МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета энергетики и систем управления

Бурковский А.В.

«31» августа 2018 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Цифровая обработка данных и управляющие ЭВМ»

Направление подготовки 27.03.04 "Управление в технических системах"

Профиль Управление и информатика в технических системах"

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения ___очная

Год начала подготовки 2018

Автор программы

Заведующий кафедрой Электропривода, автоматики и управления в технических си-

стемах

/М.И. Герасимов /

/ В.Л. Бурковский /

Руководитель ОПОП

/ К.Ю. Гусев /

Воронеж 2018

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Формирование у обучающихся готовности к участию в работах по изготовлению, отладке и сдаче в эксплуатацию систем и средств автоматизации и управления; способность настраивать управляющие средства и комплексы и осуществлять их регламентное эксплуатационное обслуживание с использованием соответствующих инструментальных средств; готовность производить инсталляцию и настройку системного, прикладного и инструментального программного обеспечения систем автоматизации и управления; способность разрабатывать инструкции по эксплуатации используемого технического оборудования и программного обеспечения для обслуживающего персонала.

1.2. Задачи освоения дисциплины:

- усвоение функционально-структурного подхода к синтезу систем на базе управляющих ЭВМ;
- изучение функционального состава, характеристик и способов применения современных микропроцессорных изделий и узлов;
- изучение методов анализа и выбора соответствующего схемотехнического исполнения системы управления;
- приобретение навыков разработки функциональных и принципиальных схем средств и систем управления;
- освоение средств моделирования и макетирования микропроцессорных узлов вычислительной техники, приобретение навыков настройки и отладки макетов, применения контрольно-измерительной аппаратуры для определения характеристик и параметров макетов;
- выработка навыков наладки аппаратной части систем управления и отладки программного обеспечения микропроцессорных средств управления сложных технических систем.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Цифровая обработка данных и управляющие ЭВМ» относится к дисциплинам вариативной части (дисциплина по выбору) блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Цифровая обработка данных и управляющие ЭВМ» направлен на формирование следующих компетенций.

 Π КД-1 — готовность к разработке и испытаниям программно-аппаратных управляющих комплексов.

ПКД-2 – способность участвовать в настройке и проверке комплексов автоматизации и управления.

ПКД-3 – способность настраивать управляющие средства и комплексы с использованием соответствующих инструментальных и вычислительных средств.

ПКД-4 – готовность осуществлять проверку технического состояния оборудования и его аттестацию.

ПКД-5 – готовность производить установку и настройку программного и метрологического обеспечения систем автоматизации и управления.

ПКД-6 – способность разрабатывать инструкции по настройке и проведению испытаний технического оборудования и программного обеспечения.

Компе-	Результаты обучения, характеризующие сформированность компетенции		
тенция			
ПКД-1	Знает: принципы структурного построения программно-аппаратных управляющих		
' '	комплексов, требования к параметрам.		
	Умеет: выбирать средства автоматики, измерительной и вычислительной техники		
	для связи со стандартными системами автоматизации и управления; обоснованно		
	выбирать средства ввода-вывода данных различного вида для систем автоматиза-		
	ции и управления; экспериментально определять параметры устройств.		
	Владеет: методами выбора и синтеза узлов ввода-вывода данных различного вида		
	для систем автоматизации и управления; процедурами испытаний программно-		
	аппаратных комплексов автоматизации и управления.		
ПКД-2	Умеет: выполнять операции по настройке и проверке комплексов автоматизации и		
	управления, экспериментально определять параметры устройств.		
ПКД-3	Умеет: использовать соответствующие инструментальные и вычислительные		
	средства для настройки управляющих средств и комплексов		
ПКД-4	Знает: требования к параметрам программно-аппаратных управляющих комплек-		
	сов, методы аттестации управляющих средств и комплексов.		
	Умеет: выбирать средства обоснованно выбирать средства ввода-вывода данных		
	различного вида для систем автоматизации и управления; экспериментально опре-		
	делять параметры устройств.		
	Владеет: методами испытаний и аттестации программно-аппаратных комплексов		
	автоматизации и управления.		
ПКД-5	Умеет: выбирать средства программного управления и метрологического обеспе-		
	чения систем автоматизации и управления		
	Владеет: методами установки и настройки программного и метрологического		
	обеспечения систем автоматизации и управления.		
ПКД-6	Знает: технологии настройки и проведения испытаний технического оборудова-		
	ния и программного обеспечения.		
	Умеет: разрабатывать инструкции по настройке и проведению испытаний техни-		
	ческого оборудования и программного обеспечения.		

4. ОБЪЕМ ДИСЦИПЛИНЫ Общая трудоемкость дисциплины «Цифровая обработка данных и управляющие ЭВМ» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий

Виды учебной работы	Всего часов семестр 8
Аудиторные занятия (всего)	56
В том числе:	
Лекции	24
Практические занятия (ПЗ)	12
Лабораторные работы (ЛР)	20
Самостоятельная работа	52
Курсовой проект	+
Виды промежуточной аттестации - зачет	+
Общая трудоемкость	
академические часы	108
3.e.	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

№ п./п	Наименование темы	Содержание раздела	Лек- ции	Практические занятия	Лабораторные работы	CPC	Всего часов
1	Введение. Архитектура управляющих ЭВМ.	Методические вопросы изучения дисциплины. Значение, цели и задачи курса. Архитектура микропроцессорных устройств управления. Основные понятия и определения.	2	-	_		2
2	Основные семейства 8- разрядных микроконтрол- леров и их свойства	Микроконтроллеры семейства AVR фирмы Atmel и их развитие. Блоки и устройства AVR, соответствующие регистры. Микроконтроллеры семейства РІС фирмы Microchip и их развитие.	8	4	12	16	40
	Интерфейсы удаленных устройств	Интерфейсы RS-232C, RS-485, I ² C, SPI, CAN и др. «Токовая петля». Схемные решения приемопередатчиков. Преобразование кодов в последовательных интерфейсах.	6	4	_	16	26
	Функциональная организа- ция вычислительных и управляющих процессов. Средства программирования систем управления	Структура программ- ного обеспечения микропроцессорной системы управления. Управление памятью, файлами, вводом- выводом в вычисли- тельных и управляю- щих системах. Среды программирования. Разработка и отладка программ микро- контроллеров.	8	4	8	20	40
	Итого		24	12	20	52	108

5.2 Перечень лабораторных работ

- 1. Формирование алгоритмов управления микроконтроллерной системой
- 2. Формирование алгоритмов управления в реальном времени

- 3. Использование памяти в алгоритмах управления МК
- 4. Программирование МК-системы управления шаговым приводом на языке Ассемблер
- 5. Цифровая обработка данных в микроконтроллерах AVR от модуля аналогового ввода.
- 6. Управление микроконтроллером на языке СИ.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

6.1. Курсовой проект

Двухуровневое микропроцессорное устройство управления на базе микроконтроллеров.

6.2. Контрольные работы

- 1. Архитектура управляющих микроЭВМ.
- 2. Оценка умения разрабатывать аппаратные и программные средства ввода-вывода и цифрового преобразования информации.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризую- щие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПКД-1	Знает: принципы структурного построения программно- аппаратных управляющих ком- плексов, требования к параметрам.	ципов структурного построения интер-	Выполнение КР1 в срок, предусмотренный в рабочих программах	Невыполнение КР1 в срок, предусмотренный в рабочих программах
	Умеет: выбирать средства автоматики, измерительной и вычислительной техники для связи со стандартными системами автоматизации и управления; обоснованно выбирать средства вводавывода данных различного вида для систем автоматизации и управления; экспериментально	_	Выполнение 1-го раздела КП в срок, предусмотренный в рабочих программах	Невыполнение 1-го раздела КП в срок, предусмотренный в рабочих программах

Компе- тенция	Результаты обучения, характеризую- щие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
	определять параметры устройств. Владеет: методами выбора и синтеза узлов ввода-вывода данных различного вида для систем автоматизации и управления; процедурами испытаний программноаппаратных комплексов автоматизации и управления.	Использование на практике изученных методов анализа, выбора и синтеза узлов ввода-вывода данных различного вида для систем автоматизации и управления; методов составления аналитических обзоров и подготовки публикаций по результатам исследований и разработок	Выполнение 1-го раздела КП в срок, предусмотренный в рабочих программах	Невыполнение 1-го раздела КП в срок, предусмотренный в рабочих программах
ПКД-2	Умеет: выполнять операции по настройке и проверке комплексов автоматизации и управления, экспериментально определять параметры устройств.	Степень самостоятель- ности при выполнении операции по настройке и проверке комплексов автоматизации и управления.	Выполнение лабораторных работ в срок, предусмотренный в рабочих программах	Невыполнение ла- бораторных работ в срок, предусмот- ренный в рабочих программах
ПКД-3	Умеет: использовать соответствующие инструментальные и вычислительные средства для настройки управляющих средств и комплексов	Степень самостоятельности при выборе и использовании соответствующие инструментальные и вычислительные средства для настройки управляющих средств	Выполнение лабораторных работ в срок, предусмотренный в рабочих программах	Невыполнение ла- бораторных работ в срок, предусмот- ренный в рабочих программах
ПКД-4	Знает: требования к параметрам программно-аппаратных управляющих комплексов, методы аттестации управляющих средств и комплексов.	Полнота знания принципов схемотехнического построения преобразователей статических и динамических параметров электрических сигналов, методов анализа, выбора и синтеза узлов вводавывода данных различного вида для систем автоматизации и управления	Выполнение 1-го раздела КП в срок, предусмотренный в рабочих программах	Невыполнение 1-го раздела КП в срок, предусмотренный в рабочих программах
	Умеет: выбирать средства обоснованно выбирать средства вводавывода данных различного вида для систем автоматизации и управления; экспериментально определять параметры устройств.	Степень самостоятельности при выборе отдельных блоков и устройств систем автоматизации и управления; при составлении аналитических обзоров и научно-технических отчетов по результатам выполненной работы	Выполнение 1-го раздела КП в срок, предусмотренный в рабочих программах	Невыполнение 1-го раздела КП в срок, предусмотренный в рабочих программах
	Владеет: методами испытаний и аттестации программно-аппаратных комплексов автоматизации и управления.	Использование на практике изученных методов анализа, выбора и синтеза запоминающих устройств с заданными свойствами и параметрами.; методов составления аналитических обзоров и	Выполнение лабораторных работ в срок, предусмотренный в рабочих программах	Невыполнение ла- бораторных работ в срок, предусмот- ренный в рабочих программах

Компе- тенция	Результаты обучения, характеризую- щие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
		подготовки публика- ций по результатам исследований и разра- боток		
ПКД-5	Умеет: выбирать средства программного управления и метрологического обеспечения систем автоматизации и управления	Степень самостоятельности при выборе средств программного управления и метрологического обеспечения систем	Выполнение КП в срок, предусмотренный в рабочих программах	Невыполнение КП в срок, предусмотренный в рабочих программах
	Владеет: методами установки и настройки программного и метрологического обеспечения систем автоматизации и управления.	Использование на практике изученных методов установки и настройки программного и метрологического обеспечения систем управления.	Выполнение лабораторных работ в срок, предусмотренный в рабочих программах	Невыполнение ла- бораторных работ в срок, предусмот- ренный в рабочих программах
ПКД-6	Знает: технологии настройки и проведения испытаний технического оборудования и программного обеспечения.	Полнота знания техно- логии настройки и про- ведения испытаний технического оборудо- вания и программного обеспечения.	Выполнение лабораторных работ в срок, предусмотренный в рабочих программах	Невыполнение ла- бораторных работ в срок, предусмот- ренный в рабочих программах
	Умеет: разрабатывать инструкции по настройке и проведению испытаний технического оборудования и программного обеспечения.	Использование на практике изученных методов проведения испытаний технического оборудования и ПО.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение ра- бот в срок, преду- смотренный в рабо- чих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 8 семестре по двухуровневой системе: «зачтено» – «незачтено»

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

Задание 1

Отметьте правильный ответ.

Устройства управления на основе УЭВМ обязательно должны иметь:

интеллект, сравнимый с человеческим;

адаптивные возможности в условиях неполностью детерминированной среды;

программируемость действий;

ничего из перечисленного.

Задание 2

Отметьте правильный ответ.

Понятие архитектуры устройств управления на основе УЭВМ соответствует совокупности принципов их организации и характеристик, приведенных:

в полном объеме;

в объеме, необходимом для оценки функциональных возможностей и выбора варианта;

в объеме, необходимом для эксплуатации системы; в объеме, необходимом для первичного ознакомления.

Задание 3

Отметьте правильный ответ.

Устройством выработки управляющих воздействий НЕ может быть:

совокупность логических микросхем;

аналого-цифровой преобразователь:

БИС с программируемой структурой;

- микропроцессор.

Задание 4

Отметьте правильный ответ.

Задачей управляющей вычислительной машины является:

- 1) управление и выдача управляющих воздействий;
- 2) изменение параметров;
- 3) защита технологического процесса;
- 4) регулирование одного параметра;
- 5) замыкание цепи воздействия.

Задание 5

Отметьте правильный ответ.

Согласованное управление – это:

- 1) одинаковое изменение одного параметра;
- 2) разное изменение параметров;
- 3) изменение только на одном объекте;
- 4) рассогласование параметров.

Задание 6

Отметьте правильный ответ.

Системы интеллектуального управления организуются по трем основным принципам (укажите лишний):

- с использованием перепрограммируемой памяти;
- с использованием ассоциативной памяти:
- с использованием нейронных систем;
- с использованием экспертных систем.

Задание 7

Отметьте правильный ответ.

В некоторых устройствах управления адресное пространство разделяют по назначению на (укажите лишний):

пространство задач:

пространство памяти;

пространство устройств ввода-вывода;

пространство конфигурации.

Задание 8

Отметьте правильный ответ.

Варианты системы связи между вычислительными модулями в системе группового управления (укажите лишний):

радиальная:

```
через общий АЦП: через общую шину: через общее запоминающее устройство.
```

Задание 9

Отметьте правильный ответ.

Основные требования к приемникам сигналов с линий параллельной шины, входящим в состав интерфейсного блока (укажите лишнее):

```
малые входные токи;
три состояния выхода:
высокое быстродействие:
гистерезис характеристики «вход-выход».
```

Задание 10

Отметьте правильный ответ.

Магистраль интерфейса I^2C использует для связи между приборами:

две линии;

три линии.

четыре липни:

восемь линий.

Задание 11

Отметьте правильный ответ.

Согласно какому протоколу все узлы локальной сети принимают все сообщения и участвуют в проверке сообщения на наличие ошибок:

 I^2C

CAN;

USB:

LIN.

Задание 12

Отметьте правильный ответ.

Сторожевой таймер выполняет функцию:

отсчета реального времени:

отсчета времени до наступления события;

контроля периодичности обращения процессора:

счета числа сбоев.

Задание 13

Отметьте правильный ответ.

Принцип устройства оперативной памяти НЕ может быть:

стохастическим;

динамическим;

статическим;

иерархическим.

Задание 14

Отметьте правильный ответ.

Регистр данных может отсутствовать в структуре интерфейсных модулей, предназначенных:

```
для вывода дискретных данных;
для ввода дискретных данных;
для вывода аналоговых данных;
для ввода аналоговых данных.
```

Задание 15

Отметьте правильный ответ.

В СУ на основе УЭВМ применяются АЦП следующей архитектуры:

только последовательною приближения:

только с параллельным преобразованием:

только с сигма-дельта преобразованием;

все перечисленные.

Задание 16

Отметьте правильный ответ.

По физическому состоянию аналоговая информация, которая выводится из СУ роботом, может быть (укажите НЕиспользуемый вариант):

медленно меняющимся током;

медленно меняющимся напряжением;

+ : синусоидой с медленно меняющейся фазой;

импульсами с медленно меняющейся скважностью.

Задание 17

Отметьте правильный ответ.

Набор рабочих регистров микроконтроллера включает (укажите неправильный ответ):

```
регистры состояния;
```

регистры переполнения;

регистры управления;

регистры данных

Задание 18

Отметьте НЕправильный ответ.

Буферные регистры, применяемые в качестве регистра данных, могут выполнять функции:

селектирования адреса;

хранения данных;

шинного передатчика:

шинного приемника.

Задание 19

Отметьте правильный ответ.

Разрядность адреса 3У n связана с числом хранимых слов N соотношением

$$n=2^N$$
;

 $n = e^{N_{:}}$

 $n = log_2N;$ n = lgN.

Задание 20

Отметьте НЕправильный ответ.

К достоинствам БИС/СБИС с программируемой структурой относят то, что:

в них обработка информации происходит без разбиения этого процесса на последовательно выполняемые элементарные действия;

преобразование данных происходит одновременно во многих частях устройства;

они реализуют последовательную обработку информации, выполняя большое число отдельных действий, соответствующих командам;

сложность устройства зависит от сложности решаемой задачи.

7.2.2 Примерный перечень заданий для подготовки к зачету

- 1. Понятия системы, состава, структуры, архитектуры. Типовой состав вычислительной системы, иерархические уровни.
- 2. Аппаратные базы АСУ ТП: варианты и их возможности.
- 3. Назначение управляющих ЭВМ, особенности использования ЭВМ в процессах управления технологическими процессами.
- 4. Варианты использования микропроцессоров в системах управления ТП.
- 5. Типовая схема микропроцессорного устройства управления.
- 6. Основные функциональные узлы систем управления ТП.
- 7. Организация памяти ЭВМ, функциональные возможности каждой разновидности памяти.
- 8. Организация памяти МК, функциональные возможности каждой разновидности памяти.
- 9. Стек и указатель стека: назначение и применение.
- 10. Понятие регистра состояния <u>интерфейсного блока</u>, обработка состояния ВУ процессором.
- 11. Структура процессора, алгоритм работы процессора.
- 12. Назначение и типичный состав регистра состояния процессора.
- 13. Классификация и особенности микропроцессоров. Принципы архитектуры МП
- 14. Понятие микроконтроллера. Типовые структуры микроконтроллеров.
- 15. Устройство портов микроконтроллеров (на примере AVR).
- 16. Модули связи с объектом: общие положения, основные и факультативные функции. Цифровая обработка их данных.
- 17. Блоки ввода-вывода дискретных сигналов: параметры сигналов, требования стандартов, дополнительные возможности цифровой обработки их данных.
- 18. Блоки ввода-вывода аналоговых сигналов, общие вопросы, виды и параметры сигналов, требования стандартов, дополнительные возможности цифровой обработки их данных.
- 19. Структура и принцип действия блока ввода фазовых сигналов, способы цифровой обработки их данных.
- 20. Структура и принцип действия блока ввода числоимпульсных сигналов, способы цифровой обработки их данных.
- 21. Структура блока вывода сигналов регулируемой скважности, способы цифровой обработки их данных.
- 22. Методы подключения устройств сопряжения с объектом. Параллельный и последовательный обмен, разновидности.
- 23. Синхронный и асинхронный обмен. Методы синхронизации передатчика и

- приемника импульсных сигналов.
- 24. Интерфейс Centronics: назначение, режимы работы и порядок передачи информации.
- 25. Интерфейс RS-232C и RS-485: назначение, режимы работы и порядок передачи информации.
- 26. Интерфейс SPI: назначение, организация, протокол обмена.
- 27. Интерфейс I^2C : назначение, организация, протокол обмена.
- 28. Интерфейс CAN: назначение, организация, протокол обмена.
- 29. Интерфейс LIN: назначение, организация, протокол обмена.
- 30. Интерфейс USB: назначение, организация, поколения.
- 31. Понятие прерывания, назначение и использование.
- 32. Понятие интерфейса (строгое определение). Интерфейсные модули: синонимы, классификация, режимы обмена, особенности проектирования.
- 33. Назначение и функциональные возможности таймеров и WDT.

7.2.3. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов -20.

Оценка «Незачтено» ставится в случае, если студент набрал менее 7 баллов.

Оценка «Зачтено» ставится, если студент набрал от 7 до 20 баллов.

7.2.4 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы)	Код контролируе-	Наименование оценочного
J\2 11/11	дисциплины	мой компетенции	средства
1	Архитектура управляющих ЭВМ.	ПКД-1	Тест
2	Основные семейства 8-разрядных	ПКД-2, ПКД-3,	Защита лабораторной
	микроконтроллеров и их свой-	ПКД-4, ПКД-5	работы
	ства		
3	Интерфейсы удаленных	ПКД-3, ПКД-4,	Защита лабораторной
	устройств	ПКД-5, ПКД-6	работы, решение
			стандартных задач
4	Функциональная организация	ПКД-2, ПКД-3,	Защита лабораторных
	вычислительных и управляющих	ПКД-4, ПКД-5,	работ, решение
	процессов. Средства программи-	ПКД-6	стандартных задач, защита
	рования систем управления		курсовой работы

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки

при проведении промежуточной аттестации.

Решение прикладных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к проекту, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8. УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

При проработке конспектов лекций и самостоятельном изучении разделов теоретического материала необходимо использовать учебные пособия и учебники:

- 1. Хартов, В.Я. Микропроцессорные системы: учеб. пособие для вузов. 2 изд. / В.Я. Хартов; М.: Академия, 2014.
- 2. Герасимов М.И. Управляющие микроЭВМ: учеб. пособие [Электронный ресурс]. Электрон. текстовые и граф. данные (7,9 Мб) / М.И. Герасимов. Воронеж: ФГБОУ ВПО «Воронежский государственный технический университет», 2015.
- 3. Микропроцессорные системы: учеб. пособие для вузов / Е.К. Александров [и др.]; под общ. ред. Д.В. Пузанкова. СПб.: Политехника, 2002.

При подготовке к практическим занятиям и выполнении курсового проекта следует использовать:

- 1. Герасимов, М.И. Микропроцессорные устройства управления РТС: учеб. пособие / М.И. Герасимов, Д.А. Ефремов. Воронеж: ВГТУ, 2011. Ч. 1.
- 2. Герасимов, М.И. Микропроцессорные устройства управления РТС: учеб. пособие / М.И. Герасимов; Воронеж: ВГТУ, 2012. Ч. 3.
- 3. Чертежи схем: учеб. пособие / М.И. Герасимов, Д.А. Ефремов, Е.К. Лахина, С.С. Ревнев, В.Н. Семыкин, И.В. Ткачев. Воронеж: ВГТУ, 2007.
- 4. Рюмик, С.М. 1000 и одна микроконтроллерная схема. Вып. 1 / С.М. Рюмик. М.: Додэка_XXI, 2010. Доступ: http://www.dodeca.ru/files/pdf/33085.pdf
- 5. Рюмик, С.М. 1000 и одна микроконтроллерная схема. Вып. 2 / С.М. Рюмик. М.: Додэка XXI. 2011.
- 6. Евстифеев, А.В. Микроконтроллеры AVR семейств Tiny и Mega фирмы «ATMEL» / А.В. Евстифеев; М.: Издательский дом «Додэка-XXI», 2004.
- 7. Яценков В.С. Микроконтроллеры Microchip: Практическое руководство. 2-е изд. испр. и дополн. / В.С. Яценков; М.: Горячая линия-Телеком, 2005.
- 8. Катцен, Сид. РІС-микроконтроллеры. Полное руководство / Сид Катцен. М.: Додэка-XXI, 2011.
- 9. Андрэ Ф. Микроконтроллеры семейства SX фирмы «Scenix» / пер. с фр.: / Ф. Андрэ; М.: Издательский дом «Додэка-XXI», 2002.
- 10. Silicon Labs. [Электронный ресурс]. Режим доступа: http://www.cec-mc.ru/news/novosti-elektroniki/2426/
- 11. Зайцев, И. Ramtron: новые продукты с FRAM памятью / Илья Зайцев. Компоненты и технологии №2, 2009. Режим доступа: http://www.kit-e.ru/articles/memory/2009_02_52.php.
- 12. ATxmega16A4, ATxmega32A4, ATxmega64A4, ATxmega128A4. 8/16-битные микроконтроллеры AVR XMEGA. Режим доступа: http://www.gaw.ru/html.cgi/txt/ic/Atmel/micros/avr xmega/ATxmega16A4 32A4 64A4 128A4.htm
- 13. Руководство по 8-битным AVR-микроконтроллерам XMEGA A Режим доступа: http://www.gaw.ru/html.cgi/txt/ doc/micros/avr/arh_xmega_a/index.htm.
 - 14. Гук, М. Интерфейсы ПК: справочник / М. Гук. СПб.: ПитерКом, 1999.

При подготовке, выполнении и сдаче лабораторных работ следует использовать методические указания и лабораторные практикумы:

- 1. Микроконтроллеры в системах управления: методические указания к выполнению лабораторных работ № 1-3 по дисциплине "Управляющие микроЭВМ" для студентов направления 220400.62 "Управление в технических системах" (профиль «Управление и информатика в технических системах») очной формы обучения. / ФГБОУ ВПО «Воронежский государственный технический университет»; сост. М.И. Герасимов. Воронеж, 2012.
- 2. Микроконтроллеры в системах управления: методические указания к выполнению лабораторных работ № 4-6 по дисциплине "Управляющие микроЭВМ" для студентов специальности 220201 "Управление и информатика в технических системах" очной формы обучения / ГОУ ВПО «Воронежский государственный технический университет»; сост. М.И. Герасимов, Д.А. Ефремов. Воронеж, 2008.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

8.2.1 Программное обеспечение

Лицензионное ПО

- Microsoft Office Word 2007
- Microsoft Office Excel 2007
- Microsoft Office Power Point 2007
- ABBYY FineReader 9.0

Свободное ПО

- Skype
- Oppen Office

Отечественное ПО

- «Программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат.ВУЗ»»
- Модуль «Программный комплекс поиска текстовых заимствований в открытых источниках сети интернет «Антиплагиат-интернет»»
- Модуль обеспечения поиска текстовых заимствований по коллекции диссертаций и авторефератов Российской государственной библиотеки (РГБ)
- Модуль поиска текстовых заимствований по коллекции научной электронной библиотеки eLIBRARY.RU

8.2.2 Ресурс информационно-телекоммуникационной сети «Интернет»

- http://www.edu.ru/
- -Образовательный портал ВГТУ

8.2.3 Информационная справочная система

- http://window.edu.ru
- <u>https://wiki.cchgeu.ru/</u>

8.2.4 Современные профессиональные базы данных

- Электротехнический портал. Адрес ресурса: http://электротехнический-портал.рф/
- Силовая Электроника для любителей и профессионалов. Адрес ресурса: http://www.multikonelectronics.com/
- Справочники по электронным компонентам. Адрес ресурса: https://www.rlocman.ru/comp/sprav.html
- Известия высших учебных заведений. Приборостроение (журнал). Адрес ресурса: http://pribor.ifmo.ru/ru/archive/archive.htm
- Портал машиностроения. Адрес ресурса: http://www.mashportal.ru/
- Электроцентр. Адрес ресурса: http://electrocentr.info/
- Netelectro. Новости электротехники, оборудование и средства автоматизации. Информация о компаниях и выставках, статьи, объявления. Адрес ресурса: https://netelectro.ru/
- Электромеханика. Адрес ресурса: https://www.electromechanics.ru/
- Electrical 4U. Разделы сайта: «Машины постоянного тока», «Трансформаторы», «Электротехника», «Справочник». Адрес ресурса: https://www.electrical4u.com/
- -Росстандарт. Федеральное агентсво по техническому регулированию и метрологии. Адрес pecypca: https://www.gost.ru/portal/gost/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- 1. Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.
- 2. Специализированная учебная лаборатория для проведения лабораторного практикума.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

по дисциплине «Цифровая обработка данных и управляющие ЭВМ»

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета систем управления электроприводами постоянного и переменного тока. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсового проекта изложена в учебнометодическом пособии. Выполнять этапы курсовой работы необходимо своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсового проекта, защитой курсового проекта.

Вид учебных Деятельность студента

занятий	
Практическое	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии. Конспектирование рекомендуемых источников. Работа с конспектом
занятие	лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами на твердом носителе и в сети Интернет: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - выполнение курсового проекта; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом с оценкой три дня эффективнее всего использовать для повторения и систематизации материала.

Лист регистрации изменений

	<u> </u>			
$N_{\underline{0}}$	Перечень вносимых изменений	Дата вне-	Подпись заведующе-	

п/п		сения из-	го кафедрой, ответ-
		менений	ственной за реализа-
			цию ОПОП
1	Актуализирован раздел 8.2 в ча-	31.08.2019	
	сти состава используемого ли-		
	цензионного программного		J
	обеспечения, современных про-		
	фессиональных баз данных и		
	справочных информационных		
	систем		
2	Актуализирован раздел 8.2 в ча-	31.08.2020	
	сти состава используемого ли-		
	цензионного программного		
	обеспечения, современных про-		
	фессиональных баз данных и		
	справочных информационных		
	систем		