МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

инжеу ТВЕРЖДАЮ

Декан факультета

С.А. Ярёменко

«28» мая 2019 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Математическое моделирование в задачах нефтегазовой отрасли»

Направление подготовки 21.04.01 Нефтегазовое дело

Программа Нефтегазовое дело

Квалификация выпускника магистр

Нормативный период обучения 2 года /2 года и 3 мес.

Форма обучения очная / очно-заочная

Год начала подготовки 2019

Авторы программы

профессор

/А.В. Кретинин/

Заведующий кафедрой

Нефтегазового оборудования и

транспортировки

/С.Г. Валюхов/

Руководитель ОПОП

/В.Н. Мелькумов/

Воронеж 2019

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цель дисциплины - формирование компетенций, необходимых для эффективного применения методов математического моделирования объектов и процессов нефтегазовой отрасли, отражающих основные характеристики реальных физических объектов

1.2. Задачи освоения дисциплины:

изучить практические методы и технологии постановки задач математического моделирования, выбора факторов и критериев математической модели, наиболее эффективного типа математических моделей, алгоритмов решения уравнений модели, способов прогнозирования параметров функционирования объектов на основе математического моделирования;

приобрести практические навыки и умения работы со способами декомпозиции алгоритмов математического моделирования, методологией выбора приемлемой дифференциальной модели турбулентности на основе решения совокупности тестовых нефтегазовых задач, имеющих физические аналогии, рассчитывать параметры качества функционирования систем и объектов, обладать навыками сопровождающего математического моделирования для планирования и контроля производственных процессов;

приобрести навыки и умения математического моделирования для обоснования решений технического проектирования, формулировать цели математического моделирования, задавать исходные параметры моделирования, знать функциональные особенности и возможности различных программных продуктов моделирования, уметь использовать программные продукты моделирования в задачах автоматизированного проектирования.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Математическое моделирование в задачах нефтегазовой отрасли» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИС-ЦИПЛИНЕ

Процесс изучения дисциплины «Математическое моделирование в задачах нефтегазовой отрасли» направлен на формирование следующих компетенний:

- УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий
- ОПК-1 Способен решать производственные и (или) исследовательские задачи на основе фундаментальных знаний в нефтегазовой области
- ОПК-2 Способен осуществлять проектирование объектов нефтегазового производства

Компетенция	Результаты обучения, характеризующие
Кишетенция	сформированность компетенции
УК-1	Знать функционал, физические и математические допуще-
	ния использования математических моделей различного
	иерархического уровня для моделирования рабочих про-
	цессов в нефтегазовом оборудовании; структуру и мето-
	дики анализа проблемы использования математического
	моделирования для различных нефтегазовых приложений,
	постановки цели и задач математического моделирования.
	Уметь проводить сравнительный анализ эффективности,
	адекватности и робастности различных методов математи-
	ческого моделирования.
	Владеть методами интерполяции и экстраполяции, прогно-
	зирования результатов математического моделирования на
	основе априорной информации об исследуемом явлении.
ОПК-1	Знать определенный набор методик и средств математиче-
	ского моделирования и оптимизации для формулирования
	и формализации задач поиска наиболее эффективного ва-
	рианта; основные уравнения математических моделей про-
	цессов транспорта нефти и газа и фундаментальные физи-
	ческие законы, из которых они выводятся;
	Уметь проводить математическое моделирования для
	оценки значимости различных факторов на критерии каче-
	ства функционирования технологического оборудования
	для выявления наиболее значимых факторов, которыми
	можно управлять для повышения эффективности;
	Владеть методами планирования физического и вычисли-
	тельного эксперимента, методикой сопровождающего ма-
	тематического моделирования и компьютерными приклад-
	ными программами, реализующими алгоритмы планирова-
	ния, контроля и анализа рабочих процессов.
ОПК-2	Знать структуру жизненного цикла технических устройств
	и систем, этапы использования математического модели-
	рования на различных стадиях жизненного цикла, типовые
	цели и задачи математического моделирования для много-
	факторного анализа и оптимизации;
	Уметь осуществлять сбор исходных данных для формиро-
	вания модели, минимизировать количество опытов в про-
	цессе планируемого физического или вычислительного
	эксперимента для формирования наиболее репрезентатив-
	ной выборки при минимальном количестве исходных дан-
	ных;
	Владеть приемами выбора наиболее приемлемых програм-
	мно-алгоритмических средств моделирования, навыками
	пипо-алгоритмических средств моделирования, навыками

использования средств автоматизированного проектирования с целью идентификации параметров функционирования технических устройств в технологических процессах

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Математическое моделирование в задачах нефтегазовой отрасли» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Duran varafiyağı nafaziya	Всего	Семестры
Виды учебной работы	часов	1
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	36	36
Самостоятельная работа	54	54
Курсовая работа	+	+
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

очно-заочная форма обучения

Рини унобиой работи	Всего	Семестры
Виды учебной работы	часов	1
Аудиторные занятия (всего)	42	42
В том числе:		
Лекции	14	14
Практические занятия (ПЗ)	28	28
Самостоятельная работа	66	66
Курсовая работа	+	+
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	динамики жидкости	Дифференциальные уравнения неразрывности, сохранения количества движения и энергии для вязкой сжимаемой среды. Дискретизация и алгебраизация ДУЧП. Метод конечных разностей. Методы компьютерной динамики жидкости	4	6	8	18

		Итого	18	36	54	108
6	Нейросетевые фактор- ные модели	Нейросетевые суррогатные модели на основе экспериментальных данных рабочих процессов в энергетических системах ГНП	2	6	10	18
5	Основы нейросетевого моделирования	Нейросетевые модели на основе многослойного пер- септрона. Обучение нейросетевой зависимости по ко- эффициентам гидравлического сопротивления трения	2	6	10	18
4	Моделирование сопряженных задач с фазовыми превращениями в программном комплексе ANSYS	Программный комплекс Fluent. Моделирование горения воздушно-метановой смеси. Моделирования испарения и конденсации в термосифоне.	2	6	10	18
3	Моделирование задач гидродинамики и теплообмена в программном комплексе ANSYS	Программный модуль CFX. Моделирование гидродинамических процессов в коллекторном теплообменном аппарате. Моделирование в изотермической постановке и с теплообменом	4	6	8	18
2	Моделирование и автоматизированное проектирование проточной части магистрального нефтяного насоса в программном комплексе ANSYS	СFX. Синтез математической модели гидродинамики в проточной части магистрального нефтяного насоса	4	6	8	18

очно-заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего,
1	Методы компьютерной динамики жидкости	Дифференциальные уравнения неразрывности, сохранения количества движения и энергии для вязкой сжимаемой среды. Дискретизация и алгебраизация ДУЧП. Метод конечных разностей. Методы компьютерной динамики жидкости	4	4	10	18
2	Моделирование и автоматизированное проектирование проточной части магистрального нефтяного насоса в программном комплексе ANSYS	СFX. Синтез математической модели гидродинамики в проточной части магистрального нефтяного насоса	2	4	10	16
3	Моделирование задач гидродинамики и теплообмена в программном комплексе ANSYS	Программный модуль CFX. Моделирование гидродинамических процессов в коллекторном теплообменном аппарате. Моделирование в изотермической постановке и с теплообменом	2	4	10	16
4	Моделирование сопряженных задач с фазовыми превращениями в программном комплексе ANSYS	Программный комплекс Fluent. Моделирование горения воздушно-метановой смеси. Моделирования испарения и конденсации в термосифоне.	2	4	12	18
5	Основы нейросетевого моделирования	Нейросетевые модели на основе многослойного пер- септрона. Обучение нейросетевой зависимости по ко- эффициентам гидравлического сопротивления трения	2	6	12	20
6	Нейросетевые фактор- ные модели	Нейросетевые суррогатные модели на основе экспериментальных данных рабочих процессов в энергетических системах ГНП	2	6	12	20
		Итого	14	28	66	108

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы в 1 семестре для очной формы обучения, в 1 семестре для очно-заочной формы обучения.

Примерная тематика курсовой работы: «Компьютерное моделирование с использованием программного комплекса ANSYS»

Задачи, решаемые при выполнении курсовой работы:

- Численное дифференцирование
- Дискретизация и алгебраизация ДУЧП
- Проектирование проточной части нефтяного насоса в ANSYS CFX
- Моделирование трубчатого теплообменника в ANSYS CFX
- Моделирование горения в ANSYS Fluent
- Аппроксимация с использованием искусственных нейронных сетей
- Оптимизация структуры многослойного персептрона

Курсовая работа включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧ-НОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
УК-1	Знать функционал, физические и матема- тические допущения использования мате- матических моделей различного иерархи- ческого уровня для моделирования рабо- чих процессов в нефтегазовом обору- довании; структуру и методики анализа проблемы использо- вания математиче- ского моделирования	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

		T.	T	
	для различных нефте-			
	газовых приложений,			
	постановки цели и за-			
	дач математического			
	моделирования.	-		
	Уметь проводить	Решение стандартных	Выполнение работ в	Невыполнение работ
	сравнительный ана-	практических задач	срок, предусмотрен-	в срок, предусмот-
	лиз эффективности,		ный в рабочих про-	ренный в рабочих
	адекватности и ро-		граммах	программах
	бастности различных		_	
	методов математиче-			
	ского моделирования.	D	D	II
	Владеть методами ин-	Решение прикладных задач в	Выполнение работ в	Невыполнение работ
	терполяции и экстра-	конкретной предметной обла-	срок, предусмотрен-	в срок, предусмот-
	поляции, прогнозирования результатов ма-	сти	ный в рабочих про-	ренный в рабочих
	тематического моде-		граммах	программах
	лирования на основе			
	априорной информа-			
	ции об исследуемом			
	явлении.			
ОПК-1	Знать определенный	Тест	Выполнение работ в	Невыполнение работ
	набор методик и	[срок, предусмотрен-	в срок, предусмот-
	средств математиче-		ный в рабочих про-	ренный в рабочих
	ского моделирования		граммах	программах
	и оптимизации для		Траммах	программах
	формулирования и			
	формализации задач			
	поиска наиболее эф-			
	фективного варианта;			
	основные уравнения			
	математических моде-			
	лей процессов транс-			
	порта нефти и газа и			
	фундаментальные физические законы, из			
	которых они выво-			
	дятся;			
	Уметь проводить ма-	Решение стандартных	Выполнение работ в	Невыполнение работ
	тематическое модели-	практических задач	срок, предусмотрен-	в срок, предусмот-
	рования для оценки	практических задач		1 1 1
	значимости различ-		ный в рабочих про-	ренный в рабочих
	ных факторов на кри-		граммах	программах
	терии качества функ-			
	ционирования техно-			
	логического оборудо-			
	вания для выявления			
	наиболее значимых			
	факторов, которыми			
	можно управлять для			
	повышения эффек-			
	тивности;	D	D	11
	Владеть методами	Решение прикладных задач в	Выполнение работ в	Невыполнение работ
	планирования физи-	конкретной предметной	срок, предусмотрен-	в срок, предусмот-
	ческого и вычисли- тельного экспери-		ный в рабочих про-	ренный в рабочих
	мента, методикой со-		граммах	программах
	провождающего мате-			
	матического модели-			
	рования и компьютер-			
	ными прикладными			
	программами, реали-			
	зующими алгоритмы			
	планирования, кон-			
	троля и анализа рабо-			
	чих процессов.			

ОПК-2	Знать структуру жизненного цикла технических устройств и систем, этапы использования математического моделирования на различных стадиях жизненного цикла, типовые цели и задачи математического моделирования для многофакторного анализа и оптимизации;		Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь осуществлять сбор исходных данных для формирования модели, минимизировать количество опытов в процессе планируемого физического или вычислительного эксперимента для формирования наиболее репрезентативной выборки при минимальном количестве исходных данных;	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть приемами выбора наиболее приемлемых программию-алгоритмических средств моделирования, навыками использования средств автоматизированного проектирования с целью идентификации параметров функционирования технических устройств в технологических процессах	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 1 семестре для очной формы обучения, 1 семестре для очно-заочной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
УК-1	Знать функционал,	Тест	Выполнение теста на	Выполнение менее
	физические и матема-		70-100%	70%
	тические допущения			
	использования мате-			
	матических моделей			
	различного иерархи-			
	ческого уровня для			
	моделирования рабо-			
	чих процессов в			
	нефтегазовом обору-			
	довании; структуру и			
	методики анализа			
	проблемы использо-			

	1			
	вания математиче-			
	ского моделирования			
	для различных нефте-			
	газовых приложений,			
	постановки цели и за-			
	дач математического			
	моделирования.			
	Уметь проводить	Рашанца стоплорти гу	Продемонстрирова н	Задачи не решены
	сравнительный ана-	Решение стандартных		задачи не решены
	лиз эффективности,	практических задач	верный ход решения	
	адекватности и ро-		в большинстве задач	
	бастности различных			
	методов математиче-			
	ского моделирования.	_	_	
	Владеть методами ин-	Решение прикладных задач в	Продемонстрирова н	Задачи не решены
	терполяции и экстра-	конкретной предметной обла-	верный ход решения	
	поляции, прогнозиро-	сти	в большинстве задач	
	вания результатов ма-			
	тематического моде-			
	лирования на основе			
	априорной информа-			
	ции об исследуемом			
	явлении.			
ОПК-1	Знать определенный	Тест	Выполнение теста на	Выполнение менее
	набор методик и		70-100%	70%
	средств математиче-		/ 0-100%	7070
	ского моделирования			
	и оптимизации для			
	формулирования и			
	формулирования и формализации задач			
	поиска наиболее эф-			
	фективного варианта;			
	основные уравнения			
	математических моде-			
	лей процессов транс-			
	порта нефти и газа и			
	фундаментальные фи-			
	зические законы, из			
	которых они выво-			
	дятся;			
	Уметь проводить ма-	Решение стандартных	Продемонстрирова н	Задачи не решены
	тематическое модели-	практических залач	верный ход решения	-
	рования для оценки		в большинстве задач	
	значимости различ-		в оольшинетве зада т	
	ных факторов на кри-			
	терии качества функ-			
	ционирования техно-			
	логического оборудо-			
	вания для выявления			
	наиболее значимых			
	факторов, которыми			
	можно управлять для			
	повышения эффек-			
	тивности;	D	П	2
	Владеть методами	Решение прикладных задач в	Продемонстрирова н	Задачи не решены
	планирования физи-	конкретной предметной обла-	верный ход решения	
	ческого и вычисли-	сти	в большинстве задач	
	тельного экспери-			
	мента, методикой со-			
	провождающего мате-			
	матического модели-			
	рования и компьютер-			
	ными прикладными			
	программами, реали-			
	зующими алгоритмы			
	планирования, кон-			
	троля и анализа рабо-			
	чих процессов.			
	1 1 1		ı.	

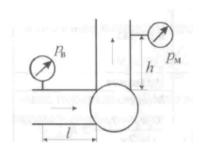
ОПК-2	Знать структуру жиз- ненного цикла техни- ческих устройств и систем, этапы исполь- зования математиче- ского моделирования на различных стадиях жизненного цикла, типовые цели и за- дачи математического моделирования для многофакторного ана- лиза и оптимизации;	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь осуществлять сбор исходных данных для формирования модели, минимизировать количество опытов в процессе планируемого физического или вычислительного эксперимента для формирования наиболее репрезентативной выборки при минимальном количестве исходных данных;	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	Владеть приемами выбора наиболее приемлемых программино-алгоритмических средств моделирования, навыками использования средств автоматизированного проектирования с целью идентификации параметров функционирования технических устройств в технологических процессах	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

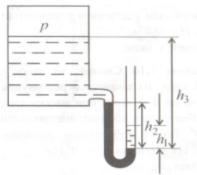
- 1. Уравнение неразрывности выражает:
- закон сохранения энергии;
- закон сохранения массы;
- закон сохранения количества движения.
- 2. Замена частных производных в ДУЧП их конечно-разностными аппроксимациями называется:
 - гармонизацией;
 - симплификацией;
 - дискретизацией.
- 3. В методе маркеров и ячеек при определении поправки давления на каждом итерационном шаге по времени решается:

- уравнение Пуассона;
- уравнение Лапласа;
- уравнение Харлоу и Вэлча.
- 4. Модуль ANSYS Vista CPD применяется:
- для решения уравнений гидродинамики в проточной части насоса;
- для проверки качества расчетной сетки;
- для начального проектирования скелетной геометрии насоса с помощью одномерных расчетов по средней линии.
 - 5. ANSYS BladeModeler служит для:
 - построения геометрии лопаточных аппаратов;
 - моделирования гидродинамики в межлопаточном канале;
 - построения конического диффузора отвода.
- 6. Задание начальных и граничных условий моделирования, их расстановка по границам расчетной области производится в модуле:
 - CFX Post;
 - CFX Pre;
 - CFX Solver.
 - 7. Какая модель не относится к моделированию турбулентности:
 - k-є модель;
 - k-ω модель;
 - VOF модель.
 - 8. Процесс горения является химически равновесным, если:
- изобарно-изотермический потенциал продуктов сгорания принимает минимальное значение;
- состав продуктов сгорания успевает отслеживать изменение давления и температуры;
 - процесс горения осуществляется в адиабатной постановке.
 - 9. Многослойный персептрон это:
 - итоговый отчет по результатам численного моделирования в CFX Post;
 - одна из структур искусственной нейронной сети;
 - фрактальный многочлен с несколькими уровнями детализации границ.
 - 10. Для обучения искусственной нейронной сети может применяться:
 - метод ветвей и границ;
 - метод Шиндлера;
 - метод обратного распространения ошибки.


7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. На стенке закрытого сосуда с жидкостью установлены манометр и вакуумметр. Показания каждого из них 2,45 кПа, а расстояние между ними 0,5 м. Какая из жидкостей находится в резервуаре?
 - а) бензин;
 - б) вода;
 - в) ртуть;
 - д) сжиженный природный газ.
- 2. По вертикальной трубе жидкость течет сверху вниз. Показания манометров, установленных на трубе, возрастают по ходу течения. Оцените величину гидравлического уклона:
 - a) i>1;
 - б) i<1;
 - в) i<0;
 - Γ) i=1.
- 3. Во сколько раз увеличивается удельная кинетическая энергия жидкости при ее переходе в трубу меньшего диаметра, если отношение диаметров труб 3:1? Режим течения жидкости не изменяется.
 - а) в 3 раза;
 - б) в 9 раз;
 - в) в 27 раз;
 - г) в 81 раз.
- 4. Какова плотность смеси двух углеводородных жидкостей, если для нее взято 0,4 л нефти (ρ_H =850 кг/м³) и 0,6 л керосина (ρ_K =800 кг/м³)?
 - а) 1650 кг/м^3 ;
 - б) 825 кг/м^3 ;
 - в) 820 кг/м^3 ;
 - г) 810 кг/м 3 .
- 5. Открытый сосуд, заполненный до уровня h, попеременно поднимается и опускается с ускорением a=g. Что происходит при этом с избыточным давлением у его горизонтального дна?
 - a) p_{μ} =const;
 - б) при подъеме р_и в 2 раза больше, чем при спуске;
 - в) при подъеме р_и в 2 раза меньше, чем при спуске;
 - г) при подъеме p_{u} в 2 раза больше, чем в покое; при спуске p_{u} =0.
- 6. Какое избыточное давление испытывает тело, погруженное в воду на глубину 10 метров?
 - а) $2 \kappa ec / cm^2$; б) 1 бар; в) 1 Ат; г) 700 мм. рт. ст.

- 7. Для подъема воды из колодца с глубины 30 м предложены два способа: 1) Установить насос на поверхности воды в колодце; 2) установить насос на поверхности земли, спустив в колодец всасывающую трубу. Какой из способов пригоден?
 - а) 1; б) 2; г) оба пригодны; д) оба не пригодны.
- 8. При постоянном расходе жидкости в трубопроводе его длину, диаметр и толщину стенок уменьшили в 2 раза. Как это скажется на ударном повышении давления при прямом гидравлическом ударе?
 - а) Останется без изменений;
 - б) увеличится в 2 раза;
 - в) увеличится в 4 раза;
 - г) уменьшится в 2 раза.
- 9. Вода вытекает через насадок из открытого бака, в котором уровень H=1 м. Как изменится расход, если на поверхности жидкости в баке создать избыточное давление $p_u=30$ КПа?
 - а) Расход увеличится в 2 раза;
 - б) расход увеличится в 4 раза;
 - в) для ответа надо знать вид насадка;
 - г) расход не изменится.
- 10. Что происходит с равнодействующей всех сил давления на плоскую стенку небольшого сосуда, заполненного жидкостью, если его закрыть и над свободной поверхностью жидкости в нем создать постепенно возрастающий вакуум?
 - а) Уменьшится;
 - б) увеличится;
 - в) сначала уменьшится, потом увеличится;
 - г) сначала увеличится, потом уменьшится.


7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. К участку трубопровода присоединили лупинг той же длины и диаметра, после чего расход в трубопроводе увеличили в 2 раза. Что произойдет с потерями напора на этом участке по сравнению с начальными?
 - а) Увеличились;
 - б) уменьшились;
 - в) остались прежними;
 - г) зависит от расхода в трубопроводе.
- 2. Как изменятся показания вакуумметра и манометра, если их перенести к сечениям у насоса? Всасывающая линия расположена горизонтально, а нагнетательная вертикально?

- а) Оба показания увеличатся;
- б) оба показания уменьшатся;
- в) показание вакуумметра уменьшится, а манометра увеличится;
- г) показание вакуумметра увеличится, а манометра уменьшится.
- 3. При бурении скважины вскрыт водоносный пласт с напорными водами. Устье скважины оборудовано манометром, который показывает избыточное давление $3,92\cdot10^4$ Па. Определить на какую высоту будет фонтанировать вода, если удельный вес воды 9810~H/m.
 - а) 26 м; б) 0,39 м; в) 0,0003995 м; г) 4 м.
- 4. Определить избыточное давление в забое скважины глубиной h=200 м, которая заполнена глинистым раствором плотностью 1250 кг/ м3. Ускорение g примем равным 10~m/c2.
 - a) 0,6 Па;
 - б) 2,5 МПа;
 - в) 0,004 кПа;
 - г) 250 Па.
- 5. По горизонтальному трубопроводу (l=50 км, d=500 мм) перекачивается нефть (ρ =840 кг/м³, ν =0,5 см²/с) с расходом Q=0,4 м³/с. Эквивалентная шероховатость Δ =0,014 мм. Пренебрегая местными потерями напора, определите потери давления в трубопроводе.
 - a) 160,2 Па;
 - б) 2,3 МПа;
 - в) 13 кПа;
 - г) 4,62 МПа.
- 6. Как изменятся потери напора на участке трубопровода (l_1 =1 км, d_1 =100 мм) перекачивается нефть (ρ =860 кг/м³, v=0,5 см²/с) с расходом Q=8 дм³/с, эквивалентная шероховатость Δ =0,014 мм, если к нему подключить лупинг такой же длины и диаметра?
 - а) уменьшатся в 2 раза;
 - б) останутся прежними;
 - в) уменьшатся в 3,36 раз;
 - г) увеличатся в 1,28 раз.

7. В закрытом сосуде хранится жидкость плотностью ρ =850 кг/м³. Давление в сосуде измеряется ртутным манометром; в открытом конце манометрической трубки над ртутью имеется столб воды высотой h_1 =15 см. Высоты h_2 =23 см, h_3 =35 см. Найти абсолютное давление на поверхности жидкости в сосуде p, если барометрическое давление равно 742 мм рт.ст. Плотность ртути ρ_p =13600 кг/м³

- a) $p=170 \text{ }\Pi \text{a};$
- б) p=1,7 кПа;
- в) p=68600 Па;
- г) p=1,10 МПа
- 8. По горизонтальному трубопроводу (l=200 км, d=205 мм) перекачивается нефть (ρ =824 кг/м³, ν =0,05 см²/с) с расходом Q=40 дм³/с. Эквивалентная шероховатость Δ =0,014 мм. Суммарная эквивалентная длина местных сопротивлений $l_{\text{экв}}$ =0,02l. Определить необходимое число насосов на трассе, если каждый насос способен создать напор $H_{\text{нас}}$ =360 м, а давление на входе в насосы и на выходе из трубопровода $p_{\text{и}}$ =485 кПа.
 - a) n=3;
 - б) *n*=4;
 - в) n=5;
 - г) *n*=6.
- 9. По трубопроводу диаметром d=100 мм транспортируется нефть. Определить критическую скорость, соответствующую переходу ламинарного движения жидкости в турбулентное. Коэффициент кинематической вязкости принят равным $\nu = 8,1\cdot 10^{-6}$ м $^2/c$.
 - a) 15,6 m/c;
 - б) 1,34 м/с;
 - в) 0,156 м/c
 - Γ) 0,186 м/с.
- 10. Цистерна диаметром d=3 м и длиной l=6 м заполнена нефтью плотностью 850 кг/м³. Определить массу нефти в цистерне.
 - a) 12 т;
 - б) 36 т;
 - в) 38 т;
 - г) 120 т.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Дифференциальные уравнения неразрывности, сохранения количества движения и энергии для вязкой сжимаемой среды.
 - 2. Дискретизация и алгебраизация ДУЧП. Метод конечных разностей.
 - 3. Метод маркеров и ячеек решения уравнений Навье-Стокса.
 - 4. Функционал программного модуля ANSYS CFX.
 - 5. Функционал программного модуля ANSYS Fluent.
- 6. Синтез математической модели гидродинамики в проточной части магистрального нефтяного насоса.
- 7. Моделирование гидродинамических процессов в коллекторном тепло-обменном аппарате.
- 8. Моделирование сопряженных задач гидродинамики и теплообмена в модуле ANSYS CFX.
- 9. Моделирование горения воздушно-метановой смеси в модуле ANSYS Fluent.
 - 10. Нейросетевые модели на основе многослойного персептрона.
- 11. Обучение нейросетевой зависимости в программном комплексе Statistica Neural Networks
 - 12. Технология Response Surface Optimization.
- 13. Построение моделей по типу "поверхностей отклика" на основе экспериментальных данных
 - 14. Моделирование турбулентности в программном комплексе ANSYS.
- 15. Моделирование многофазных течений в программном комплексе AN-SYS.
- 16. Моделирование естественной конвекции в программном комплексе ANSYS.
 - 17. Моделирование кавитации в центробежном насосе.
 - 18. Метод обратного распространения ошибки.
 - 19. Методы оптимизации структуры персептронов.
 - 20. Уравнения состояния при моделировании движения сжимаемых сред.
 - **7.2.5** Примерный перечень заданий для решения прикладных задач Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет может проводиться по итогам текущей успеваемости и сдачи типовых задач и (или) путем организации специального опроса, проводимого в устной и (или) письменной форме с учетом результатов тестирования.

Во время проведения зачета обучающиеся могут пользоваться программой дисциплины, а также вычислительной техникой

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы)	Код контролируемой	Наименование оценочного
J 12 11/11	дисциплины	компетенции	средства
1	Методы компьютерной динамики жидкости	УК-1, ОПК-1, ОПК - 2	Тест, контрольная работа, требования к курсовой работе
2	Моделирование и автоматизированное проектирование проточной части магистрального нефтяного насоса в программном комплексе ANSYS	УК-1, ОПК-1, ОПК - 2	Тест, контрольная работа, требования к курсовой работе
3	Моделирование задач гидродина- мики и теплообмена в программном комплексе ANSYS		Тест, контрольная работа, требования к курсовой работе
4	Моделирование сопряженных задач с фазовыми превращениями в программном комплексе ANSYS	УК-1, ОПК-1, ОПК - 2	Тест, контрольная работа, требования к курсовой работе
5	Основы нейросетевого моделирования	УК-1, ОПК-1, ОПК - 2	Тест, контрольная работа, требования к курсовой работе
6	Нейросетевые факторные модели	УК-1, ОПК-1, ОПК - 2	Тест, контрольная работа, требования к курсовой работе

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Тарасик В.П. Математическое моделирование технических систем [Электронный ресурс]: учебник / В.П. Тарасик. Электрон. дан. Минск : Новое знание, 2013. 584 с. Режим доступа: https://e.lanbook.com/book/4324.
- 2. Математическое моделирование в машиностроении: учеб. пособие / В.И. Ряжских, А.П. Бырдин., Т.И. Костина, А.А. Сидоренко. Воронеж, ФГБОУ ВПО «ВГТУ», 2015. 182 с.
- 3. Булыгин Ю.А. Математическое моделирование гидродинамических процессов в элементах проточной части нефтяного оборудования: учебное пособие / Ю.А. Булыгин, С.Г. Валюхов, Н.В. Заварзин, А.В. Кретинин. Воронеж: ФГБОУ ВПО "Воронежский государственный технический университет", 2013. 219 с.
- 4. А.Г. Суслов Наукоемкие технологии в машиностроении [Электронный ресурс]: учебное пособие / А.Г. Суслов, Б.М. Базров, В.Ф. Безъязычный, Ю.С. Авраамов. Электрон. дан. Москва : Машиностроение, 2012. 528 с. Режим доступа: https://e.lanbook.com/book/5795
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное программное обеспечение: Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic (многопользовательская лицензия), Microsoft Office Word 2013/2007, Microsoft Office Excel 2013/2007, Microsoft Office Power Point 2013/2007, ABBYY FineReader 9.0, ПО ANSYS

Свободное программное обеспечение: Adobe Acrobat Reader, PDF24 Creator, 7zip, LibreOffice, Google Chrome, ANSYS Student

Ресурсы информационно-коммуникационной сети «Интернет»: Образовательный портал ВГТУ (https://old.education.cchgeu.ru); официальный сайт ВГТУ (https://cchgeu.ru), ANSYS в России и СНГ/САЕ Expert (https://caeexpert.ru), Сайт ANSYS (https://www.ansys.com), Сайт компании «КАДФЕМ Си-Ай-Эс» (https://www.cadfem-cis.ru)

Информационные справочные системы: Справочная система ВГТУ – https://wiki.cchgeu.ru); Единое окно доступа к информационным ресурсам (http://window.edu.ru); Электронно-библиотечная система IPRbooks (https://iprbooks.ru); Электронная библиотека диссертаций Российской государственной библиотеки (http://diss.rsl.ru); Электронно-библиотечная система «Лань» (https://e.lanbook.com); Научная электронная библиотека

(http://elibrary.ru/); Журнал «Математическое моделирование» на Общероссийском математическом портале http://www.mathnet.ru/php/journal.phtml?jrnid=mm&wshow=details&option_lang=rus

Современные профессиональные базы данных: Нефтегаз.ру (https://neftegaz.ru/); Мир математических уравнений EqWorld (http://eqworld.ipmnet.ru/indexr.htm)

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой

Проектно-конструкторский центр по договору между ОАО Турбонасос и ФГБОУ ВПО ВГТУ №132/316-13 от 29 ноября 2013 года на создание и обеспечение деятельности базовой кафедры нефтегазового оборудования и транспортировки (базовой кафедры) созданной при базовой организации (компьютеры — 15 шт, МФУ А0))

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Математическое моделирование в задачах нефтегазовой отрасли» читаются лекции, проводятся практические занятия, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета элементов конструкций нефтегазового оборудования. Занятия проводятся путем решения конкретных задач в аудитории.

Методика выполнения курсовой работы изложена в учебно-методическом пособии. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой работы, защитой курсовой работы.

Вид учебных занятий	Деятельность студента		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фик- сировать основные положения, выводы, формулировки, обобщения; по- мечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуе- мой литературе. Если самостоятельно не удается разобраться в матери- але, необходимо сформулировать вопрос и задать преподавателю на лек- ции или на практическом занятии.		

Практическое занятие Самостоятельная работа	учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной лите-		
	ратурой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.		
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом три дня эффективнее всего использовать для повторения и систематизации материала.		

Лист регистрации изменений

			Подпись
No		Дата	заведующего
п/п	Перечень вносимых изменений	внесения	кафедрой,
11/11		изменений	ответственной за
			реализацию ОПОП
1	Актуализирован раздел 8.2 в	31.08.2020	
	части состава используемого		4
	лицензионного программного		
	обеспечения, современных		Lynn
	профессиональных баз данных и		1
	справочных информационных		
	систем		