,6	17	8
5	3	4	1,8	31	6,6	20	10,5	11,5	4,8	16	8,1
6	3,5	4,5	2	30	6,7	21	11	12	5	15	8,2
7	4	5	2,1	29	6,8	22	11,5	12,5	5,2	14	8,3
8	4,5	5,5	2,4	28	6,9	23	12	13	5,4	13	8,4
9	5	6	2,6	27	7	24	12,5	13,5	5,6	12	8,5
10	5,5	6,5	2,8	26	7,1	25	13	14	5,8	11	8,6
11	6	7	2,9	25	7,2	26	13,5	14,5	5,9	10	8,7
12	6,5	7,5	3,2	24	7,3	27	14	15	8	9	8,8
13	7	8	3,4	23	7,4	28	14,5	15,5	9	8	8,9
14	7,5	8,5	3,6	22	7,5	29	15	16	10	7	9
15	8	9	3,8	21	7,6	30	15,5	16,5	11	6	9,1

Определяем производительность дутьевого вентилятора $Q_{\mathit{ДB}}$ по формуле

$$Q_{AB} = \frac{1.1B_p V_e^0 \alpha_m (t_{xe} + 273) 10^3}{273}, \, \text{M}^3/\text{y}.$$
 (2.1)

Определяем сопротивление воздуховодов $\Delta h_{_{\!\mathit{BG}}}$, которое складывается из потерь на трение (по длине) $\Delta h_{_{\!\mathit{mp}}}$ и в местных сопротивлениях $\Delta h_{_{\!\mathit{MC}}}$.

Потери на трение определяем по формуле

$$\Delta h_{mp} = \lambda \frac{l}{d} \frac{w^2}{2} \rho , \Pi a, \qquad (2.2)$$

где λ — коэффициент гидравлического трения, принимаемый для стальных воздуховодов согласно [3]; l — суммарная длина прямолинейных участков воздуховода (рис. 2.1), м; w — допустимая скорость движения воздуха, принимаемая согласно [3], м/с; ρ — плотность воздуха, определяемая по формуле

$$\rho = \frac{1,293 \cdot 273}{t_{ra} + 273}, \, \text{K}\Gamma/\text{M}^3. \tag{2.3}$$

Определяем потери в местных сопротивлениях по формуле

$$\Delta h_{MC} = \frac{\zeta_{CYM} w^2}{2} \rho , \Pi a, \qquad (2.4)$$

где $\zeta_{\text{сум}} = \sum_{i=1}^{n} \zeta_{i}$ — суммарный коэффициент местных сопротивлений, принимае-

мый согласно [3] для каждого сопротивления (рис. 2.1).

Определяем напор вентилятора по формуле

$$H_{\mathcal{A}B} = 1, 2\left(\Delta h_{\mathcal{A}} + \Delta h_{\mathcal{B}} + \Delta h_{\mathcal{B}} + \Delta h_{\mathcal{B}} + \Delta h_{\mathcal{B}}\right), \Pi a. \tag{2.5}$$

По полученным значениям $Q_{\it ДB}$ и $H_{\it ДB}$ по каталогу [4] выбираем марку дутьевого вентилятора, его подачу, напор и коэффициент полезного действия η ,%.

Определяем мощность электродвигателя дутьевого вентилятора по формуле

$$N = \frac{1,1Q_{AB}H_{AB}}{9,81\cdot102\cdot36\eta}, \text{ kBt.}$$
 (2.6)

2.2. Дымосос

Подобрать дымосос к котлу. Энтальпия пара составляет i_n =2789кДж/кг, кпд котлоагрегата η_{κ} =0,87, теоретический объем продуктов сгорания топлива V_{ρ}^{0} =7,12 $\mathrm{M}^{3}/\mathrm{M}^{3}$.

Паропроизводительность котла \mathcal{A} ,т/ч, температуру питательной воды t_{ns} , теплотворную способность топлива $Q^p_{_{\!\mathit{H}}}$,к \mathcal{A} ж/кг, температуру уходящих газов $t_{_{\!\mathit{C}}}$, аэродинамическое сопротивление газового тракта Δh_{mzy} ,мм.вод.ст. принять по табл. 2.2.

Определяем расход топлива на котел по формуле

$$B = \frac{\mathcal{I}(i_n - i_{ne})}{Q_{_{\mathcal{H}}}^p \eta_{_{\mathcal{K}}}}, \, \text{T/Y}, \tag{2.7}$$

где i_{ns} — энтальпия питательной воды, кДж/кг.

410

№	Д,	t_{ne} ,	$Q^p_{\scriptscriptstyle{\scriptscriptstyle H}}$,	t_{c} ,	Δh_{mey} ,	№	Д,	t_{ne} ,	$Q^{p}_{\scriptscriptstyle{\scriptscriptstyle H}}$,	t_{ε} ,	Δh_{mey} ,
3 1-	т/ч	°C	кДж/кг	°C	MM.B.CT	3 1-	т/ч	°C	кДж/кг	°C	MM.B.CT
1	5	110	16748	140	120	16	40	102,5	23029	185	270
2	7	109,5	17167	143	130	17	43	102	23447	188	280
3	9	109	17585	146	140	18	46	101,5	23866	191	290
4	10	108,5	18004	149	150	19	48	101	24285	194	300
5	13	108	18423	152	160	20	55	100,5	24703	197	310
6	15	107,5	18842	155	170	21	60	100	25122	200	320
7	17	107	19260	158	180	22	65	99,5	25541	203	330
8	19	106,5	19679	161	190	23	70	99	25959	206	340
9	21	106	20098	164	200	24	75	98,5	26378	209	350
10	23	105,5	20516	167	210	25	80	98	26797	212	360
11	25	105	20935	170	220	26	85	97,5	27216	215	370
12	27	104,5	21354	173	230	27	90	97	27634	218	380
13	29	104	21772	176	240	28	100	96,5	28053	221	390
14	31	103,5	22191	179	250	29	110	96	28472	224	400

Исходные данные для и выбора дымососа

Определяем производительность дымососа по формуле

260

103 22610 182

$$Q_{\perp} = 0,278 \frac{1,1BV_{z}^{0}(t_{z} + 273)}{273}, \text{ m}^{3}/\text{c}.$$
 (2.8)

30 118 95,5

Напор дымососа принимаем с 20% запасом по формуле

$$H_{\mathcal{I}} = 1, 2 \cdot \Delta h_{mey}$$
, мм. вод. ст. (2.9)

28890

По полученным значениям $Q_{\mathcal{A}}$ и $H_{\mathcal{A}}$ по каталогу [4] выбираем марку дымососа, его подачу Q, напор H при температуре газов $t_{\kappa am}$ и коэффициент полезного действия η ,%.

Определяем мощность электродвигателя дымососа по формуле

$$N = \frac{1,2Q_{\pi}H_{\pi}}{1,02\eta}, \text{ кBт.}$$
 (2.10)

Температура дымовых газов при которой указан напор дымососа в каталоге $t_{\kappa am}$, отличается от значения t_{ε} , следовательно необходимо пересчитать напор по формуле

$$H_{\mathcal{A}}(t_{e}) = \frac{H(273 + t_{e})}{(273 + t_{\kappa am})},$$
мм. вод.ст. (2.11)

3. ПОВЕРОЧНЫЙ РАСЧЕТ ДЫМОВОЙ ТРУБЫ

Выполнить поверочный расчет дымовой трубы. Конфигурация газохода (рисунок): от котла прямой участок с отводом 90°, далее прямой участок и вход в дымовую трубу. Длина участка L,м, высота трубы H, м. Материал трубы и газоходов — нержавеющая сталь. Диаметр дымовой трубы $d_{\mathcal{I}T}$ равен диаметру газохода. Кпд котла η_{κ} =92%, коэффициент избытка воздуха α =1,15, необходимое теоретическое количество воздуха для горения V_{ε}^{0} =11,22 м³/кг, теоретический объем дымовых газов V_{ε}^{0} =12,74м³/м³, потеря температуры по трубе Δt =0,1 °C/м.

Теплотворную способность топлива Q_n^p , ккал/м³, тепловую нагрузку отопительного периода Q_3 и неотопительного Q_n , температуры уходящих газов в отопительный и неотопительный периоды t_{yx3} , t_{yxn} , расчетные температуры отопительного и неотопительного периода t_{p3} , t_{pn} , длины L,H, принять по табл. 3.1.

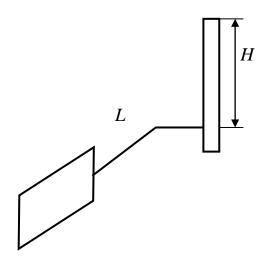


Рис. 3.1. Расчетная схема газового тракта

Исходные данные для расчета дымовой трубы

Таблица 3.1

	$Q_{\scriptscriptstyle{\scriptscriptstyle H}}^{\scriptscriptstyle{p}}$,	Q_3 ,	$Q_{\scriptscriptstyle \Lambda}$,	t_{yx3} ,	t_{yxn} ,	L,	Н,	t_{p_3} ,	$t_{p_{\mathcal{I}}}$,	$d_{\partial m}$,
№	ккал/м ³	МВт	МВт	°C	°C	M	M	°C	${}^{\circ}C$	M
1	7980	1	0,5	160	140	0,5	45	-47	26,7	0,290
2	7985	1,2	0,6	162	141	0,9	44	-46	26,4	0,320
3	7990	1,3	0,7	164	142	1,3	43	-18	26,1	0,350
4	7995	1,6	0,8	166	143	1,7	42	-19	25,8	0,380
5	8000	1,8	0,9	168	144	2,1	41	-20	25,5	0,400
6	8005	2	1	170	145	2,5	40	-21	25,2	0,420
7	8010	2,2	1,1	172	146	2,9	39	-22	24,9	0,440
8	8015	2,4	1,2	174	147	3,3	38	-23	24,6	0,465
9	8020	2,6	1,3	176	148	3,7	37	-24	24,3	0,485
10	8025	2,8	2	178	149	4,1	36	-25	24,0	0,500
11	8030	3	2,1	180	150	4,5	35	-26	23,7	0,510
12	8035	3,2	2,2	182	151	4,9	34	-27	23,4	0,530
13	8040	3,4	2,3	184	152	5,3	33	-28	23,1	0,560
14	8045	3,6	2,4	186	153	5,7	32	-29	22,8	0,570
15	8050	3,8	2,5	188	154	6,1	31	-30	22,5	0,600
16	8055	4	2,6	189	155	6,5	30	-31	22,2	0,600
17	8060	4,2	2,7	190	156	6,9	29	-16	21,9	0,620
18	8065	4,4	2,8	191	157	7,3	28	-15	21,6	0,650
19	8070	4,6	2,9	192	158	7,7	27	-34	21,3	0,630
20	8075	4,8	3	193	159	8,1	26	-35	21,0	0,650
21	8080	5	3,1	194	160	8,5	25	-36	20,7	0,670
22	8085	5,2	3,2	195	161	8,9	24	-37	20,4	0,700
23	8090	5,4	3,3	196	162	9,3	23	-38	20,1	0,700
24	8095	5,6	3,4	197	163	9,7	22	-39	19,8	0,720
25	8100	5,8	3,5	198	164	10,1	21	-40	19,5	0,760
26	8105	6	3,6	199	165	10,5	20	-41	19,2	0,770
27	8110	6,2	3,7	200	166	10,9	19	-42	18,9	0,780
28	8115	6,4	3,8	201	167	11,3	18	-43	18,6	0,790
29	8120	6,6	3,9	202	168	11,7	17	-44		0,800
30	8125	6,8	4	203	169	12,1	16	-45	18,0	0,820

Определяем плотности воздуха для расчетных температур отопительного и неотопительного периода:

$$\rho_{_{63(67)}} = \frac{\rho_0 273}{\left(273 + t_{_{p3(p7)}}\right)}, \, \kappa\Gamma/M^3, \tag{3.1}$$

где $\rho_0 = 1,293$ кг/м³ – плотность воздуха при 0 °C.

Определяем средние температуры дымовых газов в трубе для отопительного и неотопительного периода

$$t_{cp3(cpn)} = \frac{1}{2} \left[t_{yx3(yxn)} + \left(t_{yx3(yxn)} - (H + L) \Delta t \right) \right], \, ^{\circ}\text{C}.$$
 (3.2)

Находим расход газа для отопительного и неотопительного периода

$$B_{_{3(\pi)}} = \frac{Q_{_{3(\pi)}} 86 \cdot 10^6}{Q_{_{H}}^p \eta_{_{K}}}, \, M^3 / \text{q}.$$
 (3.3)

Определяем значения объемов дымовых газов для отопительного и неотопительного периода

$$V_{_{3(\pi)}} = B_{_{3(\pi)}} \frac{\left(V_{_{c}}^{0} + (\alpha - 1)V_{_{\theta}}^{0}\right)\left(273 + t_{_{cp3(cp\pi)}}\right)}{273}, \, M^{3}/\Psi.$$
(3.4)

Определяем скорости дымовых газов в трубе в отопительном и неотопительном периоде

$$W_{3(\pi)} = \frac{V_{3(\pi)}}{d_{\pi\tau}^2 0,785 \cdot 3600} = \frac{V_{3(\pi)}}{d_{\pi\tau}^2 2826}, \text{ m/c.}$$
 (3.5)

Определяем плотности дымовых газов на выходе из трубы при средних температурах:

$$\rho_{23(27)} = \frac{\rho_{20}273}{\left(273 + t_{cp3(p7)}\right)}, \text{ K}\Gamma/\text{M}^3, \tag{3.6}$$

где ρ_{c0} = 1,32 кг/м³ – плотность дымовых газов при 0 °C.

Определяем сопротивления по длине (трения) в газоходе и дымовой трубе для отопительного и неотопительного периода

$$h_{mp_3(mp_{\pi})} = \lambda \frac{l}{d} \frac{\rho_{23(2\pi)} w_{3(\pi)}^2}{2} , \Pi a,$$
 (3.7)

где λ — коэффициент гидравлического трения, принимаемый для стальных воздуховодов согласно [3]; l — суммарная длина прямолинейных участков воздуховода (Рис. 3.1), м.

Находим динамическое давление газов для отопительного и неотопительного периода

$$h_{\partial u_{H3}(\partial u_{H3})} = \frac{w_{3(\pi)}^2 \rho_{23(2\pi)}}{2}$$
, $\Pi a.$ (3.8)

Согласно представленной схеме газового тракта, он состоит из следующих местных сопротивлений: отвод под углом 90°; вход и выход из дымовой трубы. Для определения коэффициентов местных сопротивлений ζ_{ex} , ζ_{ebix} , ζ_{ome} используем «Аэродинамический расчет котельных установок. Нормативный метод» [3].

Находим потери на входе и выходе из дымовой трубы для отопительного и неотопительного периода

$$h_{\scriptscriptstyle 3(\pi)}^{\mathcal{I}T} = \left(\xi_{\scriptscriptstyle ex} + \xi_{\scriptscriptstyle \thetablX}\right) h_{\scriptscriptstyle \partial UH3(\partial UH\pi)}, \, \Pi a. \tag{3.9}$$

Находим потери в отводе

$$h_{_{3(\pi)}}^{ome} = \xi_{ome} h_{\partial u H 3(\partial u H \pi)}, \Pi a.$$

Находим суммарные потери по длине и в местных сопротивлениях для отопительного и неотопительного периода

$$\Sigma h_{_{3(\pi)}} = h_{_{mp3(mp\pi)}} + h_{_{3(\pi)}}^{\mathcal{I}T} + h_{_{3(\pi)}}^{ome} , \Pi a.$$
 (3.10)

Находим значение самотяги трубы для отопительного и неотопительного периода

$$S_{mp3(mp3)} = H(\rho_{63(63)} - \rho_{23(23)})9,81, \Pi a.$$
 (3.11)

Определяем превышение самотяги над суммарным сопротивлением газового тракта в процентах для двух периодов

$$\Delta_{_{3(\Lambda)}} = \frac{S_{mp_3(mp_{\Lambda})}}{\sum h_{_{2(\Lambda)}}} . \tag{3.12}$$

Превышение должно составлять не менее 20% (коэффициент 1,2). Делаем вывод о высоте дымовой трубы.

Определяем перепад полных давлений

$$\Delta H_{n_{3(\pi)}} = S_{mp_{3}(mp_{\pi})} - \Sigma h_{3(\pi)}, \Pi a.$$
 (3.13)

4. РАСЧЕТ НОРМАТИВОВ ЗАПАСОВ ТОПЛИВА В КОТЕЛЬНОЙ

Определить нормативы запаса топлива в отопительной котельной, расположенной в г. Воронеж, если основным топливом является природный газ с теплотворной способностью $Q_{\rm Hz}^{p}$ =8000 ккал/кг, а резервным — мазут, который доставляется автотранспортом. Известны нормативы удельного расхода топлива на отпущенную тепловую энергию для самого холодного $H_{cp.m.}$ =160,1 кг у.т./Гкал и трех самых холодных месяцев отопительного периода $H_{cp.m.3}$ =159,3 кг у.т./Гкал, количество суток, в течение которых снижается подача газа $T_{\rm 3AM}$ =5 сут, коэффициент отклонения фактических показателей снижения подачи газа $K_{\rm 3AM}$ =1. Теплотворную способность мазута $Q_{\rm H}^{p}$ ккал/кг, расчетную мощность котельной Q, Гкал/ч, долю суточного расхода топлива, подлежащего замещению $d_{\rm 3AM}$,%, принять по табл. 4.1.

Таблица 4.1 Исходные данные для расчета нормативов запаса топлива

№	$Q^p_{\scriptscriptstyle{\scriptscriptstyle H}}$,	Q,	d_{3AM} ,%	$N_{\overline{0}}$	$Q^p_{\scriptscriptstyle{\scriptscriptstyle H}}$,	Q,	$d_{\scriptscriptstyle 3AM}$,%
	ккал/кг	Гкал/ч			ккал/кг	Гкал/ч	
1	9200	3	1	16	9050	18	16
2	9190	4	2	17	9040	19	17
3	9180	5	3	18	9030	20	18
4	9170	6	4	19	9020	21	19
5	9160	7	5	20	9010	22	20
6	9150	8	6	21	9000	23	21
7	9140	9	7	22	8990	24	22
8	9130	10	8	23	8980	25	23
9	9120	11	9	24	8970	26	24
10	9110	12	10	25	8960	27	25
11	9100	13	11	26	8950	28	26
12	9090	14	12	27	8940	29	27
13	9080	15	13	28	8930	30	28
14	9070	16	14	29	8920	31	29
15	9060	17	15	30	8910	32	30

По данным климатологии [5] находим средние температуры самых холодных месяцев отопительного периода для г. Воронежа t_1 , t_2 , t_3 °C, расчетную температуру для проектирования отопления t_{x5} , °C.

Определяем выработку котельной в самом холодном месяце Q_{\max} , Γ кал/сут

$$Q_{\text{max}} = Q \frac{t_i - t_{\text{min}}}{t_i - t_{x5}} 24. \tag{4.1}$$

Находим неснижаемый нормативный запас топлива (ННЗТ) по формуле [6]

$$HH3T = Q_{\text{max}} H_{cp.m.} \frac{Q_{_{H}}^{^{p}}}{7000} T10^{-6}$$
, тыс. т, (4.2)

где T — длительность периода формирования объема неснижаемого запаса топлива, принимаемое по табл. 1 [6] с учетом количества суток на которые он рассчитывается в зависимости от вида топлива и способа его доставки, сут.

Определяем среднемесячные значения отпуска для оставшихся двух месяцев

$$Q_1 = Q \frac{t_i - t_1}{t_i - t_{x5}} 24$$
, Гкал/сут, (4.3)

$$Q_3 = Q \frac{t_i - t_2}{t_i - t_{x5}} 24$$
, Гкал/сут. (4.4)

Находим среднее значение отпуска в течение трех наиболее холодных месяцев

$$Q_{\text{max}}^{\ni} = \frac{Q_{\text{max}} + Q_1 + Q_2}{3}$$
, Гкал/сут. (4.5)

Находим количество резервного топлива ($B_{\it 3AM}$), необходимое для замещения газового топлива в периоды сокращения его подачи газоснабжающими организациями по формуле:

$$B_{3AM} = Q_{\text{max}}^{9} H_{cp.m.3} T_{3AM} K_{3AM} \frac{d_{3AM}}{100} \frac{Q_{_{H}}^{p}}{Q_{_{H}2}^{p}} \frac{Q_{_{H}}^{p}}{7000} T_{1} 10^{-6}$$
, тыс. т., (4.6)

где T_1 – количество суток, принимаемое в зависимости от вида топлива [6].

С учетом значения $B_{\rm 3AM}$, определяем нормативный эксплуатационный запас топлива (HЭ3T)

$$H \ni 3T = Q_{\text{max}}^{\ni} H_{cp.m.3} \frac{1}{K} T_1 10^{-6} + B_{3AM}$$
, тыс.т. (4.7)

Определяем общий нормативный запас топлива (OH3T) суммированием H93T и HH3T (с округлением до десятой)

$$OH3T=HЭ3T+HH3T$$
, тыс.т. (4.8)

5. ОПРЕДЕЛЕНИЕ РАСХОДА ТЕПЛОВОЙ ЭНЕРГИИ НА СОБСТВЕННЫЕ НУЖДЫ КОТЕЛЬНОЙ

Определить собственные нужды котельной. В котельной установлено два котла одинаковой паропроизводительности G_{ki} . Используется двухступенчатая схема водоподготовки с реагентом для очистки КУ-2. Бак взрыхления отсутствует, установлен охладитель выпара. Растопка котлов производится из холодного состояния (после простоя свыше 12 ч). Учесть потери с поверхности двух цилиндрических баков диаметрами D_{61} , D_{62} , высотой H_{61} , H_{62} . Исходные данные принять по таблице 5.1.

5.1. Потери тепловой энергии с продувочной водой

Потери тепловой энергии с продувочной водой Q_{npoo} , Гкал, зависят от периодичности и продолжительности продувки котла и определяются по формуле [7]:

$$Q_{npoo} = \sum_{i=1}^{n} K_{npooi} Q_{im}, \qquad (5.1)$$

где $K_{npo\partial i}$ — коэффициент продувки i-го котла, принимаемый в зависимости от типа котла и вида продувки согласно [7,8]; Q_{im} — количество тепловой энергии, Гкал, произведенное котлом за расчетный период; n — количество котлов.

5.2. Затраты тепловой энергии на обдувку паровых котлов

Расход тепловой энергии на обдувку поверхностей нагрева паровых котлов $Q_{oбo}$, Гкал, определяют по формуле:

$$Q_{o\delta\delta} = K_{o\delta\delta} \sum_{i=1}^{n} G_{ki} \left(i_{n} - i_{ns} \right) r_{ki} 10^{-3} , \qquad (5.2)$$

где $K_{oбo}$ — коэффициент обдувки, принимаемый в зависимости от вида сжигаемого топлива [7]; G_{ki} — средняя за время работы производительность i-го котла, т/ч; r_{ki} — продолжительность работы i-го котла, ч; i_n , i_{ne} — энтальпия соответственно пара используемого для обдувки и питательной воды, ккал/кг (i_n =666,11 ккал/кг).

Таблица 5.1 Исходные данные для расчета собственных нужд котельной

									7	****			P ***		. •		•		7 224		01011		-					
№	Q_{im} $\cdot 10^3$, Гкал	G_{ki} , т/ч	<i>r_{ki},</i> ч	$i_{ne},$ ккал /кг	$t_{lex},$ °C	<i>t</i> _{2вых} , °С	Ж _о , мг∙ экв/л	$G_{x_{BO}},$ _{T/Ч}	$r_{xBO} \cdot 10^2$,		M ₅ , чел	°C	М ₂₄ , чел	T_q , cyt	$Q^p_{\scriptscriptstyle{\cal H}}$, ккал /кг	$D_{\delta 1}, \ _{ m M}$	$H_{\delta 1}, \ \mathrm{M}$	D_{62} ,	H_{62} ,	°C	$t_{cp.om}$, $^{\circ}\mathrm{C}$	<i>n</i> , сут	$V_{_{_{K3}}}^{_{_{\mathit{Bepx}}}},$	$V_{\kappa_3}^{\scriptscriptstyle HU3}$,	$V_{_{\mathfrak{I}^{3}\mathcal{I}.\mathfrak{U}_{2}}},$	$V_{{\scriptstyle{\it folm.}\atop M}},$	$V_{xum. \atop M^3}$	$t_{p.o.},$ °C
1	5	5,0	8400	110	4	80	1,2	10	25	2	3	8,3	2	360	4000	1	2	3,9	5	85	-10	208	2000	1000	200	500	80	-40
2	6	5,5	8350	109,5	4,2	80	1,4	15	26	2	4	4,4	3	359	4100	1,2	2,3	3,8	5,1	84	-9,6	206	2200	1200	220	550	100	-39
3	7	6,0	8300	109	4,4	79	1,6	20	27	2	5	4,6	4	358	4200	1,4	2,6	3,7	5,2	83	-9,2	204	2400	1400	240	600	120	-38
4	8	6,5	8250	108,5	4,6	79	1,8	25	28	2	6	4,8	5	357	4300	1,6	2,9	3,6	5,3	82	-8,8	202	2600	1600	260	650	140	-37
5	9	7,0	8200	108	4,8	78	2	30	29	2	7	5	6	356	4400	1,8	3,2	3,5	5,4	81	-8,4	200	2800	1800	280	700	160	-36
6	10	7,5	8150	107,5	5	78	2,2	32	30	2	8	5,2	7	355	4500	2	3,5	3,4	5,5	80	-8	198	3000	2000	300	750	180	-35
7	11	8,0	8100	107	5,2	77	2,4	34	31	3	9	5,4	8	354	4600	2,2	3,8	3,3	5,6	79	-7,6	196	3200	2200	320	800	200	-34
8	12	8,5	8050	106,5	5,4	77	2,6	36	32	3	10	5,6	9	353	4700	2,4	4,1	3,2	5,7	78	-7,2	194	3400	2400	340	850	220	-33
9	13	9,0	8000	106	5,6	76	2,8	38	33	3	3	5,8	10	352	4800	2,6	4,4	3,1	5,8	77	-6,8	192	3600	2600	360	900	240	-32
10	14	9,5	7950	105,5	5,8	76	3	40	34	3	4	6	11	351	4900	2,8	4,7	3	5,9	76	-6,4	190	3800	2800	380	950	260	-31
11	15	10,0	7900	105	6	75	3,2	42	35	3	5	6,2	12	350	5000	3	5	2,9	6	75	-6	188	4000	3000	400	1000	280	-30
12	16	10,5	7850	104,5	6,2	75	3,4	44	36	3	6	6,4	13	349	5100	3,2	5,3	2,8	6,1	74	-5,6	186	4200	3200	420	1050	300	-29
13	17	11,0	7800	104	6,4	74	3,6	46	37	4	7	6,6	14	348	5200	3,4	5,6	2,7	6,2	73	-5,2	184	4400	3400	440	1100	320	-28
14	18	11,5	7750	103,5	6,6	74	3,8	48	38	4	8	6,8	15	347	5300	3,6	5,9	2,6	6,3	72	-4,8	182	4600	3600	460	1150	340	-27
15	19	12,0	7700	103	6,8	73	4	50	39	4	9	7/	16	346	5400	3,8	6,2	2,5	6,4	71	-4,4	180	4800	3800	480	1200	360	-26
16	20	12,5	7650	102,5	1	73	4,2	52	40	4	10	7,2	17	345	5500	4	6,5	2,4	6,5	70	-4	178	5000	4000	500	1250	380	-25
17	21	13,0	7600	102	7,2	72	4,4	54	41	4	3	7,4	18	344	5600	4,2	6,8	2,3	6,6	69	-3,6	176	5200	4200	520	1300	400	-24
18	22	13,5	7550	101,5	7,4	72	4,6	56	42	4	4	7,6	19	343	5700	4,4	7,1	2,2	6,7	68	-3,2	174	5400	4400	540	1350	420	-23
19	23	14,0	7500	101	7,6	71	4,8	58	43	5	5	7,8	20	342	5800	4,6	7,4	2,1	6,8	67	-2,8	172	5600	4600	560	1400	440	-22
20	24	14,5	7450	100,5	7,8	71	5	60	44	5	6	8	21	341	5900	4,8	7,7	2	6,9	66	-2,4	170	5800	4800	580	1450	460	-21
21	25	15,0	7400	100	8	70	5,2	62	45	5	7	8,2	22	340	6000	5	8	1,9	7	65	-2	168	6000	5000	600	1500	480	-20
22	26	15,5	7350	99,5	8,2	70	5,4	64	46	5	8	8,4	23	339	6100	5,2	8,3	1,8	7,1	64	-1,6	166	6200	5200	620	1550	500	-19
23	27	16,0	7300	99	8,4	69	5,6	66	47	5	9	8,6	24	338	6200	5,4	8,6	1,7	7,2	63	-1,2	164	6400	5400	640	1600	520	-18
24	28	20,0	7250	98,5	8,6	69	5,8	68	48	5	10	8,8	25	337	6300	5,6	8,9	1,6	7,3	62	-0,8	162	6600	5600	660	1650	540	-17
25	29	21,0	7200	98	8,8	68	6	70	49	6	3	9	26	336	6400	5,8	9,2	1,5	7,4	61	-0,4	160	6800	5800	680	1700	560	-16
26	30	22,0	7150	97,5	9	68	6,2	72	50	6	4	9,2	27	335	6500	6	9,5	1,4	7,5	60	0	158	7000	6000	700	1750	580	-15
27	31	23,0	7100	97	9,2	67	6,4	74	51	6	5	9,4	28	334	6600	6,2	9,8	1,3	7,6	59	0,4	156	7200	6200	720	1800	600	-14
28	32	24,0	7050	96,5	9,4	67	6,6	76	52	6	6	9,6	29	333	6700	6,4	10,1	1,2	7,7	58	0,8	154	7400	6400	740	1850	620	-13
29	33	25,0	7000	96	9,6	66	6,8	78	53	6	7	9,8	30	332	6800	6,6	10,4	1,1	7,8	57	1,2	152	7600	6600	760	1900	640	-12
30	34	26,0	6950	95,5	9,8	66	7	80	54	6	8	10	31	331	6900	6,8	10,7	1	7,9	56	1,6	150	7800	6800	780	1950	660	-11

5.3. Затраты тепловой энергии на нужды ХВО

Затраты тепловой энергии на технологические нужды химводоочистки, $Q_{x_{60}}$, Гкал, при наличии охладителя выпара, определяют по формуле:

$$Q_{x60} = K_{x60} G_{x60} K_{63} c_{6} (t_{6bx} - t_{6x}) r_{x60} 10^{-3} , (5.3)$$

где K_{x60} — удельный расход воды на собственные нужды XBO, исходной воды на 1 т. химически очищенной воды, принимается в зависимости от общей жесткости исходной воды \mathcal{K}_o согласно [9]; G_{x60} — средний расход воды на XBO в расчетном периоде, т/ч; K_{63} — поправочный коэффициент, принимаемый в зависимости от наличия бака взрыхления [7]; c_{g} — теплоемкость воды, ккал/кг°С; t_{g61} , t_{g62} , — соответственно температура воды после и до подогревателя сырой и исходной воды, °С; t_{x60} — продолжительность работы XBO в расчетном периоде, ч.

В котельной используется двухступенчатая схема XBO, следовательно, общие затраты определяются суммированием по первой и второй ступени. Температуры химочищенной воды на выходе из подогревателя первой ступени и входе во вторую ступень рекомендуется принять соответственно t_{16blx} =35°C, t_{26x} =30°C.

5.4. Затраты тепловой энергии на хозяйственно-бытовые нужды

Затраты тепловой энергии на хозяйственно-бытовые нужды Q_x , Гкал, определяется по формуле:

$$Q_x = \left(\alpha_q N_q K_q + \alpha M\right) c_\theta \rho_\theta \left(t_z - t_{x\theta}\right) T_q 10^{-3} , \qquad (5.4)$$

где α_q — норма расхода горячей воды на одну душевую сетку, принимается равной 0,27 м³/сут [8]; N_q — количество душевых сеток; K_q — коэффициент использования душевых, определяется практическим путем, при отсутствии данных принимается равным 1,0; α — норма расхода горячей воды на 1 человека в смену, при отсутствии данных принимается равной 0,024 м³/чел в сутки; M — численность работающих человек в сутки, определяемая с учетом данных по количеству человек, работающих по сменному графику M_{24} и пятидневной рабочей неделе M_5 ; t_e =65°C, t_{xe} — соответственно температура горячей и исходной воды, °C; c_e — теплоемкость воды, ккал/(кг°C); T_q — продолжительность расчетного периода, сут; ρ_e — плотность воды, т/м³.

5.5. Затраты тепловой энергии на растопку котлов

Затраты тепловой энергии за расчетный период на растопку котлов $Q_{\it pacm}$, Гкал определяем по формуле [7]:

$$Q_{pacm} = \sum_{i=1}^{I_k} Q_{ki} \left(K' N_i' + K'' N_i'' \right), \tag{5.5}$$

где Q_{ki} — часовая выработка тепловой энергии i-ым котлом (по паспортной характеристике), Гкал; K — доля расхода тепловой энергии на одну растопку котла после простоя до 12 ч (из горячего состояния), принимаемая в отопительном периоде — 0,3, в неотопительном — 0,2; N_i — количество растопок из горячего состояния в расчетном периоде; K — доля расхода тепловой энергии на одну растопку котла после простоя свыше 12 ч (из холодного состояния), принимаемая в отопительном периоде — 0,65, в неотопительном — 0,45; N_i — количество растопок из холодного состояния в расчетном периоде.

Определяем затраты тепла на растопку котлов по формуле (5.5) для отопительного $Q_{\it pacm}^{\it on}$ и неотопительного периода $Q_{\it pacm}^{\it hon}$, а затем суммируем.

5.6. Затраты тепловой энергии на отопление котельной

Расход тепловой энергии, Гкал/ч, на отопление помещения котельной определяется следующим образом:

$$Q_{om}^{\text{max}} = \alpha V_0 q_0 (t_{gH} - t_{p.o.}) 10^{-6} , \qquad (5.6)$$

где V_0 — объем отапливаемого помещения (рабочей зоны), м³; q_0 - удельная отопительная характеристика здания при $t_{p.o.}$ =-30°C, принимаемая согласно [7,8], ккал/(м³ч°С); $t_{p.o.}$ — расчетная температура наружного воздуха для проектирования отопления, °С; α — поправочный коэффициент на температуру наружного воздуха для проектирования отопления, принимаемый согласно [7]; $t_{\rm sh}$ - температура воздуха внутри помещения, принимаемая как средневзвешенная по всем помещениям непосредственно котельной (котельный зал; насосное отделение; щитовое помещение и др.), принимается согласно [7]; n — продолжительность отопительного периода, сут.

По формуле (5.6) по известным объемам $V_{\kappa_3}^{\text{верх}}$, $V_{\kappa_3}^{\text{низ}}$, $V_{\text{эл.щ.}}$, $V_{\text{быт.}}$, $V_{\text{хим.}}$, определяются максимальные расходы теплоты на отопление верхней и нижней (рабочей) зоны котельного зала, электрощитовой, бытовки и химводоподготовки.

Затраты тепловой энергии Гкал, на отопление за отопительный период по каждому помещению и зонам котельного зала определяются по формуле:

$$Q_{om} = Q_{om}^{\text{max}} \frac{t_{\scriptscriptstyle BH} - t_{\scriptscriptstyle CP.Om}}{t_{\scriptscriptstyle BH} - t_{\scriptscriptstyle D.O.}} 24n$$
, Гкал. (5.7)

Необходимо учесть уменьшение потребности на отопление котельного зала за счет тепловыделений от котлов и другого оборудования. Согласно разъяснениям Минэнерго [8] теплопоступления в котельную относят к верхней зоне.

Теплопоступления от баков различного назначения

Потери тепловой энергии баками различного назначения (декарбонизаторы, баки-аккумуляторы и пр.), Гкал, определяют по формуле:

$$Q_{\delta\alpha\kappa} = 0.86 \cdot 24 \sum_{i=1}^{G} q_{\delta i} F_{\delta i} K_i n_i r_{\delta i} 10^{-6} , \qquad (5.8)$$

где $q_{\delta i}$ — норма плотности теплового потока через поверхность бака, ккал/м²ч, принимаемая по СНиП 41-03-2003 «Тепловая изоляция оборудования и трубопроводов» [13] для баков, введенных в эксплуатацию после 01.11.2003; $F_{\delta i}$ — поверхность бака, м²; K_i — температурный коэффициент, определяемый по соотношению

$$K_i = \frac{t_z - t_{cp.om}}{t_z - 5} ; \qquad (5.9)$$

 t_{z} — температуры воды в баке и наружного воздуха за отопительный период, °C; n_{i} — количество баков; G — количество групп однотипных баков; $r_{\delta i}$ — продолжительность работы баков в расчетном периоде, принимаемая равной числу суток отопительного периода, ч.

Теплопоступления от котлоагрегатов

Потери тепловой энергии с обмуровки котлоагрегатов за отопительный период определяются по формуле

$$Q_{mn} = n \sum_{i=1}^{n} B_i Q_{\scriptscriptstyle H}^{p} \frac{q_5}{100} 10^{-3} , \qquad (5.10)$$

где $Q_{_{H}}^{p}$ — низшая теплотворная способность топлива, ккал/кг; $q_{_{5}}$ — потеря тепловой энергии котлом в окружающую среду, %, определяемая согласно [7,10]; B — расход топлива т/ч, определяемый по формуле

$$B = \frac{G_{ki} \left(i_n - i_{ne} \right)}{Q_{\mu}^p \eta_{\kappa}}, \text{ T/Y}; \tag{5.11}$$

 η_{κ} — коэффициент полезного действия котлоагрегата, принимаемый 0,87; G_{ki} , i_n , i_n , — см. формулу (5.2).

Если сумма потерь тепла баками и котлоагрегатами больше чем необходимые затраты на отопление верхней зоны котельной, то итоговое значение затрат на отопление равно необходимой теплоте для нижней зоны. В противном случае, необходимо учесть недостаток избытков тепла для верхней зоны.

5.7. Другие потери и с дутьем под решетки

Другие потери (опробование предохранительных клапанов, потери с утечками, парением, через теплоизоляцию трубопроводов), Гкал, принимают для паровых котельных равными:

$$Q_{np} = 0,002Q_{im}, (5.12)$$

где Q_{im} – количество тепловой энергии, Гкал, произведенное котельной за расчетный период.

Расход тепловой энергии на дутье $Q_{\it дуm}$ под решетки слоевых топок котлов, работающих на углях, принимается по опытным данным, но не более 2% от выработанной тепловой энергии за расчетный период.

Суммируем затраты тепла по всем статьям:

$$Q_{\text{cym}} = Q_{npoo} + Q_{obo} + Q_{xbo} + Q_x + Q_{pacm} + Q_{om} + Q_{np} + Q_{oym}.$$
 (5.13)

Определяем процент собственных нужд K_{ch} от выработки тепла котельной.

6. РАСЧЕТ СЕБЕСТОИМОСТИ ВЫРАБОТКИ ТЕПЛОТЫ

Определить себестоимость выработки тепловой энергии котельной. В котельной установлен один водогрейный котел теплопроизводительностью Q_6 , МВт и два паровых одинаковой паропроизводительности \mathcal{A} , т/ч. Расчетная технологическая нагрузка составляет $Q_{mex.4}$, МВт, число часов использования технологической нагрузки h_{mex} , ч. Нагрузка горячего водоснабжения в отопительный период $Q_{263.4.}$, МВт, отопления и вентиляции Q_{06}^{max} , МВт (см. табл. 6.1).

Энтальпия вырабатываемого пара i_n =2789 кДж/кг; энтальпия питательной воды i_{ns} , кДж/кг. Расчетная температура для проектирования отопления t_{po} , продолжительность отопительного периода n, сут, средняя температура отопительного периода $t_{cp.om}$ (см. табл.6.1). Коэффициент сохранения теплоты в тепловых сетях равен коэффициенту расхода на собственные нужды $\eta_{mc}=\eta_{ch}=0,95$. КПД парового котла $\eta_{n\kappa}=0,85$, а водогрейного $\eta_s=0,9$. Установленная электрическая мощность котельной N,кВт.

Определяем теплопроизводительность двух паровых котлов

$$Q_{nv} = 2(i_n - i_{ne}) \mathcal{I} 3,6 \cdot 10^{-3}, \text{MBT}.$$
 (6.1)

Определяем установленную теплопроизводительность котельной

$$Q_{vcm} = Q_{n\kappa} + Q_{\kappa}, \text{ MBT.}$$
(6.2)

Определяем расчетную технологическую нагрузку

$$\mathcal{A}_{mex.H} = \frac{3600Q_{mex.Y}}{i_n - i_{ng}} , \text{T/Y},$$
 (6.3)

и годовой отпуск теплоты на технологию

$$Q_{mex.200} = 3,6h_{mex}Q_{mex.4}$$
, ГДж/год. (6.4)

Определяем число часов использования нагрузки горячего водоснабжения: в отопительный период

$$h_{20.2} = n24, \text{y};$$
 (6.5)

в неотопительный период

$$h_{26.7} = 350 \cdot 24 - h_{26.3}, \text{q.}$$
 (6.6)

Находим годовой отпуск теплоты на горячее водоснабжения

$$Q_{_{\mathcal{CB},\mathcal{COO}}} = Q_{_{\mathcal{CB3},y_{\circ}}} (h_{_{\mathcal{CB},3}} + 0.82h_{_{\mathcal{CB},\pi}})3,6, \Gamma Дж/год,$$
 (6.7)

где 0,82 – коэффициент, учитывающий изменение нагрузки горячего водоснабжения в неотопительный период.

Таблица 6.1 Исходные данные для расчета себестоимости выработки теплоты

Ma	Q_e ,	Д,	i_{ne} ,	$Q_{mex.y}$,	h_{mex} ,	t_{po} ,	n,	$t_{cp.om}$,	$Q_{{\scriptscriptstyle \it 263.4.}}$,	Q_{oe}^{max} ,	N,
№	МВт	т/ч	кДж/кг	МВт	Ч	°C	сут	°C	МВт	МВт	кВт
1	5	2,5	377	3	8400	-31	253	-4,4	1	3,5	50
2	6	3	379	3,5	8350	-23	191	-1,9	1,3	4,2	55
3	7	3,5	381	4	8300	-26	205	-2,3	1,6	4,9	60
4	8	4	383	4,5	8250	-28	213	-3,5	1,9	5,6	65
5	9	4,5	385	5	8200	-25	178	-2,2	2,2	6,3	70
6	10	5	387	5,5	8150	-32	231	-4,1	2,5	7	75
7	11	5,5	389	6	8100	-26	196	-3,1	2,8	7,7	80
8	12	6	391	6,5	8050	-30	219	-3,9	3,1	8,4	85
9	13	6,5	393	7	8000	-27	210	-2,9	3,4	9,1	90
10	14	7	395	8	7950	-37	216	-7,7	3,7	9,8	95
11	15	7,5	397	9	7900	-26	198	-2,4	4	10,5	100
12	16	8	399	9,5	7850	-27	202	-3,4	4,3	11,2	120
13	17	8,5	401	10	7800	-34	220	-5,1	4,6	11,9	140
14	18	9	403	11	7750	-30	209	-4,5	4,9	12,6	160
15	19	9,5	405	11,5	7700	-27	275	-3,2	5,2	13,3	180
16	20	10	407	12	7650	-39	230	-8,7	5,5	14	200
17	21	10,5	409	12,5	7600	-37	221	-8,4	5,8	14,7	220
18	22	11	411	13	7550	-26	205	-2,7	6,1	15,4	240
19	23	11,5	413	13,5	7500	-29	207	-4,5	6,4	16,1	260
20	24	12	415	14	7450	-24	196	-3,9	6,7	16,8	280
21	25	12,5	417	15	7400	-27	212	-1,9	7	17,5	300
22	26	13	419	16	7350	-22	171	-0,6	7,3	18,2	320
23	27	13,5	421	16,5	7300	-27	196	-4,3	7,6	18,9	340
24		14	423	17	7250			-2,4	7,9	19,6	360
25	29	14,5	425	18	7200	-28	201	-3,7	8,2	20,3	380
26	30	15	427	19	7150	-32	215	-5,2	8,5	21	400
27	31	15,5	429	19,5	7100	-27	207	-3	8,8	21,7	420
28	32	16	431	20	7050	-38	225	-7,2	9,1	22,4	440
29	33	16,5	433	20,5	7000	-31	211	-9,3	9,4	23,1	460
30	34	17	435	21,2	6950	-31	221	-4	9,7	23,8	480

Находим среднечасовой отпуск теплоты на отопление и вентиляцию

$$Q_{os.cp} = Q_{os}^{max} \frac{18 - t_{cp.om}}{18 - t_{po}} \text{ MBT},$$
 (6.8)

где 18 – средняя температура воздуха в отапливаемых зданиях, °С.

Находим годовой отпуск теплоты на отопление и вентиляцию, принимая $h_{_{\mathrm{OR}}}$ равным $h_{_{\mathrm{2B.3}}}$

$$Q_{os,rod} = 3,6h_{os}Q_{os,cp}, \Gamma Дж/год.$$
 (6.9)

Определяем общий годовой отпуск котельной

$$Q_{omn,rod} = Q_{mex,rod} + Q_{re,rod} + Q_{oe,rod}$$
, ГДж/год. (6.10)

Находим годовую выработку котельной

$$Q_{\text{выр.год}} = \frac{Q_{omn.rod}}{\eta_{mc}\eta_{cH}}$$
, ГДж/год. (6.11)

Находим число часов использования установленной мощности котельной

$$h_{20\partial} = \frac{Q_{выр.20\partial}}{Q_{ycm}3,6}$$
,ч/год. (6.12)

Определяем расход топлива:

– паровыми котлами

$$B_{n\kappa} = \frac{Q_{n\kappa}}{Q_{\mu}^{p} \eta_{n\kappa}} 3,6 \cdot 10^{6} , \text{ m}^{3}/\text{y};$$
 (6.13)

– водогрейным котлом

$$B_{e} = \frac{Q_{e\kappa}}{Q_{\mu}^{p} \eta_{e\kappa}} 3,6 \cdot 10^{6}, \, \text{m}^{3}/\text{y}, \tag{6.14}$$

где Q_{μ}^{p} =33496 кДж/м³ – теплотворная способность топлива-газа.

Определяем затраты на топливо по формуле [11]

$$\Theta_{mon} = 1,055 \left(B_{n\kappa} + B_{\theta}\right) h_{coo} C_m$$
, руб/год, (6.15)

где C_{m} — стоимость топлива, р/м³; 1,055 — коэффициент, учитывающий складские, транспортные и прочие потери.

Затраты на потребляемую электроэнергию определяем по формуле

где $K_{_{\mathfrak{I}\!\!A}}$ — коэффициент использования установленной электроэнергии: $K_{_{\mathfrak{I}\!\!A}}=0,7-0,8$ при $10\leq N$ кВт; $C_{_{\mathfrak{I}\!\!A}}$ — стоимость электроэнергии р/кВт·ч.

Затраты воды на технологические нужды определяем по формуле

$$\mathcal{G}_{em} = C_{e} \mathcal{I}_{mex,\mu} \left(1 - B_{eo3} \right) h_{200} \left(1 + r \right), \text{ руб/год}, \tag{6.17}$$

где C_{e} — цена потребленной и сброшенной в канализацию воды, р/м³; B_{eo3} =0,2 — доля возврата конденсата; r — доля утечек и непроизводственных потерь, принимаем 0,02-0,04.

Объем воды в тепловых сетях принимаем 65 м³ на 1 МВт нагрузки [1], расчетный часовой расход воды для определения производительности водоподготовки и соответствующего оборудования для подпитки системы теплоснабжения 0,75% от фактического объема воды в трубопроводах тепловых сетей [12]. Затраты воды на подпитку теплосети определяем по формуле

$$\Theta_{gn,rod} = G_{nodn} h_{rod} C_g = 65 Q_{vcm} 0,0075 C_g = 0,4875 Q_{vcm} h_{rod} C_g$$
, руб/год. (6.18)

Определяем затраты на заработанную плату с начислением только эксплуатационному персоналу, участвующему в основной производственной деятельности котельной:

$$\Theta_{3ap} = 12K_{um}Q_{vcm}C_{3ap}$$
, руб/год, (6.19)

где K_{um} — штатный коэффициент, зависящий от теплопроизводительности, принимаемый согласно [11], чел/МВт; C_{sap} — среднемесячная зарплата с начислением в фонд социального страхования одного работающего.

С учетом удельных капитальных затрат $C_{\kappa om}^{y \delta}$, млн.руб/МВт, определяем капитальные вложения в сооружение котельной

$$C_{\kappa om} = C_{\kappa om}^{y\phi} Q_{ycm}$$
,млн.руб. (6.20)

С учетом удельных капитальных затрат на общестроительные работы, принимаемые для производственно-отопительной котельной a=0,3, находим сметную стоимость строительных работ

$$C_{cmp} = aC_{\kappa om}$$
,млн.руб. (6.21)

С учетом удельных капитальных затрат на оборудование и стоимость монтажа, принимаемые для производственно-отопительной котельной ε =0,52, c=0,18, находим сметную стоимость оборудования и монтажа

$$C_{o\delta} = (\varepsilon + c)C_{\kappa om}$$
, млн.руб. (6.22)

Затраты на амортизацию составят

$$\Theta_{amop} = \frac{1}{100} \left(P_1 C_{cmp} + P_2 C_{oo} \right), \text{млн.руб.}$$
(6.23)

где P_1 – средняя норма амортизации общестроительных работ и зданий, принимаемая для котельной 3-3,5%; P_2 – норма амортизации оборудования с монтажом, принимаемая для газовой котельной 7,5-8,5%.

В статью «Текущий ремонт» включают расходы на текущий ремонт основных фондов котельной (здание, оборудование, хозяйственный инвентарь, инструмент), сюда также относится основная и дополнительная заработанная плата с начислениями ремонтному персоналу, стоимость ремонтных материалов и использованных запчастей, стоимость услуг сторонних организаций и своих вспомогательных производств и др.

При расчетном методе принимаем затраты на текущий ремонт в размере 20-30% затрат на амортизацию:

$$\Theta_{\text{meк. pem.}} = (0, 2 \div 0, 3) \Theta_{\text{амор}}, \text{млн.руб.}$$
 (6.24)

Статья общекотельные и прочие расходы включает в себя затраты на охрану труда, технику безопасности, пожарную и сторожевую охрану, административно-управленческий персонал, спецодежду, реактивы для химлаборатории и др. Принимаем данные затраты в размере 30% затрат на амортизацию, текущий ремонт и зарплату

$$\Theta_{oби_{\ell}} = 0,3 \left(\Theta_{amop} + \Theta_{me\kappa.pem.} + \Theta_{зap} \right)$$
,млн.руб. (6.25)

Годовые эксплуатационные затраты по котельной определяем как сумму рассмотренных выше статей:

$$\Sigma \mathcal{G} = \mathcal{G}_{mon} + \mathcal{G}_{n_{2}n_{2}n_{3}} + \mathcal{G}_{em} + \mathcal{G}_{em} + \mathcal{G}_{em} + \mathcal{G}_{anon} + \mathcal{G}_{anon} + \mathcal{G}_{mek, new} + \mathcal{G}_{ofm}$$
, млн.руб. (6.26)

Определяем себестоимость теплоты

$$C = \frac{4,187\Sigma \Im}{Q_{\text{выр.год}}}$$
, руб/Гкал. (6.27)

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. СП 124.13330.2012. Тепловые сети. Актуализированная редакция СНиП 41-02-2003.
- 2. СП 89.13330.2016. Котельные установки. Актуализированная редакция СНиП II-35-76 Котельные установки.
- 3. Аэродинамический расчет котельных установок (нормативный метод). С. И. Мочан [и др.]. – Л.: Энергия, 1977. – 256 с.
- 4. Роддатис, К. Ф. Справочник по котельным установкам малой производительности / К. Ф. Роддатис, А. Н. Полтарецкий. М.: Энергоатомиздат, 1989. 488 с.
- 5. СП 131.13330.2020 «СНиП 23-01-99* Строительная климатология». М.: Госстрой России, 2020.
- 6. Приказ Министерства энергетики РФ от 10 августа 2012г. №377 «О порядке определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, нормативов удельного расхода топлива при производстве тепловой энергии, нормативов запасов топлива на источниках тепловой энергии (за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе в целях государственного регулирования цен (тарифов) в сфере теплоснабжения».
- 7. Приказ Министерства энергетики РФ от 30 декабря 2008 г. N 323 «Об утверждении порядка определения нормативов удельного расхода топлива при производстве электрической и тепловой энергии» (с изменениями и дополнениями).
- 8. Информационное письмо (разъяснения) Минэнерго России «О повышении качества подготовки расчетов и обоснований нормативов удельного расхода топлива на отпущенную тепловую энергию от отопительных (производственно-отопительных) котельных».
- 9. Методические указания по определению расходов топлива, электроэнергии и воды на выработку теплоты отопительными котельными коммунальных теплоэнергетических предприятий. — М.: ГУП Академия коммунального хозяйства им. К.Д. Памфилова. 2002.
- 10. Тепловой расчет котлов (нормативный метод). Издательство НПО ЦКТИ, СПб,1988. 256 с.
- 11. Брюханов, О. Н. Газифицированные котельные агрегаты / О. Н. Брюханов, В. А. Кузнецов. М.: ИНФРА-М, 2007. 392 с.
- 12. Правила технической эксплуатации тепловых энергоустановок: офиц. текст. Москва: Омега-Л, 2007. 213 с.
- 13. СП 61.13330.2012. Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003. М.: Стандартинформ, 2016.

ОГЛАВЛЕНИЕ

Вв	едение	3
1.	Выбор типа и числа водогрейных котлов	4
2.	Расчет и выбор тягодутьевых устройств котельной	6
	2.1. Дутьевой вентилятор	6
	2.2. Дымосос	8
3.		10
4.	Расчет нормативов запасов топлива в котельной	14
5.	Определение расхода тепловой энергии	
	на собственные нужды котельной	16
	5.1. Потери тепловой энергии с продувочной водой	16
	5.2. Затраты тепловой энергии на обдувку паровых котлов	16
	5.3. Затраты тепловой энергии на нужды ХВО	18
	5.4. Затраты тепловой энергии на хозяйственно-бытовые нужды	18
	5.5. Затраты тепловой энергии на растопку котлов	19
	5.6. Затраты тепловой энергии на отопление котельной	19
	5.7. Другие потери и с дутьем под решетки	21
6.	Расчет себестоимости выработки теплоты	21
Би	блиографический список	27

ТЕПЛОГЕНЕРИРУЮЩИЕ УСТАНОВКИ И МИНИ-ТЭЦ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению практических занятий и курсовой работы для студентов направления подготовки 13.04.01 «Теплоэнергетика и теплотехника» (программа магистерской подготовки «Теплоэнергетика и теплотехника») всех форм обучения

Составитель **Китаев** Дмитрий Николаевич

Издается в авторской редакции

Подписано к изданию 06.02.2023. Уч.-изд. л. 1,4.

ФГБОУ ВО «Воронежский государственный технический университет» 394006 Воронеж, ул. 20-летия Октября, 84