Аннотация дисциплины

«Математика»

1. Цели дисциплины: развитие логического и алгоритмического мышления, выработка умения самостоятельно расширять и углублять математические знания; освоение необходимого математического аппарата, помогающего анализировать, моделировать и решать прикладные задачи; формирование у студента начального уровня математической культуры, достаточного для продолжения образования, научной работы или практической деятельности, методологических основ для формирования целостного научного мировоззрения, отвечающего современному уровню развития человеческой цивилизации.

2. Задачи освоения дисциплины:

- Выработка ясного понимания необходимости математического образования в подготовке бакалавра и представления о роли и месте математики в современной системе знаний и мировой культуре;
- Ознакомление с системой понятий, используемых для описания важнейших математических моделей и математических методов, и их взаимосвязью:
- Формирование конкретных практических приемов и навыков постановки и решения математических задач, ориентированных на практическое применение при изучении дисциплин профессионального цикла;
- Овладение основными математическими методами, необходимыми для анализа процессов и явлений при поиске оптимальных решений, обработки и анализа результатов экспериментов.
- Изучение основных математических методов применительно к решению научно-технических задач.

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина «<u>математика</u>» относится к <u>базовой</u> части учебного плана.

Студент, приступая к изучению дисциплины должен обладать знаниями, умениями и навыками в области основных элементарных функций, их свойств и графиков, уметь выполнять алгебраические и тригонометрические преобразования, решать алгебраические и тригонометрические уравнения и неравенства, знать свойства плоских геометрических фигур (треугольник, четырехугольники, круг), пространственных фигур (призма, пирамида, цилиндр, конус, шар), уметь вычислять площади плоских фигур, объемы и площади поверхностей пространственных фигур.

Дисциплина Математика является предшествующей для таких дисциплин как: Информатика, Физика, Теоретическая механика, Техническая механика, Сопротивление материалов и др.

4. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИС-ЦИПЛИНЕ (МОДУЛЮ)

Процесс изучения дисциплины «<u>математика</u>» направлен на формирование следующих компетенций:

- способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и математического (компьютерного) моделирования, теоретического и экспериментального исследования (ОПК-1);
- способность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь их для решения соответствующий физико-математический аппарат (ОПК-2).

В результате изучения дисциплины обучающийся должен:

знать:

• фундаментальные основы высшей математики, включая алгебру, геометрию, математический анализ, теорию вероятностей и основы математической статистики;

уметь:

• самостоятельно использовать математический аппарат, содержащийся в литературе по строительным наукам, расширять свои математические познания;

владеть:

• первичными навыками и основными методами решения математических задач из общеинженерных и специальных дисциплин профилизации.

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

_		,
No	Наименование раздела	Содержание раздела
п/п	дисциплины	
1.	Векторная и линейная	Определители второго и третьего порядков и их свойства.
	алгебра	Миноры и алгебраические дополнения. Вычисление опре-
		делителей третьего порядка разложением по строке
		(столбцу). Понятие об определителе <i>n</i> -го порядка. Матри-
		цы и действия над ними. Решение системы алгебраических
		линейных уравнений методом Гаусса и по формулам Кра-
		мера. Линейные операции над векторами и их свойства.
		Разложение вектора по базису. Векторы в прямоугольной
		системе координат. Скалярное векторное и смешанное
		произведения векторов; их определения, основные свойст-
		ва, способы вычисления и применения к решению физиче-
		ских и геометрических задач.
2	Аналитическая геомет-	Прямая на плоскости (различные виды уравнений прямой).
	рия	Взаимное расположение 2-х прямых. Плоскость и прямая в
		пространстве, их уравнения и взаимное расположение.
		Кривые и поверхности 2-го порядка; их канонические

		уравнения и построение. Полярная система координат.
3	Введение в математический анализ	Функция одной переменной. Предел функции. Теоремы о пределах. Бесконечно малые и бесконечно большие функции. Сравнение бесконечно малых. Признаки существования пределов. Приращение функции. Непрерывность функции в точке и на отрезке. Точки разрыва, их классификация.
4.	Дифференциальное исчисление функций одной переменной	Производная функции, ее геометрический и механический смыслы. Правила дифференцирования. Дифференциал функции, его геометрический смысл. Основные теоремы дифференциального исчисления (Ролля, Коши, Лагранжа) и их геометрическая иллюстрация. Правило Лопиталя. Возрастание и убывание функции на отрезке. Экстремум, наибольшее и наименьшее значение функции одной переменной на отрезке. Выпуклость, точки перегиба графика функции. Асимптоты. Общая схема исследования функции одной переменной.
5.	Дифференциальное исчисление функций нескольких переменных	Функция нескольких переменных, область определения. Частные приращения и полное приращение функции двух переменных. Частные производные и их вычисление. Повторное дифференцирование функции двух переменных. Частные дифференциалы и полный дифференциал функции двух переменных. Касательная плоскость и нормаль к поверхности (определение, уравнения). Экстремум функции двух переменных. Производная по направлению и градиент функции нескольких переменных (определения, вычисление).
6.	Интегральное исчисление функций одной и нескольких переменных	Первообразная. Неопределенный интеграл. Методы интегрирования. Задача о площади криволинейной трапеции, приводящая к понятию определенного интеграла по отрезку. Определенный интеграл по отрезку (определение, основные свойства, вычисление, формула Ньютона-Лейбница) и его приложения. Несобственные интегралы I и II рода. Двойной интеграл и его приложения. Криволинейные интегралы I и II рода. Их вычисление и приложение.
7.	Обыкновенные дифференциальные уравнения	Задачи, приводящие к дифференциальным уравнениям. Определение дифференциального уравнения, его порядка и решения. Задача Коши и теорема Коши для уравнений 1-го порядка. Общее и частное решения. Основные типы дифференциальных уравнений 1 -го порядка. Дифференциальные уравнения высших порядков. Дифференциальные уравнения второго порядка. Задача Коши. Общее и частное решения. Дифференциальные уравнения второго порядка, допускающие понижение порядка. Линейные дифференциальные уравнения 2-го порядка. Теоремы о структуре общего решения линейного однородного и линейного неоднородного уравнений 2-го порядка. Фундаментальная система решений линейного однородного дифференциального уравнения. Методы решения линейных однородных и неоднородных дифференциальных уравнений с постоянными коэффициентами.

8.	Теория	вероятностей	И
	основы	математическо	ой
	статисть	тки	

Случайные события. Алгебра событий. Относительная частота. Классическое, геометрическое, статистическое определения вероятности. Основные теоремы теории вероятностей. Формула полной вероятности. Схема Бернулли. Дискретные и непрерывные случайные величины. Функция распределения, плотность вероятности и числовые характеристики. Законы распределения дискретных и непрерывных случайных величин (биномиальное, равномерное, нормальное распределения). Генеральная совокупность и выборка. Полигон частот, гистограмма. Эмпирическая функция распределения. Выборочные числовые характеристики. Точечные и интервальные оценки параметров распределения.