МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

РАБОЧАЯ ПРОГРАММА

дисциплины

«Расчёт и проектирование фундаментов в сложных геологических условиях»

Направление подготовки 08.04.01 Строительство

Программа Теория и проектирование зданий и сооружений

Квалификация выпускника магистр

Нормативный период обучения 2 года

Форма обучения очная

Год начала подготовки 2021

Автор программы _____/Агарков А.В./

Заведующий кафедрой Строительной механики /Козлов В.А./

Руководитель ОПОП Сафронов В.С./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Фундаментальная подготовка учащихся (магистрантов) в области современной механики грунтов, расчётов и конструирования при проектировании геотехнических объектов (фундаментов, несущих и ограждающих конструкций в грунтах, грунтовых сооружений и природных грунтовых массивов) в сложных геологических условиях.

Обучение учащихся навыкам самостоятельного совершенствования своих знаний в области теории фундаментостроения и геотехники с помощью научно-технической литературы.

1.2. Задачи освоения дисциплины

В результате обучения учащиеся должны получить следующие знания и представления:

- 1) о несущей способности и деформировании грунтов как физических тел с позиций теорий упругости и пластичности;
- 2) о современных проблемах фундаментостроения и геотехники; геотехнических объектах, сооружаемых в сложных геологических условиях; правильном (с разумным сочетанием надёжности и экономичности) использовании строительных свойств грунтов и геоматериалов;
- 3) о нормативно-теоретических основах проектирования и классических методах расчёта (теории линейно-деформируемой и жёсткопластической сред) геотехнических объектов;
- 4) о нелинейных (упругопластических) методах расчёта геотехнических объектов в сложных инженерно-геологических условиях.
- 5) о расчетах оснований и грунтовых массивов средствами МКЭ с использованием современных программных комплексов.
- 6) о причинах аварий и опасностях при проектировании и строительстве геотехнических объектов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Расчёт и проектирование фундаментов в сложных геологических условиях» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Расчёт и проектирование фундаментов в сложных геологических условиях» направлен на формирование следующих компетенций:

ПК-1 - Овладение знаниями методов проектирования и мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчётного обоснования, в том числе с использованием универсальных и специализированных программно-вычислительных комплексов и систем автоматизированного проектирования

ПК-2 - Способностью вести разработку эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования

ПК-3 - Способностью разрабатывать методики, планы и программы проведения научных исследований и разработок, готовить задания для исполнителей, организовывать проведение экспериментов и испытаний, анализировать и обобщать их результаты

анализировать и обобі	Результаты обучения, характеризующие
Компетенция	сформированность компетенции
	знать теоретические основы современных методов проектирования и мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчётного обоснования
ПК-1	уметь использовать универсальные и специализированные программно-вычислительные комплексы и системы автоматизированного
	проектирования владеть современными методами проектирования и мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчётного обоснования, с использованием универсальных и специализированных программно-вычислительных комплексов и систем автоматизированного проектирования
ПК-2	знать современные методики разработки эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования уметь применять современные методики разработки эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования владеть практическими приемами разработки эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования
ПК-3	знать современные методики подготовки планов и программ проведения научных исследований и разработок
	уметь организовывать проведение экспериментов и испытаний, анализировать и обобщать их результаты готовить задания для исполнителей, владеть практическими приемами проведения научных исследований и разработок, а также проведения анализа и обобщения их результатов

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Расчёт и проектирование фундаментов в сложных геологических условиях» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

David vincky of not only		Семестры
Виды учебной работы	часов	3
Аудиторные занятия (всего)	36	36
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	18	18
Самостоятельная работа	108	108
Курсовой проект	+	+
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	СРС	Все го, час
1	Физические характеристики, классификация грунтов. Строение оснований. Понятие о сложных инженерно-геологических условиях	Значение физических характеристик для расчётов прочности и деформирования оснований. Характеристики пористости, плотности, влажности грунтов. Число пластичности и показатели консистенции глинистых грунтов. Классификация грунтов (песчаные и глинистые грунты: супеси, суглинки, глины). Скальные и полускальные грунты. Механические характеристики грунтов. О связи физических и механических характеристик. Нормативные и расчётные характеристики грунтов. Расчётные сопротивления оснований. Геологолическое строение оснований. Инженерно-геологические элементы. Геологолитологический разрез. Особые виды грунтов: мёрзлые, вечномёрзлые, просадочные, набухающие грунты. Понятие о слабых основаниях. Торф и заторфованные грунты. Карст.	2	2	10	14

2	Закон Кулона. Условия предельного напряжённого					
	состояния грунтов (плоская и пространственная задачи)	лабораторного определения сопротивления грунтов срезу. Трехчленная формула Н. Н. Маслова сопротивляемости сдвигу глинистых грунтов. Задача о подпорной стенке как пример практического использования закона Кулона. Понятия о предельном равновесии и предельном напряженном состоянии. Разложение тензора напряжений в элементарном объёме грунта на всестороннее сжатие (шаровой тензор) и девиатор. Инварианты тензора и девиатора напряжений. Условия предельного напряженного состояния по Мору-Кулону и Мизесу-Шлейхеру-Боткину (уравнения и их графическая форма)	2	2	20	24
3	деформациями грунтов.	Напряженно-деформированное состояние в точке. Обобщенный закон Гука, его записи и приложение к грунтам и геоматериалам. Фазы напряженного состояния грунтов по Н.А. Цытовичу. Диаграмма Прандтля. Пластическое формоизменение, дилатансия и их математическое описание применительно к грунтам. Ассоциированный и неассоциированный законы течения. Скорости и векторы пластических деформаций. О сопротивлении грунтов растяжению. Виды физической нелинейности грунтов. Структурная схема. Графическое описание физически возможного НДС грунта в точке.	2	2	20	24
4	Расчётные модели геотехнических объектов	Деление математических моделей грунтов на теорию линейного деформирования и теории жесткопластичности. Краткая характеристика обеих теорий. Метод коэффициента постели, его практическое значение при расчётах фундаментов и реализация средствами МКЭ. Понятие об упругопластической модели грунта и областях ее практического использования. Предельные состояния (ПС) и	2	2	10	14

5 Классические прикладные задачи механики грунтов фундаментах мелкого заложения. Решения задач Фламана и Буссинеска и их практические приложения. Метод угловых точек. Способы определения осадок и кренов оснований. Задача о воздействии полосовой нагрузки на полупространство. Начальная критическая нагрузка на основание. Основные формы графиков зависимости осадок от действующей нагрузки. Расчёт грунтовых оснований по несущей способности. Задачи о давлении грунта на подпорную стенку. Задача об устойчивости откосов (графовналитический метод). Метод круглоцилиндрических поверхностей скольжения. Метод Г. М. Шахунянца. Формы нарушения устойчивости склонов и откосов. Примеры аварий откосных сооружений и способы их ликвидации. Задача о расчёте сваи на вертикальную горизонтальную и моментную нагрузку и её практическое значение (метод К. С. Завриева). 6 Реконструкция и усиление фундаментов просктирование и устройство фундаментов фундаментов реконструируемых зданий. Восстанавливаемых зданий. Повособы			расчетные проверки СНиП: отличия метода ПС, определение ПС, ГОСТ 27751-2014, группы и виды ПС и их конкретизация в виде расчетных проверок (с присущими им математическими моделями грунтов).				
фундаментов. Проектирование и устройство фундаментов. Упрочнение грунтов основания. Методы расчета и проектирования реконструируемых и восстанавливаемых зданий. Способы усиления фундаментов. Примеры решения задач геомеханики в фундаментов вблизи существующих объектов. Аварийные повреждения и	5	задачи механики грунтов	Задачи о ленточном и плитном фундаментах мелкого заложения. Решения задач Фламана и Буссинеска и их практические приложения. Метод угловых точек. Способы определения осадок и кренов оснований. Задача о воздействии полосовой нагрузки на полупространство. Начальная критическая нагрузка на основание. Основные формы графиков зависимости осадок от действующей нагрузки. Расчёт грунтовых оснований по несущей способности. Задачи о давлении грунта на подпорную стенку. Задача об устойчивости откосов (графоаналитический метод). Метод круглоцилиндрических поверхностей скольжения. Метод Г. М. Шахунянца. Формы нарушения устойчивости склонов и откосов. Примеры аварий откосных сооружений и способы их ликвидации. Задача о расчёте сваи на вертикальную горизонтальную и моментную нагрузку и её практическое значение (метод К. С.	8	8	40	56
<u> </u>	6	фундаментов. Проектирование и устройство фундаментов реконструируемых зданий. Практические примеры решения задач геомеханики в современном	Основные причины усиления фундаментов. Упрочнение грунтов основания. Методы расчета и проектирования реконструируемых и восстанавливаемых зданий. Способы усиления фундаментов. Примеры осуществленных проектов. Возведение фундаментов вблизи существующих объектов. Аварийные повреждения и	2	2	8	21

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта в 3 семестре для очной формы обучения.

Примерная тематика курсового проекта: «_Расчет фундамента мелкого заложения МКЭ»

Задачи, решаемые при выполнении курсового проекта:

• определение осадки с использованием современных нормативных

документов;

- определение осадки МКЭ;
- определение пластических областей при расчете фундамента мелкого заложения МКЭ

Курсовой проект включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции знать (знать теоретические	Критерии оценивания знание теоретических основ	Аттестован Выполнение	Не аттестован Невыполнен
	основы современных методов проектирования и мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчётного обоснования)	современных методов проектирования и мониторинга	работ в срок, предусмотренн ый в рабочих программах	ие работ в срок, предусмотре нный в рабочих программах
	уметь использовать универсальные и специализированные программно-вычислительны е комплексы и системы автоматизированного проектирования	умение использовать специализированные программно-вычислительн ые комплексы и системы автоматизированного проектирования	Выполнение работ в срок, предусмотренн ый в рабочих программах	Невыполнен ие работ в срок, предусмотре нный в рабочих программах
	владеть современными методами проектирования и мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчётного обоснования, с использованием универсальных и специализированных программно-вычислительны х комплексов и систем автоматизированного проектирования)	владение современными методами проектирования и мониторинга	Выполнение работ в срок, предусмотренн ый в рабочих программах	Невыполнен ие работ в срок, предусмотре нный в рабочих программах
ПК-2	знать современные методики разработки эскизных,	знание современные методики разработки	Выполнение работ в срок,	Невыполнен ие работ в

	технических и рабочих	эскизных, технических и	предусмотренн	срок,
	проектов сложных объектов,	рабочих проектов сложных	ый в рабочих	предусмотре
	в том числе с	объектов, в том числе с	программах	нный в
	использованием систем	использованием систем		рабочих
	автоматизированного	автоматизированного		программах
	проектирования	проектирования		
	уметь применять	умение применять	Выполнение	Невыполнен
	современные методики	современные методики	работ в срок,	ие работ в
	разработки эскизных,	разработки эскизных,	предусмотренн	срок,
	технических и рабочих	технических и рабочих	ый в рабочих	предусмотре
	проектов сложных объектов,	проектов сложных	программах	нный в
	в том числе с	объектов, в том числе с	1 1	рабочих
	использованием систем	использованием систем		программах
	автоматизированного	автоматизированного		r r
	проектирования	проектирования		
	владеть практическими	владение практическими	Выполнение	Невыполнен
	приемами разработки	приемами разработки	работ в срок,	ие работ в
	эскизных, технических и	эскизных, технических и	предусмотренн	
	рабочих проектов сложных	рабочих проектов сложных	ый в рабочих	предусмотре
	объектов, в том числе с	объектов, в том числе с	программах	нный в
	использованием систем	использованием систем	программах	рабочих
	автоматизированного			_
	-	автоматизированного		программах
ПК-3	проектирования	проектирования	Drymanyayyya	Поргинализа
11K-3	знать современные	знание современные	Выполнение	Невыполнен
	методики подготовки планов		работ в срок,	ие работ в
	и программ проведения	планов и программ	предусмотренн	_
	научных исследований и	проведения научных	ый в рабочих	предусмотре
	разработок	исследований и разработок	программах	нный в
				рабочих
				программах
	уметь организовывать	умние организовывать	Выполнение	Невыполнен
	проведение экспериментов и		работ в срок,	ие работ в
	испытаний, анализировать и	и испытаний, анализировать		срок,
	обобщать их результаты	и обобщать их результаты	ый в рабочих	предусмотре
	готовить задания для	готовить задания для	программах	нный в
	исполнителей,	исполнителей,		рабочих
				программах
	владеть практическими	владение практическими	Выполнение	Невыполнен
	приемами проведения	приемами проведения	работ в срок,	ие работ в
	научных исследований и	научных исследований и	предусмотренн	срок,
	разработок, а также	разработок, а также	ый в рабочих	предусмотре
	проведения анализа и	проведения анализа и	программах	нный в
	обобщения их результатов	обобщения их результатов		рабочих
1		1		программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обуч характеризуют	щие оцен	-	Отлично	Хорошо	Удовл.	Неудовл.
,	сформированно	ОСТЬ	Я				

	компетенции					
ПК-1	знать (знать	Тест	Выполнен	Выполнени	Выполнени	В тесте
	теоретические основы		ие теста	е теста на	е теста на	менее
	современных методов		на 90-	80- 90%	70- 80%	70%
	проектирования и		100%			правильн
	мониторинга зданий и					ых
	сооружений, их					ответов
	конструктивных					0120102
	элементов, включая					
	методы расчётного					
	обоснования)					
	уметь использовать	Решение	Задачи	Пролемонс	Продемонст	Задачи не
	универсальные и	стандартн	решены в	тр ирован	р ирован	решены
	специализированные	ых	полном	верный ход		решены
	программно-вычислител		объеме и	решения	решения в	
	ьные комплексы и	их задач	получены	всех, но не	большинств	
	системы	их задач	верные	получен	е задач	
			ответы	верный	Сзадач	
	автоматизированного		ОТВСТЫ	ответ во		
	проектирования					
				всех		
		Dayyayyya	20 mayry	Задачах	Пестоможе	20 70 777 770
	владеть современными	Решение	Задачи	Продемонс		Задачи не
	методами	прикладны	решены в	тр ирован	р ирован	решены
	проектирования и	х задач в	полном	верный ход		
	мониторинга зданий и	конкретно	объеме и	решения	решения в	
	сооружений, их	й	получены	· ·	большинств	
	конструктивных	предметно	верные	получен	е задач	
	элементов, включая	й области	ответы	верный		
	методы расчётного			ответ во		
	обоснования, с			всех		
	использованием			задачах		
	универсальных и					
	специализированных					
	программно-вычислител					
	ьных комплексов и					
	систем					
	автоматизированного					
	проектирования)			70	~	
ПК-2	знать современные	Тест		Выполнени		В тесте
	методики разработки		ие теста	е теста на	е теста на	менее
	эскизных, технических и		на 90-	80- 90%	70- 80%	70%
	рабочих проектов		100%			правильн
	сложных объектов, в том					ЫХ
	числе с использованием					ответов
	систем					
	автоматизированного					
	проектирования					
	уметь применять	Решение	Задачи	_	Продемонст	Задачи не
	современные методики	стандартн	решены в	тр ирован	р ирован	решены
	разработки эскизных,	ых	полном	верный ход	_	
	технических и рабочих	практическ	объеме и	решения	решения в	
	проектов сложных	их задач	получены	всех, но не	большинств	

	объектов, в том числе с		верные	получен	е задач	
	использованием систем		ответы	верный	о зада 1	
	автоматизированного		ответы	ответ во		
	проектирования			всех		
	просктирования			задачах		
	владеть практическими	Решение	Задачи		Продемонст	Задачи не
	приемами разработки	прикладны	решены в	тр ирован	р ирован	решены
	эскизных, технических и	х задач в	полном	верный ход	верный ход	_
	рабочих проектов	конкретно	объеме и	решения	решения в	
	сложных объектов, в том	й	получены	всех, но не	большинств	
	числе с использованием	предметно	верные	получен	е задач	
	систем	й области	ответы	верный		
	автоматизированного			ответ во		
	проектирования			всех		
				задачах		
ПК-3	знать современные	Тест	Выполнен	Выполнени	Выполнени	В тесте
	методики подготовки		ие теста	е теста на	е теста на	менее
	планов и программ		на 90-	80- 90%	70- 80%	70%
	проведения научных		100%			правильн
	исследований и					ых
	разработок					ответов
	уметь организовывать	Решение	Задачи	Продемонс	Продемонст	Задачи не
	проведение	стандартн	решены в	тр ирован	р ирован	решены
	экспериментов и	ых	полном	верный ход	верный ход	
	испытаний,	практическ	объеме и	решения	решения в	
	анализировать и	их задач	получены	всех, но не	большинств	
	обобщать их результаты		верные	получен	е задач	
	готовить задания для		ответы	верный		
	исполнителей,			ответ во		
				всех		
				задачах		
	владеть практическими	Решение	Задачи	Продемонс	Продемонст	Задачи не
		прикладны	-	тр ирован	р ирован	решены
	научных исследований и	х задач в	полном	верный ход	-	
	разработок, а также	конкретно	объеме и	решения	решения в	
	1 ' '	й	получены		большинств	
	обобщения их	предметно	верные	получен	е задач	
	результатов	й области	ответы	верный		
				ответ во		
				всех		
				задачах		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию 1. Чем как правило характеризуется деформация основания сооружения?

А. креном

Б. осадкой

- В. напряжением
- Г. осадкой и креном
- 2. Исходя из какого условия проводят расчет основания по деформациям?
- A. S≤S_u
- **Б.** S_u≤S
- B. S≤R
- Γ . $R \leq S_n$

Где S- осадка основания фундамента,

- S_{u} предельное значение осадки основания фундамента, R- расчетное сопротивление грунта основания
- 3. При каком условии в соответствии с требованиями СП22.13330.2016 возможно использовать основную методику расчета деформаций основания фундамента (расчетная схема в виде линейно деформируемого полупространства)?
- A. p≤R
- B. $p \leq R_0$
- Г. р≤Е

Где р — среднее давление под подошвой фундамента; R- расчетное сопротивление грунта основания; - R_0 — расчетное сопротивления грунта основания фундамента с шириной 1 м и глубиной заложения 2 м; E — модуль деформации грунта основания;

4. По какой формуле определяется расчетное сопротивление грунта основания в соответствии с требованиями СП22.13330.2016?

$$\mathbf{A.} \quad \mathbf{R} = \frac{\gamma_{c1} \times \gamma_{c2}}{k} \left[\mathbf{M}_{\nu} \times \mathbf{k}_{z} \times \mathbf{b} \times \gamma_{II} + \mathbf{M}_{q} \times \mathbf{d}_{1} \times \gamma_{II}^{-1} + \left(\mathbf{M}_{q} - 1 \right) \times \mathbf{d}_{b} \times \gamma_{II}^{-1} + \mathbf{M}_{c} \times \mathbf{c}_{II} \right]$$

$$R = 1.7 \times \left[R_0 \times \left[1 + k_1 \times (b - 2) \right] + k_2 \times \gamma \times (d - 3) \right]$$

$$6.$$

$$\mathbf{R} = \beta \times \sum_{i=1}^{n} \left[\frac{\left(\sigma_{zp_{i}} - \sigma_{z\gamma_{i}}\right) \times \mathbf{h}_{i}}{\mathbf{E}_{i}} \right] + \beta \times \sum_{i=1}^{n} \left[\frac{\left(\sigma_{z\gamma_{i}}\right) \times \mathbf{h}_{i}}{\mathbf{E}_{e_{i}}} \right]$$

$$\mathbf{B}.$$

$$R = M_c \times c_{II} \left[M_{\nu} \times k_z \times b \times \gamma_{II} + M_q \times d_1 \times {\gamma_{II}}^1 + \left(M_q - 1 \right) \times d_b \times {\gamma_{II}}^1 + \frac{\gamma_{c1} \times \gamma_{c2}}{k} \right]$$

$$\Gamma.$$

5. По какой формуле определяют осадку основания фундамента в соответствии с требованиями СП22.13330.2016?

$$\mathbf{s} = \frac{\gamma_{c1} \times \gamma_{c2}}{k} \bigg[\mathbf{M}_{\nu} \times \mathbf{k}_{z} \times \mathbf{b} \times \gamma_{II} + \mathbf{M}_{q} \times \mathbf{d}_{1} \times \gamma_{II}^{-1} + \left(\mathbf{M}_{q} - 1 \right) \times \mathbf{d}_{b} \times \gamma_{II}^{-1} + \mathbf{M}_{c} \times \mathbf{c}_{II} \bigg]$$
 A.

$$\mathbf{b}. \quad \mathbf{s} = 1.7 \times \left[\mathbf{R}_0 \times \left[1 + \mathbf{k}_1 \times (\mathbf{b} - 2) \right] + \mathbf{k}_2 \times \gamma \times (\mathbf{d} - 3) \right]$$

$$\mathbf{s} = \beta \times \sum_{i=1}^{n} \left[\frac{\left(\sigma_{zp_{i}} - \sigma_{z\gamma_{i}}\right) \times \mathbf{h}_{i}}{\mathbf{E}_{i}} \right] + \beta \times \sum_{i=1}^{n} \left[\frac{\left(\sigma_{z\gamma_{i}}\right) \times \mathbf{h}_{i}}{\mathbf{E}\mathbf{e}_{i}} \right]$$

$$\mathbf{B}.$$

$$s := \frac{1}{\pi} \times \left[atan \left(\frac{0.5 \times b - x}{z} \right) + atan \left(\frac{0.5 \times b + x}{z} \right) - \frac{2 \times (0.5 \times b) \times z \times \left[x^2 - z^2 - (0.5 \times b)^2 \right]}{\left[x^2 + z^2 - (0.5 \times b)^2 \right]^2 + 4 \times (0.5 \times b)^2 \times z^2} \right]$$

6. По какой формуле определяют значения вертикальных напряжений от внешней нагрузки на глубине z от подошвы фундамента по вертикали, проходящей через центр подошвы?

A.
$$\sigma_{zp} = \alpha \times \sigma_{zg0}$$

$$\mathbf{b}. \quad \sigma_{\mathbf{z}\mathbf{p}} = \alpha \times \mathbf{p}$$

$$\sigma_{zp} = 0.5 \times \alpha \times \sigma_{zg0}$$
 B.

$$\sigma_{zp} = 0.5 \times \alpha \times p$$

7. При каком условии возможно определять осадку основания по формуле

$$s = \beta \times \sum_{i=1}^{n} \frac{\sigma_{zp_i} \times h_i}{E_i}$$
 в соответствии с требованиями СП22.13330.2016?

A.
$$p \le \sigma_{zg,0}$$

Б.
$$\sigma_{zg,0} \leq p$$

$$\Gamma$$
. $p \le \sigma_{zp}$

8. Каким условием определяется граница сжимаемой толщи основания при определении осадки в соответствии с требованиями СП22.13330.2016?

A.
$$\sigma_{zp} = 0.5 \sigma_{zg}$$

Б.
$$\sigma_{zp} = 0.2 \sigma_{zg}$$

B.
$$\sigma_{zp} = 0.5 \sigma_{zg,0}$$

$$\Gamma$$
. $\sigma_{zp} = 0.5 \sigma_{zg,0}$

- 9. При расчете фундамента мелкого заложения МКЭ в плоской постановке исходя из каких соображений назначаются размеры расчетной области (с заданием граничных условий)?
- А. Исходя из имеющегося инженерно-геологического разреза

Б. Исходя из исключения влияния граничных условий, заданных на границах расчетной области, на результаты расчетов

- В. Более 5 м, ширины фундамента, глубже фундамента на 10 м
- Г. По ширине две ширины сооружения, по глубине 2 высоты сооружения
- 10. При расчете фундамента мелкого заложения МКЭ в плоской постановке какое напряженно-деформированное состояние необходимо задавать для грунтов основания?

А. плоское напряженное состояние

Б. плоское напряженное состояние

- В. плоская деформация
- Г. объемное напряженное состояние

7.2.2 Примерный перечень заданий для решения стандартных задач Не предусмотрено учебным планом

7.2.3 Примерный перечень заданий для решения прикладных задач Не предусмотрено учебным планом

7.2.4 Примерный перечень вопросов для подготовки к экзамену

- 1. Охарактеризовать физические характеристики грунтов (плотность, пористость, влажность): определения, формульные зависимости, размерности.
- 2. Классификация грунтов. Характеристика классификационных признаков.
- 3. Запись закона Кулона и его графическая форма. Метод лабораторного определения грунтов срезу. Испытание грунта методом трёхосного сжатия.
- 4. Круг Мора: объяснение, доказательство условия Мора-Кулона.
- 5. Предельное равновесие и предельное напряжённое состояние. Условия Мора-Кулона и Мизеса-Шлейхера-Боткина: уравнения, физическое содержание, графическая форма.
- 6. Фазы напряжённого состояния грунтов по Н.А. Цытовичу. Диаграмма Прандтля.
- 7. Скорости и векторы пластических деформаций в грунтах и геоматериалах. Дилатансия и её параметры.
- 8. Характеристика теорий линейного деформирования и жёсткопластичности. Основные уравнения, области практического использования.
- 9. Понятие об упругопластической модели грунта и области её практического использования. Описание математической модели грунта в соответствии с теорией пластического течения.
- 10. Характеристика метода предельных состояний (ПС). Связь видов ПС, математических моделей грунта, расчётных проверок СНиП.
- 11. Решения задач Фламана и Буссинеска (основная идея; объяснение способа получения уравнений) и их практические приложения.
- 12. Метод угловых точек. Способы определения осадок и кренов оснований.
- 13. Задача о воздействии полосовой нагрузки на полупространство. Начальная критическая нагрузка на основание. Формула (7) СНиП 2.02.01-83*.
- 14. Способ расчёта осадок оснований: формула СНиП и её объяснение.
- 15. Расчёт оснований по несущей способности на примерах методов Прандтля и Терцаги.
- 16. Расчёт оснований по несущей способности в соответствии с СНиП 2.02.01-83* (формула (16)).
- 17. Активное и пассивное давление грунта на подпорные стенки. Давление покоя. Влияние перемещений подпорной стенки на её силовое взаимодействие с засыпкой.
- 18. Задачи о подпорной стенке (метод Ш. Кулона, его идея и практическая

реализация).

- 19. .Задачи об устойчивости откосов (графоаналитический метод). Методы круглоцилиндрических поверхностей скольжения и горизонтальных сил (Г. М. Шахунянца).
- 20. Задача о расчёте сваи на совместное действие осевой, поперечной силы и момента (метод К. С. Завриева) и её практическое значение.
- 21. Упрочнение оснований эксплуатационными нагрузками. Расчётные формулы и их обоснование. Использование дополнительной несущей способности оснований при увеличениях нагрузки после длительного периода эксплуатации.
- 22. Ремонт и усиление фундаментов. Примеры конструктивных решений. Причины дефектов и повреждений.
- 23. Возведение фундаментов вблизи существующих. Причины аварийных деформаций: дополнительных осадок, перекосов, кренов. Расчётные ограничения при проектировании. Конструктивные решения, направленные на уменьшение дополнительных осадок и их последствий.

7.2.5 Примерный перечень заданий для решения прикладных задач Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемо й компетенции	Наименование оценочного средства
1	Физические характеристики, классификация грунтов. Строение оснований. Понятие о сложных инженерно-геологических условиях	ПК-1, ПК-2,	Выполнение и защита курсового проекта, экзамен
2	Закон Кулона. Условия предельного напряжённого состояния грунтов (плоская и пространственная задачи)	I IIK-1, IIK-2,	Выполнение и защита курсового проекта, экзамен
3	Зависимость между напряжениями, перемещениями и деформациями		Выполнение и защита курсового проекта,

	грунтов. Виды физической нелинейности грунтов		экзамен
4	Расчётные модели геотехнических объектов	ПК-1, ПК-2, ПК-3	Выполнение и защита курсового проекта, экзамен
5	Классические прикладные задачи механики грунтов (постановка и решения)	ПК-1, ПК-2, ПК-3	Выполнение и защита курсового проекта, экзамен
6	Реконструкция и усиление фундаментов. Проектирование и устройство фундаментов реконструируемых зданий. Практические примеры решения задач геомеханики в современном проектировании	,	Выполнение и защита курсового проекта, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

8.1.1 Основная литература:

- 1. Шапиро Д.М. Теория и расчётные модели оснований и объектов геотехники. Изд. 2-е, доп. М.: Издательство АСВ, 2016. 180 с.
- 2. Шапиро Д. М. Метод конечных элементов в строительном проектировании. М.: Издательство ACB, 2015. 176 с.

- 3. Свод правил 22.13330.2011 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*.
- 4. Свод правил 24.13330.2011 Свайные фундаменты Актуализированная редакция СНиП 2.02.03-85.
- 6. Мангушев Р. А., Карлов В. Д., Сахаров И. И., Осокин А. И. Основания и фундаменты. М.: Изд-во АСВ, 2009 264 с.
- 7. Ухов С.Б., Семенов В.В., Знаменский В.В. и др. Механика грунтов, основания и фундаменты. М., Изд-во АСВ, 1994.- 524с.
- 8. Шапиро Д. М., Ким М. С., Ким В. Х., Агарков А. В. Решение задач механики грунтов аналитическими и численным методами: учеб. пособие / Воронежский ГТУ. Воронеж: 2019. 85 с.

8.1.2 Дополнительная литература:

- 1. Тер-Мартиросян 3. Г. Механика грунтов/ Учебное пособие. М.: Издательство Ассоциации строительных вузов, 2005. 488 с.
- 2. Коновалов П.А. Основания и фундаменты реконструируемых зданий, 4-е изд. перераб. и дополн. М.: Изд-во «Бумажная галлерея», 2000.- 317с.
- 3. Кушнер С. Г. Расчёт деформаций оснований зданий и сооружений. Запорожье: ООО НПО «Запорожье», 2008.-496 с.
- 4. Мангушев Р. А., Ершов А. В., Осокин А. И. Современные свайные технологии: учебное пособие. М.- СПб.: Издательство АСВ; СПб. гос. архит.-строит. ун-т, 2007.- 160 с.
- 5. Полищук А.И. Основы проектирования и устройства фундаментов реконструируемых зданий. Томск: Нортхэмптон, 2004.- 473с.
- 6. Справочник геотехника. Основания, фундаменты, подземные сооружения / Под общей ред. В. А. Ильичёва и Р. А. Мангушева. М.: Изд-во АСВ, 2014. 728 с.
- 7. Шапиро Д. М. Нелинейная механика грунтов: учеб. пособие / Воронежский ГАСУ. Воронеж: 2016. 123 с.

8.1.3 Периодические издания

- 1. Основания, фундаменты и механика грунтов (научно-теоретический журнал).
- 2. «Строительная механика и конструкции» (научный журнал,ВГТУ)
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

- 1. Консультирование посредством электронной почты, Skype, WhatsApp, Viber.
- 2. Использование презентаций при проведении лекционных занятий.
- 3. http: www.cchgeu.ru. Учебный портал ВГТУ.
- 4. http://cchgeu.ru/university/library/elektronnyy-katalog/ Электронный каталог Научной Библиотеки ВГТУ.
- 5. http://cchgeu.ru/education/cafedras/kafsm/ Учебно-методические разработки кафедры строительной механики.
- 6. Базы данных, информационно-справочные и поисковые системы.
- 7. https://картанауки.рф/.
- 8. dwg.ru. Сайт проектировщиков, инженеров, конструкторов.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

№ п/п	Вид аудиторного фонда	Требования
1.	Лекционная аудитория	Аудитория должна быть оборудована, как обычной доской, так и техническими средствами для реализации мультимедийной технологии проведения лекции (проектор, экран или интерактивная доска, Notebook или другой ПК.
2.	Компьютерные классы	Оснащение специализированной учебной мебелью. Оснащение техническими средствами обучения: ПК с возможностью подключения к локальным сетям и Интернету. Наличие вычислительной техники из расчёта один ПК на одного студента.
3.	Аудитория для практических занятий	Аудитория должна быть оборудована как обычной доской, так и техническими средствами для реализации мультимедийной технологии проведения практических занятий (проектор, экран, или интерактивная доска, ноутбук или другой ПК с процессором не ниже 1,2 ГГц).

Перечень материально-технического обеспечения дисциплины:

В наличии имеется специализированная аудитория (Лаборатория вычислительной техники кафедры строительной механики [ауд. 2121]), оборудованная интерактивными технологиями представления видеоматериала при проведении лекционных и практических занятий, а также для выполнения расчетно-графических работ и проведения всех видов контрольных мероприятий с помощью компьютерного тестирования.

Лаборатория вычислительной техники оснащена: видеопроектором, интерактивной доской, 12 персональными компьютерами, лазерным и матричным принтерами, специализированной учебной мебелью.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Расчёт и проектирование фундаментов в сложных геологических условиях» читаются лекции, проводятся практические занятия, выполняется курсовой проект.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета в области современной механики грунтов, расчётов и конструирования при проектировании геотехнических объектов (фундаментов, несущих и ограждающих конструкций в грунтах, грунтовых сооружений и природных грунтовых массивов) в сложных геологических условиях.

Занятия проводятся путем решения конкретных задач в аудитории.

Методика выполнения курсового проекта изложена в учебно-методическом пособии. Выполнять этапы курсового проекта должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсового проекта, защитой курсового проекта.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в
	материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка

	конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует
промежуточной аттестации	систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за
377337444	месяц-полтора до промежуточной аттестации. Данные
	перед экзаменом три дня эффективнее всего использовать
	для повторения и систематизации материала.