МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
Декан факультета информационных
технологий и комньютерной безопасности
/ П.Ю. Гусев
/ и.о. Фамилия
«31» августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

«Микроконтроллеры» наименование дисциплины (модуля) в соответствии с учебным планом)

Направление подготовки 09.03.01 Информатика и вычислительная техника код и наименование направления подготовки/специальности Профиль (специализация) Вычислительные машины, комплексы, системы и сети_ название профиля/программы Квалификация выпускника бакалавр Нормативный период обучения 4 года / 4 года и 11 м. Очная/очно-заочная/заочная (при наличии) Форма обучения Очная/Заочная Год начала подготовки 2019 г. Г.В. Петрухнова Автор(ы) программы доцент Автоматизированных и В.Ф. Барабанов вычислительных систем наименование кафедры, реализующей дисциплину подпись Руководитель ОПОП В.Ф. Барабанов подпись

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

формирование у студентов знаний основ построения, технического и программного обеспечения, а также применения микроконтроллеров в различных областях техники.

1.2. Задачи освоения дисциплины

формирование знаний о структуре и архитектуре микроконтроллеров; формирование знаний особенностей разработки микроконтроллерных систем.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Микроконтроллеры» относится к дисциплинам вариативной части (дисциплина по выбору) блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Микроконтроллеры» направлен на формирование следующих компетенций:

ПК-2 – способен проектировать и разрабатывать компоненты программных комплексов и информационных систем, используя современные технологии программирования и инструментальные средства разработки

ПК-5 — способен разрабатывать и применять программно-аппаратные средства микропроцессорных систем

средства микропроцес	Результаты обучения, характеризующие						
Компетенция	сформированность компетенции						
ПК-2	Знать: принципы построения управляющей программы						
	микроконтроллера						
	Знать: типовые решения, используемые при разработке						
	программного обеспечения для микроконроллеров						
	Знать: методологию разработки программного						
	обеспечения для микроконтроллеров						
	Знать: возможности современных инструментальных						
	средств разработки программных продуктов и технических						
	средств для микроконтроллерных систем						
	Уметь: использовать существующие типовые решения для						
	проектирования программного обеспечения для						
	икроконтроллерных систем						
	Владеть: методиками применения современных						
	технологий программирования и инструментальных						
	средств разработки микроконтроллерных систем						
	владеть: методами и средствами проектирования и						
	разработки программного обеспечения для						
	микроконтроллерных систем						
ПК-5	Знать: структуру процессорного ядра, состав изменяемого						
	функционального модуля и функциональное назначение						

основных элементов 8-разрядного микроконтроллера				
Уметь: разрабатывать функциональные схемы типовых				
микроконтроллерных систем				
Владеть: современными техническими и программными				
средства разработки и отладки микроконтроллерных				
систем				

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Микроконтроллеры» составляет 4 з.е. Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Duyu yang yang nagara	Ваага надар	Семестры
Виды учебной работы	Всего часов	8
Аудиторные занятия (всего)	40	40
В том числе:		
Лекции	20	20
Лабораторные работы (ЛР)	20	20
Самостоятельная работа	68	68
Виды промежуточной аттестации - зачет с	+	+
оценкой	I	ı
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

заочная форма обучения

Duran yarafaran nafaran	Всего часов	Семестры
Виды учебной работы	Бсего часов	10
Аудиторные занятия (всего)	20	20
В том числе:		
Лекции	8	8
Лабораторные работы (ЛР)	12	12
Самостоятельная работа	84	84
Контрольная работа	+	+
Часы на контроль	4	4
Виды промежуточной аттестации - зачет с	+	+
оценкой	I	ı
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

очная форма обучения							
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час	
1	Вводная часть	Понятие структуры и архитектуры микроконтроллера (МК). Основные типы архитектур микроконтроллеров по варианту реализации памяти и организации выборки команд и данных. Основные типы архитектур МК по варианту набора выполняемых команд и способов адресации. Особенности архитектуры 8-, 16- и 32-разрядных МК	4	-	4	8	
2	Периферийные модули микроконтроллеров	Обобщенная структура МПС общего назначения. Обобщенная структура МК гарвардской архитектуры. Обобщенная структура МК архитектуры Фон Неймана. Библиотека периферийных модулей. Общие сведения о памяти программ и данных. Память программ. Память данных. Особенности алгоритмов программ микроконтроллеров. Схема работы программы—монитора. Схема реализации параллельных программных потоков. Параллельные порты. Таймеры/счетчики. Причины использования процессоров событий. Структура процессора событий МК семейства Intel 8xC51Fx. Режимы работы процессора событий МК семейства Intel 8xC51Fx. Тенденции развития процессоров событий. Цели использования модулей последовательного ввода/вывода. Режимы обмена информацией. Типы модулей последовательного интерфейса. Энергопотребление в системах на основе МК. Тактовые генераторы МК. Модули аналогового ввода/вывода. Контроллеры ЖК-индикаторов и светодиодной матрицы. Аппаратные средства обеспечения надежной работы МК Состав средств обеспечения надежной работы МК. Схема формирования сигнала сброса МК. Блок детектирования пониженного напряжения питания. Сторожевой таймер.	14	20	60	94	
3	Обзор популярных семейств однокристальных микро-ЭВМ	Микроконтроллеры архитектуры CISC. Микроконтроллеры архитектуры RISC	2	-	4	6	
	микро-ЭВМ	И	20	20	(0	100	
		Итого	20	20	68	108	

заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
-------	-------------------	--------------------	------	--------------	-----	---------------

		Итого	8	12	84	104
	микро-ЭВМ					
	однокристальных					
	семейств	Микроконтроллеры архитектуры RISC.	_	_	6	6
3	Обзор популярных					
2	0.5	напряжения питания. Сторожевой таймер.				
		МК. Блок детектирования пониженного				
		работы МК. Схема формирования сигнала сброса				
		Состав средств обеспечения надежной				
		надежной работы МК				
		Аппаратные средства обеспечения				
		матрицы.				
		Контроллеры ЖК-индикаторов и светодиодной				
		Модули аналогового ввода/вывода.				
		МК. Тактовые генераторы МК.				
		Энергопотребление в системах на основе				
		интерфейса.				
		информацией. Типы модулей последовательного				
		последовательного ввода/вывода. Режимы обмена				
		Цели использования модулей				
		Тенденции развития процессоров событий.	6	12	70	88
		процессора событий МК семейства Intel 8xC51Fx.	_			
		семейства Intel 8xC51Fx. Режимы работы				
		событий. Структура процессора событий МК				
		Причины использования процессоров				
		Параллельные порты. Таймеры/счетчики.				
		параллельных программных потоков.				
		программы-монитора. Схема разоты				
		Особенности алгоритмов программ микроконтроллеров. Схема работы				
		данных. Память программ. Память данных. Особенности алгоритмов программ				
		Общие сведения о памяти программ и				
		периферийных модулей.				
		МК архитектуры Фон Неймана. Библиотека				
		гарвардской архитектуры. Обобщенная структура				
	микроконтроллеров	назначения. Обобщенная структура МК				
2	Периферийные модули	1,000				
i		32-разрядных МК				
		адресации. Особенности архитектуры 8-, 16- и				
		варианту набора выполняемых команд и способов				
		и данных. Основные типы архитектур МК по		-	8	10
		реализации памяти и организации выборки команд				
		архитектур микроконтроллеров по варианту				
		микроконтроллера (МК). Основные типы				
1	Вводная часть	Понятие структуры и архитектуры				

5.2 Перечень лабораторных работ очная форма обучения

Лабораторная работа №1. Методы и способы передачи данных. Лабораторная работа №2. Формирование сигнала широтно-импульсной модуляции процессором.

Лабораторная работа №3. Режимы работы таймеров/счетчиков.

Лабораторная работа №4. Реализации параллельных программных потоков.

Лабораторная работа №5. Аналогово-цифровой преобразователь.

заочная форма обучения

Лабораторная работа №1. Методы и способы передачи данных.

Лабораторная работа №2. Формирование сигнала широтно-импульсной модуляции процессором.

Лабораторная работа №3. Режимы работы таймеров/счетчиков.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы).

Для студентов заочной формы обучения предусмотрена контрольная работа на тему «Подсистема прерываний микроконтроллера».

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-2	знать: принципы построения управляющей программы микроконтроллера знать: типовые решения, используемые при разработке программного обеспечения для микроконроллеров знать: методологию разработки программного обеспечения для микроконтроллеров знать: возможности современных инструментальных средств разработки программных продуктов и технических средств для микроконтроллерных систем	Активная работа на лабораторных и практических занятиях, решение стандартных и прикладных задач в конкретной предметной области, опрос при защите отчетов по лабораторным работам	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь: использовать существующие типовые решения для проектирования программного обеспечения для микроконтроллерных систем уметь: применять методы и средства проектирования и	Активная работа на лабораторных и практических занятиях, решение стандартных и прикладных задач в конкретной предметной области,	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

	разработки программного обеспечения для микроконтроллерных систем	опрос при защите отчетов по лабораторным работам		
	владеть: средств разработки микроконтроллерных систем владеть: методами и средствами проектирования и разработки программного обеспечения для микроконтроллерных систем	Активная работа на лабораторных и практических занятиях, решение стандартных и прикладных задач в конкретной предметной области, опрос при защите отчетов по лабораторным работам	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-5	Знать: структуру процессорного ядра, состав изменяемого функционального модуля и функциональное назначение основных элементов 8-разрядного микроконтроллера	Активная работа на лабораторных и практических занятиях, решение стандартных и прикладных задач в конкретной предметной области, опрос при защите отчетов по лабораторным работам	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: разрабатывать функциональные схемы- типовых микроконтроллерных систем	Активная работа на лабораторных и практических занятиях, решение стандартных и прикладных задач в конкретной предметной области, опрос при защите отчетов по лабораторным работам	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: современными техническими и программными средства разработки и отладки микроконтроллерных систем	Активная работа на лабораторных и практических занятиях, решение стандартных и прикладных задач в конкретной предметной области, опрос при защите отчетов по лабораторным работам	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 8 семестре для очной формы обучения, 10 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

	Результаты обучения,					
Компе- тенция	характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-2	знать: принципы построения управляющей программы микроконтроллера знать: типовые решения, используемые при разработке программного обеспечения для микроконроллеров знать: методологию разработки программного обеспечения для микроконтроллеров знать: возможности современных инструментальных средств разработки программных продуктов и технических средств для микроконтроллерных систем		Выполнение теста на 90-100%	Выполнение теста на 80- 90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	уметь: использовать существующие типовые решения для проектирования программного обеспечения для микроконтроллерных систем уметь: применять методы и средства проектирования и разработки программного обеспечения для микроконтроллерных систем	стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	разработки микроконтроллерных систем	Решение прикладных задач в конкретной предметной	Задачи решены в полном объеме и получены	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

	средствами проектирования и разработки программного обеспечения для микроконтроллерных систем	области	верные ответы	задачах		
ПК-5	знать: структуру процессорного ядра, состав изменяемого функционального модуля и функциональное назначение основных элементов 8-разрядного микроконтроллера	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	уметь: разрабатывать функциональные схемы- типовых микроконтроллерных систем	стандартных практических	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	владеть: современными техническими и программными средства разработки и отладки микроконтроллерных систем	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Периодом становления архитектуры 8-разрядных микроконтроллеров (МК) считают 1977-1979 гг.
 - a) <u>да</u>,
 - б) нет
 - 2. Основные типы микропроцессорных систем (выделить неверный ответ):
 - а) микросхемы малой степени интеграции,
 - б) микроконтроллеры,
 - в) контроллеры,
 - г) микрокомпьютеры,
 - д) компьютеры
- 3. По варианту реализации памяти выделяют основные виды архитектур микроконтроллера (выделить неверный ответ):
 - а) архитектура фон Неймана (принстонская архитектура),
 - б) Гарвардской лаборатории (гарвардская),
 - в) CISK-архитектура
 - 4. Структура микроконтроллера
 - а) имеет модульный принцип построения,
 - б) не имеет модульного принцип построения
- 5. Использование таймеров/счетчиков позволяет решать многие задачи управления в режиме реального времени:
 - а) да,
 - б) нет
- 6. В настоящее время все сложные 8-разрядные микроконтроллеры имеют в своем составе контроллеры последовательного ввода/вывода
 - а) да,
 - б) нет
- 7. Аналого-цифровое преобразование это процесс преобразования входной физической величины в ее числовое представление
 - а) да,
 - б) нет
 - 8. Широтно-импульсная модуляция (ШИМ) –

- а) это способ задания аналогового сигнала цифровым методом,
- б) это режим работы компаратора микроконтроллера
- 9) Сигнал ШИМ может быть сформирован (выделить неверный ответ):
 - а) с помощью процессора микроконтроллера,
 - б) с помощью таймера/счетчика,
 - в) с помощью компаратора микроконтроллера
- 10. Дребезг контакта это явление, заключающееся в том, что
 - а) <u>после замыкания контакта происходят многократные неконтролируемые замыкания и размыкания контакта за счет упругости материалов и деталей контактной системы,</u>
 - б) контакт расшатан, неправильно функционирует и требует замены
- 11. Библиотека периферийных модулей МК это
 - а) <u>совокупность модулей, которые разработаны для определенного процессорного ядра;</u>
 - б) библиотека книг с описанием периферийных модулей, которые разработаны для определенного процессорного ядра;
 - в) совокупность инструкций по работе с модулями, которые разработаны для определенного процессорного ядра
- 12. В состав современных профессиональных средств написания и отладки программ для микроконтроллеров обычно входят (выберите неверно указанный пункт)
 - а) эммуляторы процессоров или отладочные платы,
 - б) процессор событий,
 - в) текстовый редактор,
 - г) компиляторы языка высокого уровня (чаще СИ) и ассемблера,
 - д) редактор связей (компоновщик)
 - e)

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Требуется обеспечить высокую точность и стабильность тактовой частоты МК. Какую схему тактирования Вы выберете?
 - а) кварцевый резонатор,
 - б) керамический резонатор,
 - в) RC-цепь
- 2. После выхода из состояния сброса МК выполняются следующие действия (в представленной последовательности действий выделить действие, которое МК не выполняет)::
 - а) запуск генератора синхроимпульсов микроконтроллера.;

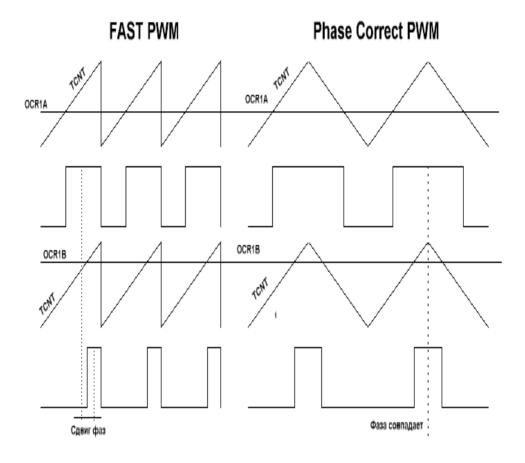
- б) запуск таймера/счетчика;
- в) при необходимости считывание состояния энергонезависимых регистров конфигурации с последующим запоминанием в соответствующие регистры ОЗУ;
- г) загрузка в счетчик команд начального адреса управляющей программы;
- д) выборка первой команды программы из памяти программ и ее выполнение.
- 3 При достижении счетчиком МК максимального кода генерируется сигнал внутреннего сброса, и микроконтроллер начинает выполнять рабочую программу сначала. О каком счетчике идет речь?
 - а) многоразрядный счетчик сторожевого таймера,
 - б) счетчик 8-разрядного таймера,
 - в) счетчик 16-разрядного таймера,
 - г) счетчик блока детектирования пониженного напряжения питания
 - 4. На рисунке представлен интерфейс программы ARP/Arduino Uploader.

Программа используется

- а) для прошивки микроконтроллера семейства AVR на плате Arduino,
- б) для поиска управляющей программы микроконтроллера семейства

AVR с целью дальнейшей доработки

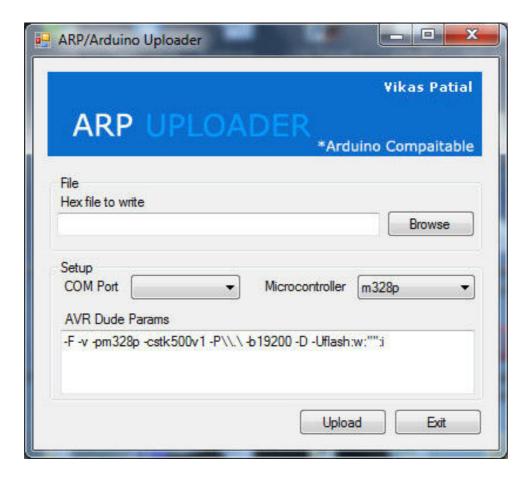
- 5. Для генерации сигнала ШИМ микроконтроллером без участия процессора необходим
 - а) таймер/счетчик,
 - б) компаратор,
- 6. На рисунке представлено соответствие колодок платы Arduino Uno пинам микроконтроллера ATMega 328P-PU. Проанализируйте рисунок и ответьте на вопросы.


	-		PC5 ADC5/SCL/PCINT13
IOREF	IOREF		PC4 ADC4/SDA/PCINT12
RESET	RESET	AREF	AREF
3.3V	3.3V	GND	GND
5V	5V	13	PB5 SCK/PCINT5
GND	GND	12	PB4 MISO/PCINT4
GND	GND	11	PB3 MOSI/OC2A/PCINT3
Vin	Vin	10	PB2 SS/OC1B/PCINT2
-		9	PB1 PCINT1/OC1A
		8	PB0 PCINT0/CLK0/ICP1
		7	PD7 PCINT23/AIN1
		6	PD6 PCINT22/OC0A/AIN0
ADC0/PCINT8 PC0	A0	5	PD5 PCINT21/OC0B/T1
ADC1/PCINT9 PC1	A1	4	PD4 PCINT20/XCK/T0
ADC2/PCINT10 PC2	A2	3	PD3 PCINT19/OC2B/INT1
ADC3/PCINT11 PC3	A3	2	PD2 PCINT18/INT0
ADC4/SDA/PCINT12 PC	C4 A4	1	PD1 PCINT17/TXD
ADC5/SCL/PCINT13 PC	C5 A5	0	PD0 PCINT16/RXD

- 6.1 При подключении индикаторов, какой вывод необходимо использовать для заземления
 - a) GND,
 - б) RESET,
 - в) AREF
 - 6.2 Вывод, к которому подключается схема начальной установки
 - a) GND,
 - б) <u>RESET</u>,
 - в) AREF
- 6.3 выводы порта D (в соответствии с названием и нумерацией пинов корпуса микроконтроллера)

- a) A0-A5,
- б) 0-7,
- в) 8-13
- 7 Рассматриваемый модуль генерирует сигнал внутреннего сброса при снижении напряжения питания до уровня чуть ниже минимально допустимого. О каком модуле идет речь?
 - а) блок детектирования пониженного напряжения питания,
 - б) схема начальной установки,
 - в) сторожевой таймер
 - 8. Модуль обработчика внешнего прерывания вызывается на выполнение
- a) в теле процедуры main() в соответствии с выполняемым алгоритмом как обычная процелура,
- б) аппаратно при подаче активного уровня на специальный вывод микроконтроллера

7.2.3 Примерный перечень заданий для решения прикладных задач


- 1. Настройка порта В микроконтроллера семейства Atmega на вывод
- a) DDRB=0xFF;
- б) DDRB=0x00;
- в) PORTB=0xFF;
- г) PORTB=0x00;
- 2. Проанализируйте рисунок и ответьте на вопросы

- 2.1 Какие режимы таймера/счетчика проиллюстрированы на рисунке (выделить неверный ответ):
 - а) быстродействующий ШИМ,
 - б) ШИМ с точной фазой,
 - в) сброс при совпадении
- 2.2 OCR1A, OCRB1B это
 - а) регистры совпадения микроконтроллера семейства AVR,
 - б) байты счётного регистра таймера,
 - в) название сигнала
- 2.3. TCNT это
 - г) регистр сравнения микроконтроллера семейства AVR,
 - д) <u>счётный регистр таймера микроконтроллера семейства AVR</u>,
 - е) название зигзагообразного сигнала
- 3. На рисунке представлено . соответствие колодок платы Arduino Uno пинам микроконтроллера ATMega 328P-PU. Проанализируйте рисунок и ответьте на вопросы.

	-		PC5 ADC5/SCL/PCINT13
IOREF	IOREF		PC4 ADC4/SDA/PCINT12
RESET	RESET	AREF	AREF
3.3V	3.3V	GND	GND
5V	5V	13	PB5 SCK/PCINT5
GND	GND	12	PB4 MISO/PCINT4
GND	GND	11	PB3 MOSI/OC2A/PCINT3
Vin	Vin	10	PB2 SS/OC1B/PCINT2
		9	PB1 PCINT1/OC1A
		8	PB0 PCINT0/CLK0/ICP1
		7	PD7 PCINT23/AIN1
		6	PD6 PCINT22/OC0A/AIN0
ADC0/PCINT8 PC0	A0	5	PD5 PCINT21/OC0B/T1
ADC1/PCINT9 PC1	A1	4	PD4 PCINT20/XCK/T0
ADC2/PCINT10 PC2	A2	3	PD3 PCINT19/OC2B/INT1
ADC3/PCINT11 PC3	A3	2	PD2 PCINT18/INT0
ADC4/SDA/PCINT12 PC4	A4	1	PD1 PCINT17/TXD
ADC5/SCL/PCINT13 PC5	A5	0	PD0 PCINT16/RXD

- 3.1. выводы USART
 - a) 0-1,
 - б) 10-11,
 - в) 8-9
- 3.2. выводы подсистемы внешних прерываний
 - a) 2, 3,
 - б) 7,6,
 - в) A4,A5
- 3.4 Какой из портов микроконтроллера является полным
 - a) PB,
 - б) РС,
 - в) <u>PD</u>
- 4 На рисунке представлен интерфейс программы ARP/Arduino Uploader.

- 4.1 Если на панели «File» кликнуть по кнопке «Browse», то
 - а) <u>откроется диалоговое окно, в котором нужно указать требуемый файл прошивки;</u>
 - б) откроется диалоговое окно, в котором нужно указать требуемый файл для настройки фьюз-битов микроконтроллера
- 4.2 На панели Setup в выпадающем списке «COM Port»нужно
 - a) <u>выбрать COM Port, соответствующий подключенной плате</u> <u>Arduino;</u>
 - б) выбрать COM Port в соответствии с алгоритмом, реализуемым управляющей программой микроконтроллера
- 5. Какой режим таймера/счетчика МК семейства AVR целесообразно использовать для реализации часов
 - a) Normal,
 - б) ШИМ
 - в) сброс при совпадении

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Причины и значение появления микропроцессоров и микропроцессорных систем
 - 2. Основные типы микропроцессорных систем
 - 3. Структура и архитектура МК
 - 4. Принстонская и гарвардская архитектуры
 - 5. CISK и RISK архитектуры

- 6. Восьмиразрядные микроконтроллеры
- 7. Шестнадцатиразрядные микроконтроллеры
- 8. Тридцатидвухразрядные микроконтроллеры
- 9. Обобщенная структура МПС на базе однокристального микропроцессора общего назначения
 - 10. Структура микроконтроллера
 - 11. Память программ МК
 - 12. Память данных МК
 - 13. Регистры МК
 - 14. Стек МК
 - 15. Особенности программного обеспечения микроконтроллеров
 - 16. Особенности отладки программ для микроконтроллеров
 - 17. Параллельные порты ввода вывода
 - 18. Подсистема прерываний микроконтроллера
 - 19. Классический модуль таймера/счетчика
 - 20. Модули усовершенствованного таймера
 - 21. Процессоры событий
 - 22. Модули последовательного ввода/вывода микроконтроллеров
 - 23. Модули аналогового ввода/вывода восьмиразрядных микроконтроллеров
 - 24. Аналого-цифровой преобразователь
 - 25. Компаратор напряжения
 - 26. Цифро-аналоговый преобразователь
 - 27. Контроллеры ЖК-индикаторов и светодиодной матрицы
 - 28. Энергопотребление в системах на основе микроконтроллеров
 - 29. Тактовые генераторы микроконтроллеров
- 30. Состав средств обеспечения надежной работы однокристального микроконтроллера
 - 31. Схема формирования сигнала сброса однокристального микроконтроллера
 - 32. Блок детектирования пониженного напряжения питания
 - 33. Сторожевой таймер
 - 34. Технологии проектирования МПС на основе микроконтроллера

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 12 вопросов и 4 задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 2 балла (1 балл верное решение и 1 балл за верный ответ). Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов

- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы)	Код контролируемой	Наименование
	дисциплины	компетенции	оценочного средства
1	Вводная часть	ПК-2, ПК-5	Тест, контрольная работа
			для студентов заочной
			формы обучения
2	Периферийные модули	ПК-2, ПК-5	Тест, контрольная работа
	микроконтроллеров		для студентов заочной
			формы обучения, защита
			лабораторных работ
3	Обзор популярных семейств	ПК-2, ПК-5	Тест, контрольная работа
	однокристальных микро-ЭВМ		для студентов заочной
			формы обучения

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Петрухнова Г.В. Архитектура и эволюция микропроцессоров/ Воронеж, ВГТУ, 2011
- 2. Петрухнова Г.В. Однокристальные микроконтроллеры семейства BE51: учеб. пособие/ Воронеж: ВГТУ, 2010
 - 3. Кондусов В.А., Тюрин С.В Элементы проектирования микропроцессорных

устройств и систем/ Воронеж: ВГТУ, 2006

- 4. Петрухнова Г.В. Микроконтроллеры семейства iMCS-51: методические указания к выполнению лабораторных работ по дисциплине «Однокристальные микроконтроллеры» для студентов направления 09.03.01 «Информатика и вычислительная техника» (профиль «Вычислительные машины, комплексы, системы и сети») заочной формы обучения/ Воронеж: ВГТУ, 2018
- 5. Баранов В.Н Применение микроконтроллеров AVR: схемы, алгоритмы, программы/«Додэка -XXI». ЭБС «Лань», 2010
- 6. Естифеев А.В Микроконтроллеры семейств Tiny и Mega фирмы Atmel /М.: «Додэка -XXI». ЭБС «Лань». 2010.
- 7. Петрухнова Г.В. Методические указания к выполнению контрольной работы по дисциплине «Микропроцессорные системы» для студентов специальности 230101 "Вычислительные машины, комплексы, системы и сети" заочной и заочной сокращенной форм обучения/ Воронеж: ВГТУ, 2009
- 8. Петрухнова Г.В. «Однокристальные микроконтроллеры ATMEL семейства ATMEGA» к выполнению лабораторных работ по дисциплине «Однокристальные микроконтроллеры» для студентов направления 09.03.01 «Информатика и вычислительная техника» (профиль "Вычислительные машины, комплексы, системы и сети") очной формы обучения/ Воронеж: ВГТУ, 2015
- 9. Системы и средства информатики. Научный журнал Российской академии наук. ЭБС e-library
 - 10. Информатизация и связь. Научно-практический журнал. ЭБС e-library
 - 10. Радиотехника и электроника. Научный журнал. ЭБС e-library
 - 11. Журнал радиоэлектроники. Научное издание. ЭБС e-library
- 12. Методические рекомендации ПО выполнению контрольных работ профиля «Вычислительные машины, бакалавров направления 09.03.01 комплексы, системы и сети», магистров профиля 09.04.01 Информатика и Распределенные техника, программа: автоматизированные вычислительная системы очной формы обучения / ФГБОУ ВО «Воронежский государственный университет»; сост. А.М. Нужный, Ю.С. Акинина, Н.И. технический Гребенникова. Воронеж: Изд-во ВГТУ, 2020. – 8с.
- 13. Организация самостоятельной работы обучающихся : методические указания для студентов, осваивающих основные образовательные программы – бакалавриата, специалитета, высшего образования магистратуры: В.Н. Почечихина, методические указания / COCT. И.Н. Крючкова, Демидов; Головина, B.P. ФГБОУ ВО «Воронежский государственный технический университет». – Воронеж, 2020. – 14 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное ПО:

- Windows Professional 7 Single Upgrade MVL A Each Academic
- Microsoft Office Word 2007
- Microsoft Office Power Point 2007

Свободно распространяемое ПО:

- Microsoft Visual Studio Community Edition
- Arduino Uploader
- CodeVisionAVR
- AVR Studio

Отечественное ПО:

- Яндекс. Браузер
- Архиватор 7z
- Astra Linux

Ресурс информационно-телекоммуникационной сети «Интернет»:

- Образовательный портал ВГТУ
- http://www.edu.ru/

Информационно-справочные системы:

- http://window.edu.ru
- https://wiki.cchgeu.ru/

Современные профессиональные базы данных:

- https://proglib.io
- https://msdn.microsoft.com/ru-ru/
- https://docs.microsoft.com/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.

Для проведения лабораторных работ необходима специализированная лаборатория - 307 (Лаборатория микропроцессорной техники).

Лаборатория расположена по адресу: 394066, г. Воронеж, Московский проспект, 179 (учебный корпус №3).

Электронные конструкторы Arduino Uno, учебный тренажер MT1804

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Микроконтроллеры» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных	Деятельность студента
Бид у коных	делтельность студента

занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом с оценкой, зачетом с оценкой три дня эффективнее всего использовать для повторения и систематизации материала.

Лист регистрации изменений

	•	Пото	Подпись заведующего
No	Перечень вносимых изменений	Дата внесения	кафедрой,
Π/Π	перечень вносимых изменении	изменений	ответственной за
			реализацию ОПОП
1	Актуализирован раздел 8.1 Перечень	31.08.2020	
	учебной литературы, необходимой для		
	освоения дисциплины.		N11 -
	Актуализирован раздел 8.2 в части состава		A Pre
	используемого лицензионного		146
	программного обеспечения, современных		,
	профессиональных баз данных и		
2	справочных информационных систем. Внесены изменения в части состава	31.08.2021	
	используемого лицензионного	31.06.2021	111
	программного обеспечения, современных		African I and the second
	профессиональных баз данных и		VYO.
	справочных информационных систем,		
	учебной литературы, необходимой для		
	освоения дисциплины.		
	, ,		