МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета

Енин А.Е.

«31» августа 2021

РАБОЧАЯ ПРОГРАММА

дисциплины

«Теоретическая и прикладная механика»

Направление подготовки <u>07.03.02</u> <u>Реконструкция и реставрация архитектурного наследия</u>

Профиль Реконструкция и реставрация архитектурного наследия

Квалификация выпускника бакалавр

Нормативный период обучения 5 лет

Форма обучения очная

Год начала подготовки 2018

Автор программы

/Козлов В. А./

Заведующий кафедрой строительной механики

/Козлов В. А./

Руководитель ОПОП

/Чесноков Г. А./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Курс теоретической и прикладной механики имеет целью дать будущему специалисту в области механического равновесия и взаимодействия материальных тел тот минимум фундаментальных знаний, с помощью которых для различных архитектурных объектов выполняется расчет элементов и конструкций в целом. Кроме того, изучение теоретической и прикладной механики способствует расширению научного кругозора и повышению общей культуры будущего специалиста, развитию его мышления и становлению его мировоззрения.

1.2. Задачи освоения дисциплины

- Дать студенту первоначальные представления о постановке инженерных и технических задач, их формализации, выборе модели изучаемого механического явления, о работе конструкций, расчетных схемах, задачах расчета плоских элементов строительных конструкций на прочность, жесткость и устойчивость.
- Привить навыки использования математического аппарата для решения инженерных задач в области механики.
- Освоить методы статического расчета конструкций и их элементов.
- Развитие логического мышления и творческого подхода к решению профессиональных задач.

В итоге изучения курса механики студент должен знать основные понятия и законы механики и вытекающие из этих законов методы изучения равновесия твердого тела и механической системы (в объеме основной части программы).

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теоретическая и прикладная механика» относится к лисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Теоретическая и прикладная механика» направлен на формирование следующих компетенций:

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ОПК-4 - Способен применять методики определения технических параметров проектируемых объектов

Компетенция	Результаты обучения, характеризующие сформированность компетенции
УК-1	знать постановку и методы решения задач механики при равновесии механических систем

	уметь решать конкретные задачи механики при равновесии твердых тел и механических систем
	владеть фундаментальными принципами и методами расчета выбранных конструктивных строительных схем
ОПК-4	знать основные подходы при моделировании объектов строительства и способы формализации при расчете по выбранным моделям
	уметь выделять основные характеристики архитектурного объекта, оценивать преимущества и недостатки выбранного конструктивного решения
	владеть методами расчета выбранных конструктивных схем и решений для конкретных архитектурных объектов

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Теоретическая и прикладная механика» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Вини ущебней работи	Всего	Семестры
Виды учебной работы	часов	3
Аудиторные занятия (всего)	36	36
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	18	18
Самостоятельная работа	72	72
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Основные понятия, определения и теоремы статики.	Предмет теоретической и прикладной механики, раздел статика. Основные понятия статики. Аксиомы статики. Виды связей, их реакции. Проекция силы на ось. Геометрический и аналитический способы сложения сил. Сходящиеся силы, их	4	3	14	21

	1		-			1
		равнодействующая. Геометрическое				
		условие равновесия системы				
		сходящихся сил, аналитические				
		условия равновесия. Равновесие трех				
		непараллельных сил.				
		Момент силы относительно точки				
		(центра) как вектор. Понятие о паре				
		сил. Момент пары как вектор. Теорема				
		об эквивалентности пар. Свойства пары				
		сил. Теорема о приведении				
		произвольной системы сил к данному				
		центру. Главный вектор и главный				
		момент системы сил. Векторные				
		условия равновесия произвольной				
		системы сил. Теорема Вариньона о				
		моменте равнодействующей.				
2	Система сил,	Алгебраическое значение момента				
_	расположенных	силы и пары сил. Распределенная				
	в одной	нагрузка. Аналитические условия				
	плоскости.	равновесия параллельной и	2	3	8	13
	IIIIOCKOCIVI.	произвольной плоской системы сил.				
		Равновесие системы тел.				
3	Проморонимая					
3	Произвольная	Момент силы относительно оси;				
	система сил.	зависимость между моментами силы				
	Центр тяжести	относительно центра и относительно				
	твердых тел.	оси, проходящей через этот центр.				
		Вычисление главного вектора и				
		главного момента произвольной				
		системы сил.	4	2	14	20
		Приведение системы параллельных сил				
		к равнодействующей. Центр				
		параллельных сил; его радиус-вектор и				
		координаты. Центр тяжести твердого				
		тела; центр тяжести объема, площади,				
		линии. Способы определения				
	~	положений центров тяжести тел.				
4	Введение в	Задачи статики сооружений, основные				
	статику	допущения, классификация расчетных				
	сооружений.	схем. Статически определимые и				
		статически неопределимые системы.				
		Исследование геометрической				
		изменяемости плоских стержневых	4	2	18	24
		систем.		_		-
		Понятие о ферме. Леммы о нулевых				
		стержнях. Определение усилий в				
		стержнях плоской фермы способом				
		вырезания узлов и способом сечений				
		(Риттера).				
5	Основы расчетов	Метод сечений. Растяжение и сжатие.				
	элементов на	Расчет по допускаемым напряжениям и	4	8	18	30
	прочность.	предельным состояниям.	7	O	10	30
		Сдвиг, срез, скалывание.				

	Геометрические характеристики плоских сечений. Изгиб: изгибающий момент и поперечная сила, их эпюры; напряжения при изгибе прямого бруса; расчет балки на прочность при изгибе. Устойчивость центрально сжатых стержней, устойчивость деформированного состояния конструкций. Понятие о действии динамических и повторно-переменных нагрузок.	18	18	72	108
--	---	----	----	----	-----

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»;

«не аттестован».

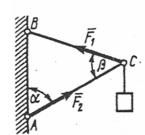
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	отлично	хорошо	удовлет.	неудовл.	не аттест.
УК-1	знать постановку и	Посещение и	Посещено	Посещено не	Посещено не	Лекции	Лекции не
	методы решения	работа на	не менее	менее 75%,	менее 50%,	посещены	посещены,
	задач механики при	лекционных	90%,	наличие	наличие	частично	отсутствует
	равновесии	занятиях	наличие	конспекта	конспекта		конспект
	механических		конспекта				
	систем						
	уметь решать	Посещение и	Решены все	Решено не	Решено не	Решено	Практич.
	конкретные задачи	работа на	текущие	менее 75%	менее 50%	менее	занятия не
	механики при	практических	тестовые	из текущих	из текущих	половины	посещены,
	равновесии	занятиях	задачи	тестовых	тестовых	из текущих	тестовые
	твердых тел и			задач	задач	тестовых	задачи не
	механических					задач	решены
	систем						

	владеть	Решение	РГЗ	РГ3	РГЗ	РГЗ	РГЗ не
		прикладных	выполнено	выполнено	выполнено	выполнено	выполнено
	принципами и	задач в виде	в срок, в	в срок, ход	не в срок,	неверно	
	методами расчета	выполнения	полном	решения	ошибки в	1	
	выбранных	расчетно-	объеме,	верный,	ходе		
	конструктивных	графических	получены	неточные	решения и		
	строительных схем	заданий (РГЗ)	верные	ответы	ответах		
	r	()	ответы		исправлены		
ОПК-4	знать основные	Посещение и	Посещено	Посептено не	Посещено не	Лекции	Лекции не
	подходы при	работа на	не менее	менее 75%,	менее 50%,	посещены	посещены,
	моделировании	лекционных	90%,	наличие	наличие	частично	отсутствует
	объектов	занятиях	наличие	конспекта	конспекта		конспект
	строительства и		конспекта				
	способы						
	формализации при						
	расчете по						
	выбранным						
	моделям						
	уметь выделять	Посещение и	Решены все	Решено не	Решено не	Решено	Практич.
	основные	работа на	текущие	менее 75%	менее 50%	менее	занятия не
	характеристики	практических	тестовые	из текущих	из текущих	половины	посещены,
	архитектурного	занятиях	задачи	тестовых	тестовых	из текущих	тестовые
	объекта, оценивать	запитник	зада т	задач	задач	тестовых	задачи не
	преимущества и			зиди 1	зиди 1	задач	решены
	недостатки					зиди 1	решены
	выбранного						
	конструктивного						
	решения						
	владеть методами	Решение	РГЗ	РГЗ	РГЗ	РГЗ	РГЗ не
		прикладных	выполнено	выполнено	выполнено	выполнено	выполнено
	конструктивных	задач в виде	в срок, в	в срок, ход	не в срок,	неверно	BBIIIOJIIICHO
	схем и решений для		полном	решения	ошибки в	певерно	
	конкретных	расчетно-	объеме,	решения верный,	ходе		
	архитектурных	графических	получены	всрный, неточные	решения и		
	объектов	заданий (РГЗ)	верные	ответы	ответах		
	OOBCRIUB	эадании (113)	ответы	OIBCIBI	исправлены		
	7122		UIDCIDI		исправлены		

7.1.2 Этап промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения по двухбалльной системе:

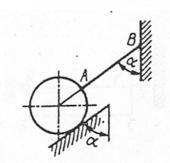
«зачтено»

«не зачтено»


Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
УК-1	знать постановку и методы решения задач механики при равновесии механических систем	Теоретические вопросы при проведении зачета	Верных ответов 60-100%	Верных ответов менее 60%
	уметь решать конкретные задачи механики при равновесии твердых тел и механических систем	Решение стандартных задач по индивидуальным вариантам на практических занятиях	Решены задачи по всем пройденным темам	Имеются темы, по которым задачи не решены
	владеть фундаментальными принципами и методами расчета выбранных конструктивных строительных схем	Выполнение расчетнографических заданий (РГЗ)	РГЗ выполнено, допущенные в ходе решения ошибки исправлены	РГЗ не выполнено или выполнено неверно
ОПК-4	знать основные подходы при моделировании	Теоретические вопросы при проведении зачета	Верных ответов 60-100%	Верных ответов менее 60%

объектов строительства и			
способы формализации			
при расчете по			
выбранным моделям			
уметь выделять основные	Решение стандартных задач	Решены задачи по	Имеются темы, по
характеристики	по индивидуальным	всем пройденным	которым задачи не
архитектурного объекта,	вариантам на практических	темам	решены
оценивать преимущества	занятиях		
и недостатки выбранного			
конструктивного			
решения			
владеть методами	Выполнение расчетно-	РГЗ выполнено,	РГЗ не выполнено
расчета выбранных	графических заданий (РГЗ)	допущенные в ходе	или выполнено
конструктивных схем и		решения ошибки	неверно
решений для конкретных		исправлены	
архитектурных объектов			

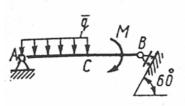
- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
- **7.2.1 Примерный перечень заданий для подготовки к тестированию** Тестирование на знание теоретического материала проводится во время зачета по вопросам, приведенным в п. 7.2.4.


7.2.2 Примерный перечень заданий для решения стандартных задач

1. Равновесие плоской системы сходящихся сил

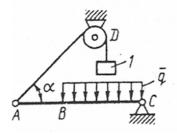
1.2.5

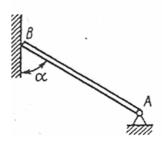
Шарнирный трехзвенник ABC удерживает в равновесии груз, подвешенный к шарнирному болту C. Под действием груза стержень AC сжат силой $F_2=25$ Н. Заданы углы $\alpha=60^\circ$ и $\beta=45^\circ$. Считая стержни AC и BC невесомыми, определить усилие в стержне BC.



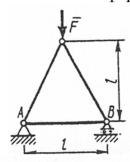
1.2.15

Однородный шар весом 12 Н удерживается в равновесии на гладкой наклонной плоскости с помощью веревки AB. Определить давление шара на плоскость, если угол $a = 60^{\circ}$.


2. Равновесие произвольной плоской системы сил

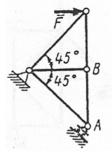

Определить момент M пары сил, при котором реакция опоры B равна 250 H, если интенсивность распределенной нагрузки q=150 H/м, размеры AC=CB=2 м.

2.4.10

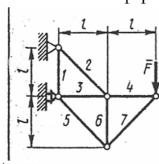

Балка AC закреплена в шарнире C и поддерживается в горизонтальном положении веревкой AD, перекинутой через блок. Определить интенсивность распределенной нагрузки q, если длины BC=5 м, AC=8 м, угол $\alpha=45^{\circ}$, а вес груза l равен 20 H.

2.4.15

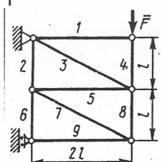
Конец B однородного бруса весом 100 кH, закрепленного в шарнире A, опирается на гладкую стену. Определить в кH давление бруса на стену, если угол $\alpha = 60^{\circ}$.


3. Расчет плоских ферм (метод вырезания узлов)

4.2.10

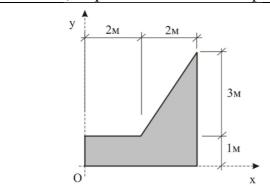

Определить усилие в стержне AB. Сила F = 400 H.

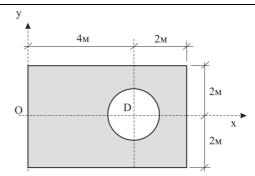
4.2.19


Определить усилие в стержне AB. Сила F = 400 H.

4. Расчет плоских ферм (метод сквозных сечений)

4.3.4


Определить усилие в стержне 3. Сила F = 460 H.


4.3.10

Определить усилие $\hat{\mathbf{B}}$ стержне 8. Сила $F=260~\mathrm{H}$.

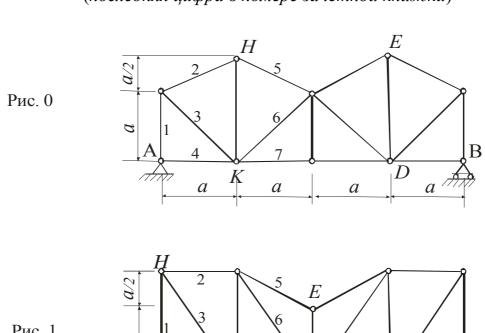
5. Центр тяжести плоских фигур

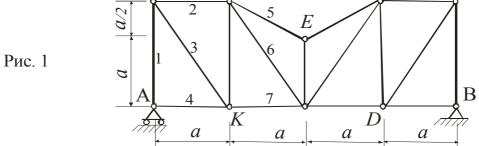
Координата y_c центра тяжести однородной пластины равна...

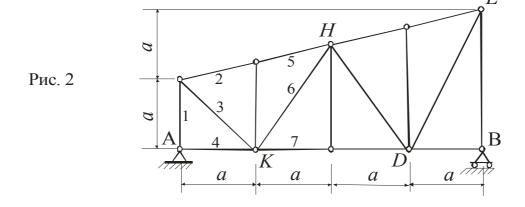
Радиус круглого выреза равен $r=1\,\mathrm{M}$. Координата x_c центра тяжести однородно пластины равна...

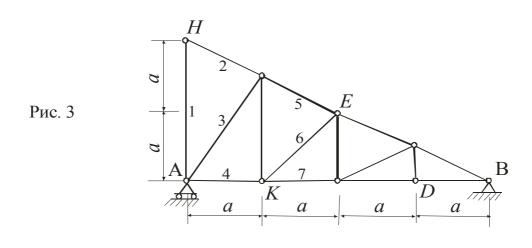
7.2.3 Примерный перечень заданий для решения прикладных задач *РГЗ. Статический расчёт плоской фермы с применением ЭВМ*

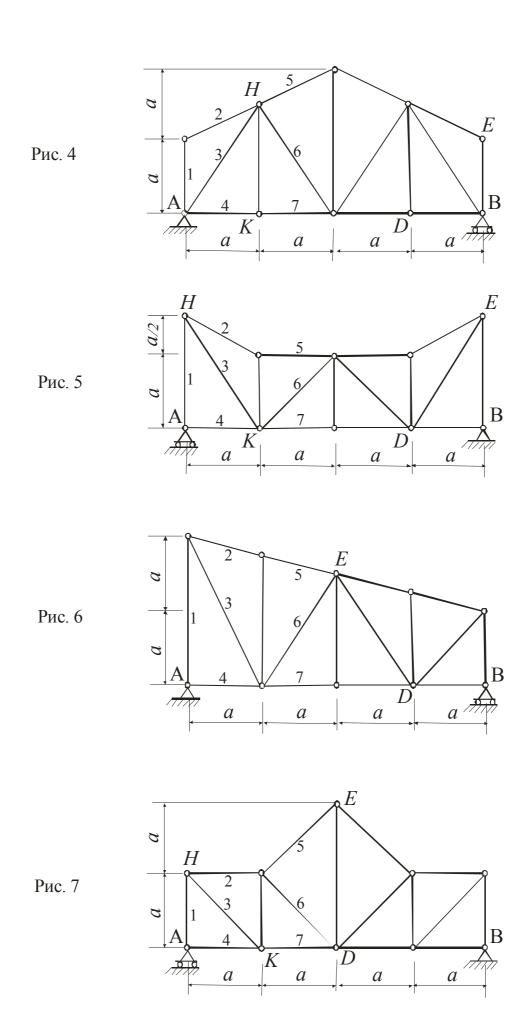
Плоская ферма, расположенная в вертикальной плоскости, закреплена в точках A и B, причём в одной из них шарнирно-неподвижно, а в другой опирается на подвижный шарнир (рис. 0–9). На ферму действуют две силы, величины, направления и точки приложения которых указаны в таблице 2 (например, в условии № 2 на ферму действуют сила под углом 75^0 к горизонтальной оси, приложенная в точке K, и сила под углом 30^0 к горизонтальной оси, приложенная в точке E).

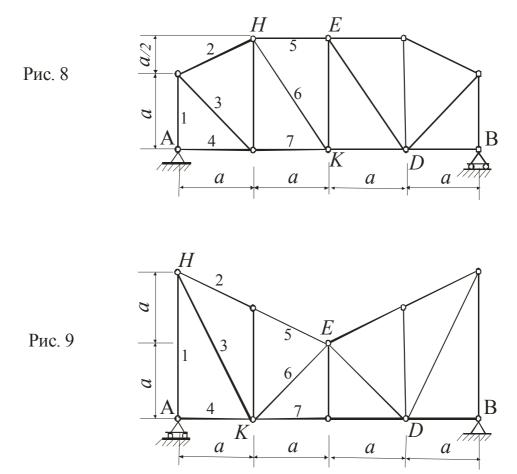

Определить опорные реакции в точках A и B, усилия в стержнях 1–8 методом вырезания узлов, и дополнительно в стержнях 5, 6, 7 – методом сквозных сечений (Риттера).


Таблица (предпоследняя цифра в номере зачетной книжки)


	Силы $F_1 = F_2 = F_3 = F_4 = 10 \ \kappa H$							
	\overline{F}_1		\overline{F}_2 α_2		\overline{F}_3		\overline{F}_4	
№ условия	Точка прило- жения	$\alpha_{_1}$	Точка прило- жения	α_2	Точка прило- жения	α_3	Точка прило- жения	$lpha_{\scriptscriptstyle 4}$
0	Н	30	-	-	-	-	K	60
1	-	-	D	15	E	60	-	-
2	K	75	-	-	-	-	E	30
3	-	-	K	60	Н	30	-	-
4	D	30	-	-	-	-	E	60
5	-	-	Н	30	-	-	D	75
6	E	60	-	-	K	15	-	-
7	-	-	D	60	-	-	Н	15
8	Н	60	-	-	D	30	-	-
9	-	-	E	75	K	30	-	_


Рисунки


(последняя цифра в номере зачетной книжки)



К заданию даётся 10 рисунков и таблица, содержащая дополнительные к тексту задачи условия. Студент во всех задачах выбирает номер рисунка по последней цифре номера своей зачётной книжки, а номер условия в таблице — по предпоследней. Например, если номер зачётной книжки оканчивается числом 57, то берутся рис.7 и условие №5 из таблицы для каждой из задач. Рисунки даны без соблюдения масштаба, на них все линии, параллельные строкам, считаются горизонтальными, а перпендикулярные строкам — вертикальными.

Задание выполняется на листах формата А4. Вначале выполняется чертёж (можно карандашом) и записывается, что в задаче дано и что требуется определить (текст задачи не переписывается). Чертёж выполняется с учётом условий решаемого варианта задачи и должен быть аккуратным и наглядным; на нём все углы, действующие силы и их расположение на чертеже должны соответствовать этим условиям.

Инструкция к пользованию программой для расчета фермы на ПЭВМ

- 1. В скачанной папке «Ферма 6» выбрать «ferm6» и нажать «Enter».
- 2. Ввести данные по своему варианту: uucno nahene u(N) для данных ферм равно 4;

 ∂ лина панелей (a) — задаётся одинаковая длина для каждой из панелей фермы;

ввод высот узлов нижнего пояса (h1) – все значения (0);

8800 высот стоек (h2) — задать пять значений высот вертикальных стержней слева направо;

раскосы — задать направления наклона раскосов, нажимая на них на рисунке;

onopы — задать номер узла, закреплённого шарнирно-неподвижно (A) и шарнирно-подвижно (B) (нумерация узлов фермы по нижнему поясу слева направо от 1 до 5, по верхнему поясу слева направо от 6 до 10);

число нагрузок $(N_p) - 2$;

 μ нагрузки — указать величину силы, номер узла, к которому она приложена и угол с положительным направлением оси x (откладывать против часовой стрелки).

Получить ответ, нажимая на «Solve».

- 3. В файле «FERMA (текстовый документ)» находятся исходные данные для рассчитываемой фермы и результаты счета. Эти данные распечатать и приложить к РГ3.
- 4. В файле «Truss (JPEG рисунок)» сохраняется рисунок рассчитываемой фермы.

Примечание: При запуске при появлении окошка information «Нет файла tm.kod!» нажать «Ок».

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Аксиомы статики.
- 2. Связи и их реакции. Принцип освобождаемости от связей.
- 3. Проекция силы на ось. Сложение сил.
- 4. Равновесие системы сходящихся сил. Теорема о трёх силах.
- 5. Плоская система сил. Алгебраические моменты силы и пары. Распределённая нагрузка.
- 6. Уравнения равновесия плоской системы сил (3 формы).
- 7. Момент силы относительно центра (как вектор) и относительно оси.
- 8. Момент пары (как вектор). Теорема о сложении пар. Теорема об эквивалентности пар, вытекающие свойства пары.
- 9. Теорема Пуансо о параллельном переносе силы. Теорема о приведении системы сил к центру.
- 10. Условия равновесия системы сил. Теорема Вариньона о моменте равнодействующей относительно центра и оси.
- 11.Вычисление главного вектора и главного момента пространственной системы сил.
- 12. Уравнения равновесия пространственной системы сил.
- 13. Центр тяжести твёрдого тела. Координаты центра тяжести для объёмных тел.
- 14. Координаты центра тяжести плоской фигуры. Центр тяжести треугольника, сектора круга.

- 15.Методы нахождения центра тяжести твёрдых тел. Статический момент площади плоской фигуры.
- 16. Классификация задач статики сооружений.
- 17. Методы расчета сооружений. Разрешающие уравнения строительной механики.
- 18. Аналитические и кинематические признаки геометрической неизменяемости систем.
- 19.Плоские фермы. Леммы о нулевых стержнях. Расчёт плоских ферм (метод вырезания узлов и метод сечений).
- 20.Виды элементов конструкций и нагрузок. Деформации, внутренние силы упругости.
- 21. Метод сечений. Виды деформаций и напряжений.
- 22. Напряжения и деформации при растяжении и сжатии. Закон Гука. Коэффициент Пуассона.
- 23. Механические характеристики и испытания материалов.
- 24. Допускаемые напряжения. Расчет на прочность при растяжении.
- 25. Геометрические характеристики плоских сечений.
- 26.Внутренние усилия при изгибе. Поперечная сила и изгибающий момент в сечении балки.
- 27. Напряжения при изгибе. Расчет на прочность по нормальным напряжениям.
- 28. Теории прочности.
- 29. Устойчивость центрально сжатых стержней.
- 30. Понятие о действии динамических и повторно-временных нагрузок.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Не предусмотрено учебным планом.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

При проведении зачета, если в течение семестра студент решил стандартные задачи и свой вариант прикладной задачи (расчетно-графическое задание) по всем пройденным темам, то проводится устный опрос по вопросам п.7.2.4. Для зачета должно быть не менее 60% верных ответов. Если имеются темы, по которым стандартные задачи по индивидуальным вариантам не решены или не выполнено РГЗ, то эти задачи решаются до устного опроса.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Основные понятия, определения и	УК-1	Теоретические вопросы для
	теоремы статики.		зачета.
2	Система сил, расположенных в	УК-1, ОПК-4	Стандартные задачи на
	одной плоскости.		практических занятиях.

3	Произвольная система сил.	УК-1, ОПК-4	Теоретические вопросы для
	Центр тяжести твердых тел.		зачета; стандартные задачи
			на практических занятиях.
4	Введение в статику сооружений.	УК-1, ОПК-4	Теоретические вопросы для
			зачета; стандартные задачи
			на практических занятиях;
			РГ3.
5	Основы расчетов элементов на	УК-1, ОПК-4	Теоретические вопросы для
	прочность.		зачета.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Решение стандартных задач проводится в аудитории на практических занятиях в рамках самостоятельной работы под контролем преподавателя в виде решения индивидуальных тестовых задач по пройденным темам разделов теоретической и прикладной механики. На решение задачи отводится 15-20 минут, при верном ответе студенту выставляется «зачет» по данной теме.

Решение расчетно-графического задания выполняется студентами самостоятельно по индивидуальным вариантам, выдаваемым преподавателем. При сдаче РГЗ обучающийся «защищает» работу, решая в присутствии преподавателя короткие тестовые задачи и отвечая на теоретические вопросы по данной теме.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

1. Тарг С. М. Краткий курс теоретической механики: Учеб. для втузов / С. М. Тарг. – 20-е изд., стер. – М.: Высш. шк., 2010. – 416 с.

Режим доступа: 11klasov.ru ...kratkij ...teoreticheskoj-mehaniki-targ ...

2. Мещерский И.В. Задачи по теоретической механике: Учеб. пособие для вузов / И.В. Мещерский; под ред. В.В. Пальмова, Д.Д. Меркина. — 50-е изд., стер. — СПб.: издательство «Лань», 2010. — 448 с.

Режим доступа: *alleng.org*>d/phys/phys387.htm

3. Теоретическая механика. Расчетно-графические задания: учебно-методическое пособие для студентов очной и заочной форм обучения / сост.: В. А. Козлов, В. В. Волков, В. Н. Горячев, М. Г. Ордян, под общей ред. В.А. Козлова; ФГБОУ ВО «Воронежский государственный технический университет». – Воронеж: Изд-во ВГТУ, 2019. – 106 с.

Библ. ВГТУ, 320 экз.

4. Кепе О.Э и др. Сборник коротких задач по теоретической механике: учеб. пособие для вузов / О.Э. Кепе, Я.А. Виба, О.П. Грапис, под ред. О.Э. Кепе. – 5-е изд., стер. – СПб.: издательство «Лань», 2017. – 368 с.

Режим доступа: *chamo.lib.tsu.ru*>*lib/item*?*id*=*chamo*: 548268...*system*

5. Бать М.И. и др. Теоретическая механика в примерах и задачах. Том 1.

Статика и кинематика: учеб. пособие / М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. — 11-е изд., стер. — СПб.: издательство «Лань», 2010. - 667 с.

Режим доступа:

eqworld.ipmnet.ru>Начальная стр>Библиотека>.../theoretical.htm

6. Бать М.И. и др. Теоретическая механика в примерах и задачах. Том 2. Динамика: учеб. пособие. / М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. — 9-е изд., стер. — СПб.: издательство «Лань», 2010.-638 с.

Режим доступа:

eqworld.ipmnet.ru>Начальная стр>Библиотека>.../theoretical.htm

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Перечень лицензионного программного обеспечения: Internet Explorer, Microsoft Word, для работы с электронными учебниками требуется наличие таких программных средств, как Adobe Reader для Windows и DjVuBrowserPlugin.

Для работы в сети рекомендуется использовать сайты (базы данных, информационно-справочные и поисковые системы):

http://elibrary.ru

http://www.knigafund.ru

http://www.fepo.ru

http://encycl.yandex.ru (энциклопедии и словари).

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий требуется поточная аудитория с доской и оснащенная презентационным оборудованием (компьютер с ОС Windows и программой PowerPoint или Adobe Reader, мультимедийный проектор и экран).

Для обеспечения практических занятий требуется обычная аудитория вместимостью на 1 ученическую группу с доской.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Теоретическая и прикладная механика» читаются лекции, проводятся практические занятия, в объемах часов самостоятельной работы выполняется расчетно-графическое задание.

В качестве основной используется традиционная технология изучения материала, предполагающая живое общение преподавателя и студента на лекционных и практических занятиях.

В процессе самостоятельной работы студент закрепляет полученные знания и навыки, выполняя домашние задания по каждой теме модуля.

Изучение материала курса сопровождается выполнением расчетно-графического задания (РГЗ). При защите выполненного РГЗ студент должен продемонстрировать как знание теоретических вопросов данного блока, так и навыки решения соответствующих задач. Выполнение самостоятельных работ и защита РГЗ являются формой текущего контроля знаний по данному разделу.

Практические занятия направлены на приобретение практических навыков расчета статического расчета конструкций и их элементов. Занятия проводятся путем решения конкретных задач в аудитории. Курс содержит модули из раздела статика теоретической механики и сопротивления материалов. По каждому модулю в аудитории проводится самостоятельная работа по индивидуальным вариантам тестовых задач. В качестве промежуточного контроля знаний по курсу теоретической и прикладной механики в 3-м семестре для очной формы обучения предусмотрен зачет.

механики в 3-м семестре для очной формы обучения предусмотрен зачет.			
Вид учебных занятий	Деятельность студента		
Лекция	Поничания мананамия намий: мастио окамотична настановатания		
лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки,		
	фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова,		
	термины. Проверка терминов, понятий с помощью энциклопедий,		
	словарей, справочников с выписыванием толкований в тетрадь.		
	Обозначение вопросов, терминов, материала, которые вызывают		
	трудности, поиск ответов в рекомендуемой литературе. Если		
	самостоятельно не удается разобраться в материале, необходимо		
	сформулировать вопрос и задать преподавателю на лекции или на		
	практическом занятии.		
Практическое Работа с конспектом лекций, просмотр рекомендуемог			
занятие	Решение задач по рассматриваемой теме из рекомендуемого задачника,		
	решение стандартных задач по индивидуальным вариантам.		
	Выполнение примерного варианта расчетно-графического задания.		
Самостоятельная	Преследует цель закрепить, углубить и расширить знания, полученные		
работа	студентами в ходе аудиторных занятий, а также сформировать навыки работы с научной, учебной и учебно-методической литературой,		
	развивать творческое, продуктивное мышление обучаемых, их		
	креативные качества, формирование общепрофессиональных компетенций.		
	Самостоятельная работа предполагает следующие составляющие:		
	- работа с текстами: учебниками, справочниками, дополнительной		
	литературой, а также проработка конспектов лекций;		
	- решение задач домашнего задания;		
	- выполнение расчетно-графического задания аналогично разобран-		
	ному на практических занятиях примеру;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций, олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка к	При подготовке к зачету необходимо ориентироваться на конспекты		
промежуточной	лекций, рекомендуемую литературу и решение задач на практических		
	l D		
аттестации	занятиях. Готовиться к промежуточной аттестации следует		