МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета_

Тюнин В.Л.

«31» августа 2021 г

РАБОЧАЯ ПРОГРАММ

дисциплины

«Нагрузки и воздействия при строительстве специальных сооружений»

Специальность 08.05.01 Строительство уникальных зданий и сооружений

Специализация <u>Строительство</u> <u>автомагистралей</u>, <u>аэродромов</u> <u>и</u> <u>специальных сооружений</u>

Квалификация выпускника инженер-строитель

Нормативный период обучения <u>6 лет</u>

Форма обучения очная

Год начала подготовки <u>2018</u>

Автор программы

Козлов А.В./

Заведующий кафедрой Проектирования

проектирования автомобильных дорог и

мостов

/Еремин А.В./

Руководитель ОПОП

/Андреев А.В./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

- сформировать представления у студентов о современных расчетных методов в проектировании мостовых сооружений;
- привить студентам основные навыки практического применения инструментария расчетных программных комплексов

1.2. Задачи освоения дисциплины

изучить принципы построения и функционирования программного комплекса MIDAS Civil.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Нагрузки и воздействия при строительстве специальных сооружений» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Нагрузки и воздействия при строительстве специальных сооружений» направлен на формирование следующих компетенций:

УК-6 - Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки и образования в течение всей жизни

Компетенция	Результаты обучения, характеризующие
Компетенции	сформированность компетенции
УК-6	Знать: последовательность выполнения проектной
	документации
	Уметь: вести разработку эскизных, технических и рабочих
	проектов сложных объектов, в том числе с использованием
	систем автоматизированного проектирования
	Владеть: методами поиска необходимых данных в
	существующей нормативной документации

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Нагрузки и воздействия при строительстве специальных сооружений» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная фо	рма	обучения
----------	-----	----------

Daniel vinofinoù poforti	Всего	Семестры
Виды учебной работы	часов	5
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	36	36

Самостоятельная работа	36	36
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Программные комплексы для расчета строительных конструкций основанные на МКЭ	Общие сведения о современных программных комплексах для расчетов МКЭ, описание основных достоинств и недостатков. Сертификация на соответствие нормам РФ. Верификация программных комплексов	6	6	6	18
2	Типы конечных элементов, реализованные в комплексах МКЭ	Классификация конечных элементов и типы. Общие сведения об одноузловых, стержневых, оболочечных и объемных конечных элементов. Конечные элементы для нелинейных расчетов строительных конструкций	6	6	6	18
3	Особенности моделирования балок в комплексах МКЭ	Общие сведения о моделировании балок стержневыми, оболочечными и объемными конечными элементами. Достоинства и недостатки моделирования балок разными типами конечных элементов	6	6	6	18
4	Особенности моделирования плит в комплексах МКЭ	Общие сведения о толстых и тонких плитах в теории расчета МКЭ. Моделирование балок в составе плит МКЭ. Моделирование плит переменной толщины и локальных утолщений в плитах	6	6	6	18
5	Особенности моделирования стоек и свай в комплексах МКЭ	Особенности НДС. Способы моделирования различными типами КЭ. Достоинства и недостатки моделирования различными типами КЭ.	6	6	6	18
6	Особенности статического расчета строительных конструкций	Общие сведения о первой и второй группе предельных состояний в нормах РФ. Задание нагрузок. Комбинации загружений. Статический расчет. Анализ результатов.	6	6	6	18
		Итого	36	36	36	108

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не

предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
УК-6	Знать: последовательность выполнения проектной документации	Активная работа на практических занятиях, отвечает на теоретические вопросы при защите лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок, предусмотренный в
	Уметь: вести разработку эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: методами поиска необходимых данных в существующей нормативной документации	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 5 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
УК-6	Знать: последовательность выполнения проектной документации	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь: вести разработку эскизных, технических и рабочих проектов	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

сложных объе том числе с использовани систем автоматизиро	ем		
проектирован	Р		
Владеть: мето поиска необхо данных в существующе нормативной документации	одимых конкретной пре области й	· · · · · · · · · · · · · · · · · · ·	решения

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. При назначении расчетной ширины железобетонной плиты, входящей в состав сталежелезобетонного сечения главных балок, учитывают:
 - а. Толщину плиты
 - *b. Толщину плиты и длину пролета.*
- с. Толщину плиты, длину пролета и геометрические размеры поперечного сечения пролетного строения.
 - d. Толщину плиты, длину пролета и модуль упругости бетона плиты.
- 2. Максимальное число степеней свободы для стержневых конечных элементов составляет
 - a. 2.
 - b. 6.
 - c. 12.
 - d. 18.
- 3. При составлении матрицы жесткости стержневого конечного элемента не учитывается:
 - а. Граничные условия на концах элемента.
 - b. Узловые силы, приложенные к расчетной схеме.
 - с. Модуль упругости
 - d. Момент инерции сечения
- 4. Каждый коэффициент K_{ij} в матрице жесткости стержневого конечного элемента выражает:
- а. Реакцию в закреплении по направлению і-ой степени свободы на единичное перемещение U_j .
- b. Единичное перемещение U_i от действия узловой силы по направлению j-ой степени свободы.
 - с. Расстояние между координатами Х і-го и ј-го узла расчетной схемы.
 - d. Расстояние между координатами Y i-го и j-го узла расчетной схемы.
- 5. Модель жесткопластической среды не может быть использована при определении:
 - а. Прочности конструкции.
 - b. Перемещений в конструкции.

- 6. В физически нелинейных задачах отсутствует:
- а. Линейная зависимость между напряжениями и деформациями.
- b. Линейная зависимость между деформациями и перемещениям.
- с. Линейная зависимость между геометрическими размерами поперечного сечения элементов и их весом.
 - 7. В геометрически нелинейных задачах отсутствует:
 - а. Линейная зависимость между напряжениями и деформациями.
 - b. Линейная зависимость между деформациями и перемещениям.
- с. Линейная зависимость между геометрическими размерами поперечного сечения элементов и их весом.
- 8. Учет поверхностей и линий влияния усилий, напряжений и перемещений в конструкции следует производить при загружении:
 - а. Постоянной нагрузкой.
 - b. Временной нагрузкой.
 - с. Постоянной и временной нагрузкой.
- 9. Нейтральной линии изгибаемого сталежелезобетонного сечения соответствуют:
 - а. Максимальные растягивающие напряжения.
 - b. Максимальные сжимающие напряжения.
 - с. Линией где напряжения и деформации равны нулю
- 10. Коэффициент пропорциональности для свай, рассчитываемых в составе куста, при учете их взаимодействия по сравнению с одиночной сваей:
 - а. Увеличивается.
 - *b.* Уменьшается.
 - с. Не меняется.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Коэффициент приведения, определяемый в расчетах сталежелезобетонных конструкций следует определять в зависимости от соотношения каких характеристик стальной и бетонной части сечения?
 - а. Модулей упругости.
 - *b.* Площадей
 - с. Расчетных сопротивлений растяжению
 - d. Расчетных сопротивлений сжатию
- 2. Максимальное число степеней свободы для стержневых конечных элементов составляет
 - a. 2.
 - b. 6.
 - c. 12.
 - d. 18.
- 3. Каждый коэффициент K_{ij} в матрице жесткости стержневого конечного элемента выражает:
- а. Реакцию в закреплении по направлению і-ой степени свободы на единичное перемещение U_i .
- b. Единичное перемещение U_i от действия узловой силы по направлению j-ой степени свободы.

- с. Расстояние между координатами Х і-го и ј-го узла расчетной схемы.
- d. Расстояние между координатами Y i-го и j-го узла расчетной схемы.
- 4. Диаграмма Прандтля, используется при описании:
- а. Упругой работы материала.
- b. Пластического течения материала.
- с. Упруго-пластической работы материала.
- d. Жестко-пластической работы материала
- 5. Учет ползучести и усадки бетона при проектировании сталежелезобетонных пролетных строений ведут к изменению НДС:
 - а. Бетонной части сечения.
 - b. Стальной части сечения.
 - с. Бетонной и стальной части сечения.
 - 6. В соответствии с гипотезой плоских сечений:
- а. Сечения, нормальные к продольной оси элемента, остаются плоскими после деформирования элемента.
- b. Перемещения всех точек деформируемого тела параллельны одной и той же плоскости.
- с. Все нагрузки и элементы расчетной схемы должны располагаться в одной плоскости
- 7. Нейтральной линии изгибаемого сталежелезобетонного сечения соответствуют:
 - а. Максимальные растягивающие напряжения.
 - b. Максимальные сжимающие напряжения.
 - с. Линией где напряжения и деформации равны нулю
 - 8. Собственные колебания:
 - а. Прямо пропорциональны ускорению свободного падения.
 - b. Не зависят от ускорения свободного падения.
 - с. Не возникают без возбуждающей силы.
 - d. Находятся в частной собственности и никого не касаются.
- 9. Величина коэффициента постели по боковой поверхности сваи не зависит от:
 - а. Глубины погружения сваи.
 - b. Нагрузок, действующих на сваю.
 - с. Физико-механических характеристик грунтов, окружающих сваю.
- 10. Учет виброползучести в бетоне допускается не учитывать при расчетах:
 - а.Элементов мостов с ненапрягаемой арматурой на выносливость
- b. Элементов мостов с ненапрягаемой арматурой на трещиностойкость
- с. Элементов мостов, производимых по формулам упругого тела, кроме расчетов мостов с ненапрягаемой арматурой на выносливость и на трещиностойкость.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Диаграмма Прандтля, используется при описании:
- а. Упругой работы материала.

- *b.* Пластического течения материала.
- с. Упруго-пластической работы материала.
- d. Жестко-пластической работы материала
- 2. Модель жесткопластической среды не может быть использована при определении:
 - а. Прочности конструкции.
 - b. Перемещений в конструкции.
- 3. Учет ползучести и усадки бетона при проектировании сталежелезобетонных пролетных строений ведут к изменению НДС:
 - а. Бетонной части сечения.
 - b. Стальной части сечения.
 - с. Бетонной и стальной части сечения.
- 4. Учет поверхностей и линий влияния усилий, напряжений и перемещений в конструкции следует производить при загружении:
 - а. Постоянной нагрузкой.
 - b. Временной нагрузкой.
 - с. Постоянной и временной нагрузкой.
 - 5. Первая форма колебаний конструкции характеризуется:
 - а. Более высокой частотой колебаний.
 - b. Более высоким периодом колебаний.
 - с. Постоянной формой.
 - d. Числом Струхаля.
 - 6. Резонанс возникает в случае:
 - а. Любого силового воздействия.
 - b. Циклического воздействия по направлению первой формы колебаний.
- с. Совпадения частоты динамического воздействия с одной из форм собственных колебаний.
- d. Совпадения частот динамического воздействия со всеми формами собственных колебаний.
- 7. Наклонные сваи при размере сечения меньше 40*40 см обязательно применяются:
 - а. Только при достаточном расчетном обосновании
- b. На любых мостовых сооружениях, возводимых на площадках с сейсмичностью больше 9 баллов
 - с. При любой сейсмичности площадки строительства
 - d. При сочетании факторов a и b
- 8. Величина коэффициента постели по боковой поверхности сваи не зависит от:
 - а. Глубины погружения сваи.
 - b. Нагрузок, действующих на сваю.
 - с. Физико-механических характеристик грунтов, окружающих сваю.
- 9. Коэффициент пропорциональности для свай, рассчитываемых в составе куста, при учете их взаимодействия по сравнению с одиночной сваей:
 - а. Увеличивается.
 - *b.* Уменьшается.

- с. Не меняется.
- 10. Учет виброползучести в бетоне допускается не учитывать при расчетах:
 - а.Элементов мостов с ненапрягаемой арматурой на выносливость
- b. Элементов мостов с ненапрягаемой арматурой на трещиностойкость
- с. Элементов мостов, производимых по формулам упругого тела, кроме расчетов мостов с ненапрягаемой арматурой на выносливость и на трещиностойкость.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Что такое расчетная схема?
- 2. Как расчетная модель соотносится с реальной конструкцией?
- 3. В каких случаях целесообразно моделирование пролетного строения стержневой системой со сплошным поперечным сечением?
- 4. Как моделируется упругий отпор грунта?
- 5. Какие действия предшествуют расчету стержневой системы методом конечных элементов?
- 6. Какие неизвестные принимаются при расчете стержневой системы методом конечных элементов?
- 7. Какие неизвестные являются основными для треугольных конечных элементов при расчете пластин, нагруженных в своей плоскости?
- 8. Как формируется матрица жесткости системы?
- 9. Что такое теории прочности?
- 10. Назовите и охарактеризуйте три группы допущений при формировании расчетных схем?
- 11. Дайте определение расчетной модели материалов и грунтов.
- 12. Алгоритм определения собственных форм и частот колебаний.
- 13. Опишите диаграмму Прандтля и объясните ее значение.
- 14. Опишите наиболее известные виды конечных элементов и охарактеризуйте степени свободы их узлов.
- 15. Объясните понятие о тонкой плите и допущения, на которых основывается решение задачи об изгибе тонкой плиты.
- 16. Метод конечных элементов для моделирования работы пластины, нагруженной в своей плоскости. Применение треугольных конечных элементов.
- 17. Метод конечных элементов для моделирования работы изгибаемых пластин. Применение прямоугольных конечных элементов.
- 18. Моделирование работы пластины, нагруженной в своей плоскости, стержневой перекрестной системой
- 19. Понятие моделирования конструкций.
- 20. Классификация расчетных схем.
- 21. Моделирование граничных условий.
- 22. Моделирование постоянных и временных нагрузок

7.2.5 Примерный перечень заданий для решения прикладных задач Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по вопросам, приведенным в перечне. Каждому студенту задается по 3 вопроса.

- 1. «Зачтено» ставится в случае, если студент полностью и развернуто ответил на два вопроса, на третий ответил частично.
- 2. «Незачтено» ставится в случае, если студент полностью не ответил ни на один и вопросов или ответил на них частично.

7.2.7 Паспорт оценочных материалов

	1		
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Программные комплексы для расчета строительных конструкций основанные на МКЭ	УК-6	Тест, контрольная работа.
2	Типы конечных элементов, реализованные в комплексах МКЭ	УК-6	Тест, контрольная работа.
3	Особенности моделирования балок в комплексах МКЭ	УК-6	Тест, контрольная работа.
4	Особенности моделирования плит в комплексах МКЭ	УК-6	Тест, контрольная работа.
5	Особенности моделирования стоек и свай в комплексах МКЭ	УК-6	Тест, контрольная работа.
6	Особенности статического расчета строительных конструкций	УК-6	Тест, контрольная работа.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

1. Цай, Т. Н. Строительные конструкции. Железобетонные конструкции [Электронный ресурс] / Цай Т. Н.,. - 3-е изд., стер. - : Лань, 2012. - 464 с. - Книга из коллекции Лань - Инженерно-технические науки. - ISBN 978-5-8114-1314-0.

URL: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=9468

- 2. Шубин, Игорь Любимович. Основы проектирования зданий и строительных конструкций [Текст] : [учебное пособие]. Москва : Студент, 2016. 361 с. : ил. Библиогр.: с. 356-358 (41 назв.). ISBN 978-5-4363-0064-1 : 1316-66.
- 3. Иванченко, Игорь Иосифович. Динамика транспортных сооружений: высокоскоростные подвижные, сейсмические и ударные нагрузки [Текст] . Москва: Наука, 2011 (М.: ИПП " Тип. "Наука", 2011). 574 с.: ил. Библиогр.: с. 549-574 (488 назв.). ISBN 978-5-02-037488-1: 120-00.
- 4. Проектирование жестких дорожных одежд [Текст] : учебное пособие : допущено УМО РФ / Воронеж. гос. архитектур.-строит. ун-т. Воронеж : [б. и.], 2011 (Воронеж : Отдел оперативной полиграфии изд-ва учеб. лит. и учеб.-метод. пособий ВГАСУ, 2011). 117 с. : ил. ISBN 978-5-89040-367-4 : 28-08.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
- 1. Система «СтройКонсультант» http://www.stroykonsultant.com/ 2. Система «КонсультантПлюс» www.consultant.ru 3. Бесплатная база данных ГОСТ https://docplan.ru/ 4. Российский информационно-аналитический портал eLIBRARY.RU www.elibrary.ru 5. Универсальная реферативная база данных Scopus www.scopus.com 6. Наукометрическая реферативная база данных журналов и конференций Web of Science apps.webofknowledge.com 7. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/ 8. РФФИ (Российский фонд фундаментальных исследований) https://www.rfbr.ru/rffi/ru/books

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- 1. Ноутбук
- 2. Медиапроектор
- 3. Компьютерный класс с лицензионным программным обеспечением

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Нагрузки и воздействия при строительстве специальных сооружений» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета. Занятия проводятся путем решения конкретных задач в

аудитории.

аудитории.				
Вид учебных	Деятельность студента			
занятий				
Лекция	Написание конспекта лекций: кратко, схематично, последовательно			
	фиксировать основные положения, выводы, формулировки,			
	обобщения; помечать важные мысли, выделять ключевые слова,			
	термины. Проверка терминов, понятий с помощью энциклопедий,			
	словарей, справочников с выписыванием толкований в тетрадь.			
	Обозначение вопросов, терминов, материала, которые вызывают			
	трудности, поиск ответов в рекомендуемой литературе. Если			
	самостоятельно не удается разобраться в материале, необходимо			
	сформулировать вопрос и задать преподавателю на лекции или на			
	практическом занятии.			
Практическое	Конспектирование рекомендуемых источников. Работа с конспектом			
занятие	лекций, подготовка ответов к контрольным вопросам, просмотр			
	рекомендуемой литературы. Прослушивание аудио- и видеозаписей			
	по заданной теме, выполнение расчетно-графических заданий,			
C	решение задач по алгоритму.			
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения			
работа	учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:			
	- работа с текстами: учебниками, справочниками, дополнительной			
	литературой, а также проработка конспектов лекций;			
	- выполнение домашних заданий и расчетов;			
	- работа над темами для самостоятельного изучения;			
	- участие в работе студенческих научных конференций, олимпиад;			
	- подготовка к промежуточной аттестации.			
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в			
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не			
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные			
	перед зачетом три дня эффективнее всего использовать для			
	повторения и систематизации материала.			

Лист регистрации изменений

	other perherpagnin i		
№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
S.	прорессионавых бор даниях и опровогиях ин дорогарияних сибет	31.08.2019	Spiren B.M
2.	выбратирирован разреня 2 в гасти состова испот уретого рициприорию проградиниего обеспечено современиях прирессесо, инжит баз рания и справочитя информа- ириориим сывам		Spinner B. M
3.	Julyanufu po fan paggen 8.2 1 aacou coctab weren zyenore nugerzucenoch zyenore numore steenser cotpanierunx paggeccus alquerxx ou paymaris enpatorunx ungganagu elwax cuctar	- 31.08.2021	1 Equine Phs/