МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан факультета «29» июня 2018г.

Баркалов С.А.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Математика»

Направление подготовки 27.03.03 <u>СИСТЕМНЫЙ АНАЛИЗ И УПРАВЛЕНИЕ</u>

Профиль

Квалификация выпускника бакалавр

Нормативный период обучения 4 года /4 года 11 м.

Форма обучения очная/заочная

Год начала подготовки <u>2018</u>

Автор программы

Попова В.А.

Заведующий кафедрой Прикладной математики и

механики

Ряжских В И

Руководитель ОПОП

Лихачева Т.Г.

Воронеж 2018

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Развитие логического и алгоритмического мышления, выработка умения самостоятельно расширять и углублять математические знания; математического необходимого аппарата, помогающего анализировать, моделировать и решать прикладные задачи; формирование у студента начального уровня математической культуры, достаточного для продолжения образования, научной работы или практической деятельности, формирования методологических основ ДЛЯ целостного мировоззрения, отвечающего современному уровню развития человеческой цивилизации.

1.2. Задачи освоения дисциплины

- Выработка ясного понимания необходимости математического образования в подготовке бакалавра и представления о роли и месте математики в современной системе знаний и мировой культуре;
- Ознакомление с системой понятий, используемых для описания важнейших математических моделей и математических методов, и их взаимосвязью;
- Формирование конкретных практических приемов и навыков постановки и решения математических задач, ориентированных на практическое применение при изучении дисциплин профессионального цикла;
- Овладение основными математическими методами, необходимыми для анализа процессов и явлений при поиске оптимальных решений, обработки и анализа результатов экспериментов.
- Изучение основных математических методов применительно к решению научно-технических задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Математика» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Математика» направлен на формирование следующих компетенций:

ОПК-1 - готовностью применять методы математики, физики, химии, системного анализа, теории управления, теории знаний, теории и технологии программирования, а также методов гуманитарных, экономических и социальных наук

ОПК-2 - способностью применять аналитические, вычислительные и

системно-аналитические методы для решения прикладных задач в области управления объектами техники, технологии, организационными системами, работать с традиционными носителями информации, базами знаний

ОПК-3 - способностью представлять современную научную картину мира на основе знаний основных положений, законов и методов естественных наук и математики

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-1	Знать: дифференциальное и интегральное исчисления; дифференциальные и интегральные уравнения; линейную алгебру; аналитическую геометрию; вычислительные методы; логику и логический вывод; дискретную математику; теорию вероятностей и математическую статистику; основы математического анализа; основы современной геометрии. Уметь: применять математические модели и методы, для решения прикладных задач;
	Владеть: методами математического анализа и линейной алгебры; методами решения систем дифференциальных и алгебраических уравнений; методами теории вероятностей и математической статистики.
ОПК-2	Знать: дифференциальное и интегральное исчисления; дифференциальные и интегральные уравнения; линейную алгебру; аналитическую геометрию; вычислительные методы; логику и логический вывод; дискретную математику; теорию вероятностей и математическую статистику; основы математического анализа; основы современной геометрии. Уметь: применять математические модели и методы, для решения прикладных задач;
	Владеть: методами математического анализа и линейной алгебры; методами решения систем дифференциальных и алгебраических уравнений; методами теории вероятностей и математической статистики.

ОПК-3	Знать: дифференциальное и интегральное исчисления;
	дифференциальные и интегральные уравнения;
	линейную алгебру; аналитическую геометрию;
	вычислительные методы; логику и логический вывод;
	дискретную математику; теорию вероятностей и
	математическую статистику; основы математического
	анализа; основы современной геометрии.
	Vivoria industrialisma Morro Morro Morro Maria de Morro Morro Morro Maria de Morro Morro Morro Morro Morro Morro Maria de Morro Morro Morro Maria de Morro Morr
	Уметь: применять математические модели и методы,
	для решения прикладных задач;
	Владеть: методами математического анализа и
	линейной алгебры; методами решения систем
	дифференциальных и алгебраических уравнений;
	методами теории вероятностей и математической
	статистики.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Математика» составляет 10 з.е. Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Day a version of notion a	Всего		Семе	стры	
Виды учебной работы	часов	1	2	3	4
Аудиторные занятия (всего)	170	46	46	46	32
В том числе:					
Лекции	62	18	18	18	8
Практические занятия (ПЗ)	108	28	28	28	24
Самостоятельная работа	118	26	26	26	40
Часы на контроль	72	36	1	ı	36
Виды промежуточной аттестации -	+			_	+
экзамен, зачет	+	+	+	+	+
Общая трудоемкость:					
академические часы	360	108	72	72	108
зач.ед.	10	3	2	2	3

заочная форма обучения

Duran varabuaŭ nabatu	Всего	Семестры				
Виды учебной работы	часов	1	2	3	4	
Аудиторные занятия (всего)	60	22	12	16	10	
В том числе:						
Лекции	24	10	4	6	4	
Практические занятия (ПЗ)	36	12	8	10	6	
Самостоятельная работа	274	82	87	30	75	

Часы на контроль	26	4	9	4	9
Виды промежуточной аттестации -			Т		Т
экзамен, зачет	T		Т	T	Т
Общая трудоемкость:					
академические часы	360	108	108	50	94
зач.ед.	10	3	3	1.39	2.61

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Линейная и векторная алгебра	Определители второго и третьего порядков и их свойства. Миноры и алгебраические дополнения. Вычисление определителей третьего порядка разложением по строке (столбцу). Понятие об определителе п-го порядка. Решение системы алгебраических линейных уравнений методом Гаусса, по формулам Крамера. Линейные операции над векторами и их свойства. Разложение вектора по базису. Векторы в прямоугольной системе координат. Скалярное векторное и смешанное произведения векторов; их определения, основные свойства, способы вычисления и применения к решению физических и геометрических задач.	4	6	14	24
2	Аналитическая геометрия и основы современной геометрии		6	8	14	28
3	Введение в математический анализ и дифференциальное исчисление функций одной переменной		8	14	18	40
4	Дифференциальное исчисление функций нескольких переменных	Функция нескольких переменных, область определения. Частные приращения и полное приращение функции двух переменных. Частные производные и их вычисление. Повторное	4	8	14	26

5	-	дифференцирование функции двух переменных. Частные дифференциалы и полный дифференциал функции двух переменных. Касательная плоскость и нормаль к поверхности (определение, уравнения). Экстремум функции двух переменных. Производная по направлению и градиент функции нескольких переменных (определения, вычисление). Первообразная. Неопределенный интеграл. Методы интегрирования. Задача о площади криволинейной трапеции, приводящая к понятию определенного интеграла по отрезку. Определенный интеграл по отрезку				
		(определение, основные свойства, вычисление, формула Ньютона-Лейбница) и его приложения. Несобственные интегралы I и II рода. Двойной интеграл и его приложения. Криволинейные интегралы I и II рода. Их вычисление и приложение.	16	24	14	54
6	Обыкновенные дифференциальные уравнения	Задачи, приводящие к дифференциальным уравнениям. Определение дифференциального уравнения, его порядка и решения. Задача Коши и теорема Коши для уравнений 1-го порядка. Общее и частное решения. Основные типы дифференциальных уравнений 1 -го порядка. Дифференциальные уравнения высших порядков. Дифференциальные уравнения второго порядка. Задача Коши. Общее и частное решения. Дифференциальные уравнения второго порядка, допускающие понижение порядка. Линейные дифференциальные уравнения 2-го порядка. Теоремы о структуре общего решения линейного однородного и линейного неоднородного уравнений 2-го порядка. Фундаментальная система решений линейного однородного дифференциального уравнения. Методы решения линейных однородных и неоднородных дифференциальных уравнений с постоянными коэффициентами.	10	20	14	44
7	Числовые и функциональные ряды	Числовой ряд, сходимость, сумма. Основные свойства сходящихся рядов. Признаки сходимости знакоположительных числовых рядов. Знакочередующиеся ряды. Признак Лейбница. Степенные ряды. Радиус и интервал сходимости. Ряды Тейлора и Маклорена. Разложение функций в степенные ряды. Тригонометрический ряд. Коэффициенты Фурье. Ряд Фурье для функции с периодом 2 π , теорема Дирихле.	6	8	14	28
8	1 1	Элементы комбинаторики. Случайные события. Алгебра событий. Относительная частота. Классическое, геометрическое, статистическое определения вероятности. Основные теоремы теории вероятностей. Формула полной вероятности. Схема Бернулли. Дискретные и непрерывные случайные величины. Функция распределения, плотность вероятности и	8	20	16	44

	числовые характеристики. Законы распределения дискретных и непрерывных случайных величин (биномиальное, Пуассона, равномерное, показательное, нормальное распределения). Генеральная совокупность и выборка. Полигон частот, гистограмма. Эмпирическая функция распределения. Нахождение неизвестных параметров распределения по выборке. Точечные и интервальные оценки параметров распределения.				
	62	108	118	288	

заочная форма обучения

	заочная форма обучения							
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час		
1	Линейная и векторная алгебра	Определители второго и третьего порядков и их свойства. Миноры и алгебраические дополнения. Вычисление определителей третьего порядка разложением по строке (столбцу). Понятие об определителе n-го порядка. Решение системы алгебраических линейных уравнений методом Гаусса, по формулам Крамера. Линейные операции над векторами и их свойства. Разложение вектора по базису. Векторы в прямоугольной системе координат. Скалярное векторное и смешанное произведения векторов; их определения, основные свойства, способы вычисления и применения к решению физических и геометрических задач.		4	34	40		
2	Аналитическая геометрия и основы современной геометрии	Прямая на плоскости (различные виды уравнений прямой). Взаимное расположение 2-х прямых. Плоскость и прямая в пространстве, их уравнения и взаимное расположение. Кривые и поверхности 2-го порядка; их канонические уравнения и построение.	2	4	36	42		
3	анализ и дифференциальное исчисление функций одной переменной		4	4	34	42		
4	Дифференциальное исчисление функций нескольких переменных	Функция нескольких переменных, область определения. Частные приращения и полное приращение функции двух переменных. Частные производные и их вычисление. Повторное дифференцирование функции двух переменных.	2	4	34	40		

			1			
		Частные дифференциалы и полный дифференциал функции двух переменных. Касательная плоскость и нормаль к поверхности (определение, уравнения). Экстремум функции двух переменных. Производная по направлению и градиент функции нескольких переменных (определения, вычисление).				
5	_	Первообразная. Неопределенный интеграл. Методы интегрирования. Задача о площади криволинейной трапеции, приводящая к понятию определенного интеграла по отрезку. Определенный интеграл по отрезку (определение, основные свойства, вычисление, формула Ньютона-Лейбница) и его приложения. Несобственные интегралы I и II рода. Двойной интеграл и его приложения. Криволинейные интегралы I и II рода. Их вычисление и приложение.	2	6	34	42
6	Обыкновенные дифференциальные уравнения	Задачи, приводящие к дифференциальным уравнениям. Определение дифференциального уравнения, его порядка и решения. Задача Коши и теорема Коши для уравнений 1-го порядка. Общее и частное решения. Основные типы дифференциальных уравнений 1 -го порядка. Дифференциальные уравнения высших порядков. Дифференциальные уравнения второго порядка. Задача Коши. Общее и частное решения. Дифференциальные уравнения второго порядка, допускающие понижение порядка. Линейные дифференциальные уравнения 2-го порядка. Теоремы о структуре общего решения линейного однородного и линейного неоднородного уравнений 2-го порядка. Фундаментальная система решений линейного однородного дифференциального уравнения. Методы решения линейных однородных и неоднородных дифференциальных уравнений с постоянными коэффициентами.	4	6	34	44
7	Числовые и функциональные ряды	Числовой ряд, сходимость, сумма. Основные свойства сходящихся рядов. Признаки сходимости знакоположительных числовых рядов. Знакочередующиеся ряды. Признак Лейбница. Степенные ряды. Радиус и интервал сходимости. Ряды Тейлора и Маклорена. Разложение функций в степенные ряды. Тригонометрический ряд. Коэффициенты Фурье. Ряд Фурье для функции с периодом 2π, теорема Дирихле.	4	4	34	42
8		Элементы комбинаторики. Случайные события. Алгебра событий. Относительная частота. Классическое, геометрическое, статистическое определения вероятности. Основные теоремы теории вероятностей. Формула полной вероятности. Схема Бернулли. Дискретные и непрерывные случайные величины. Функция распределения, плотность вероятности и числовые характеристики. Законы	4	4	34	42

случайных величин (биномиальное, Пуассона, равномерное, показательное, нормальное распределения). Генеральная совокупность и выборка. Полигон частот, гистограмма. Эмпирическая функция распределения. Нахождение неизвестных параметров распределения по выборке. Точечные и интервальные оценки параметров распределения. Итого	24	36	274	334
распределения дискретных и непрерывных случайных величин (биномиальное, Пуассона,				

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	Знать: дифференциальное и интегральное исчисления; дифференциальные и интегральные уравнения; линейную алгебру; аналитическую геометрию; вычислительные методы; логику и логический вывод; дискретную математику; теорию вероятностей и математическую статистику; основы математического анализа; основы современной геометрии.	Экзамен.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: применять математические модели	Расчетно-графическая	Выполнение работ в срок,	Невыполнение работ в срок,

	и методы, для решения прикладных задач; Владеть: методами математического анализа и линейной алгебры; методами решения систем дифференциальных и алгебраических уравнений; методами теории вероятностей и математической	работа (РГР) Контрольная работа (КР) Тестирование (Т) Коллоквиум (КЛ) Зачет Экзамен. Расчетно-графическая работа (РГР) Контрольная работа (КР) Тестирование (Т) Коллоквиум (КЛ) Зачет Экзамен.	предусмотренный в рабочих программах Выполнение работ в срок, предусмотренный в рабочих программах	предусмотренный в рабочих программах Невыполнение работ в срок, предусмотренный в рабочих программах
ОПК-2	статистики. Знать:дифференциальное и интегральное исчисления; дифференциальные и интегральные уравнения; линейную алгебру; аналитическую геометрию; вычислительные методы; логику и логический вывод; дискретную математику; теорию вероятностей и математическую статистику; основы математического анализа; основы современной геометрии.		Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: применять математические модели и методы, для решения прикладных задач;	Расчетно-графическая работа (РГР) Контрольная работа (КР) Тестирование (Т) Коллоквиум (КЛ) Зачет Экзамен.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: методами математического анализа и линейной алгебры; методами решения систем дифференциальных и алгебраических уравнений; методами теории вероятностей и математической статистики.	Расчетно-графическая	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ОПК-3	Знать:	Расчетно-графическая работа (РГР) Контрольная работа (КР) Тестирование (Т) Коллоквиум (КЛ) Зачет Экзамен.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

математические модели и методы, для решения прикладных задач;	Расчетно-графическая работа (РГР) Контрольная работа (КР) Тестирование (Т) Коллоквиум (КЛ) Зачет	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
Владеть: методами математического анализа и линейной алгебры; методами решения систем дифференциальных и алгебраических	Экзамен. Расчетно-графическая работа (РГР) Контрольная работа (КР) Тестирование (Т) Коллоквиум (КЛ) Зачет Экзамен.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 1, 2, 3, 4 семестре для очной формы обучения, 1, 2, 3, 4 семестре для заочной формы обучения по двух/четырехбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ОПК-1	Знать:	Тест	Выполнение теста на	Выполнение менее
	дифференциальное и		70-100%	70%
	интегральное			
	исчисления;			
	дифференциальные и			
	интегральные уравнения;			
	линейную алгебру;			
	аналитическую			
	геометрию;			
	вычислительные методы;			
	логику и логический			
	вывод; дискретную			
	математику; теорию			
	вероятностей и			
	математическую			
	статистику; основы			
	математического			
	анализа; основы			
	современной геометрии.			
	Уметь: применять	Решение стандартных	Продемонстрирова н	Задачи не решены
	математические модели	практических задач	верный ход решения	

	и методы, для решения		в большинстве задач	
	прикладных задач;		в оольшинетье зада т	
	Владеть: методами	Решение прикладных задач	Продемонстрирова н	Задачи не решены
	математического анализа	в конкретной предметной	верный ход решения	•
	и линейной алгебры;	области	в большинстве задач	
	методами решения			
	систем			
	дифференциальных и			
	алгебраических			
	уравнений; методами			
	теории вероятностей и			
	математической статистики.			
ОПК-2	Знать:	Тест	Выполнение теста на	Выполнение менее
01110 2	дифференциальное и		70-100%	70%
	интегральное		70 10070	7070
	исчисления;			
	дифференциальные и			
	интегральные уравнения;			
	линейную алгебру;			
	аналитическую			
	геометрию;			
	вычислительные методы;			
	логику и логический			
	вывод; дискретную			
	математику; теорию			
	вероятностей и			
	математическую			
	статистику; основы			
	математического			
	анализа; основы			
	современной геометрии.	n	П	n
	Уметь: применять	Решение стандартных	Продемонстрирова н	Задачи не решены
	математические модели	практических задач	верный ход решения в большинстве задач	
	и методы, для решения прикладных задач;		в оольшинстве задач	
	Владеть: методами	Решение прикладных задач	Продемонстрирова и	Задачи не решены
		в конкретной предметной	верный ход решения	задачи не решены
	и линейной алгебры;	области	в большинстве задач	
	методами решения	oonae in	в оольшинетье зада г	
	систем			
	дифференциальных и			
	алгебраических			
	уравнений; методами			
	теории вероятностей и			
	математической			
	статистики.			
ОПК-3	Знать:	Тест	Выполнение теста на	
	дифференциальное и		70-100%	70%
	интегральное			
	исчисления;			
	дифференциальные и			
	интегральные уравнения;			
	линейную алгебру;			
	аналитическую			
	геометрию;			
	вычислительные методы;			
1	логику и логический			
1	вывод; дискретную			
	математику; теорию			
1	вероятностей и			
I	математическую			

статистику; основы математического анализа; основы			
современной геометрии.			
Уметь: применять	Решение стандартных	Продемонстрирова н	Задачи не решены
математические модели	практических задач	верный ход решения	
и методы, для решения		в большинстве задач	
прикладных задач;			
Владеть: методами	Решение прикладных задач		Задачи не решены
математического анализа	в конкретной предметной	верный ход решения	
и линейной алгебры;	области	в большинстве задач	
методами решения			
систем			
дифференциальных и			
алгебраических			
уравнений; методами			
теории вероятностей и			
математической			
статистики.			

ИЛИ

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-1	Знать: дифференциальное и интегральное исчисления; дифференциальные и интегральные уравнения; линейную алгебру; аналитическую геометрию; вычислительные методы; логику и логический вывод; дискретную математику; теорию вероятностей и математическую статистику; основы математического анализа; основы современной геометрии.	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	Уметь: применять математические модели и методы, для решения прикладных задач;	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	Владеть: методами математического анализа и линейной	Решение прикладных задач в	Задачи решены в полном	Продемонстр ирован верный ход	Продемонстр ирован верный ход	Задачи не решены

				1		-
	алгебры; методами	конкретной	объеме и	решения всех,	решения в	
	решения систем	предметной	получены	но не получен	большинстве	
	дифференциальных	области	верные	верный ответ	задач	
	и алгебраических		ответы	во всех		
	уравнений;			задачах		
	методами теории					
	вероятностей и					
	математической					
	статистики.					
ОПК-2	Знать:	Тест	Выполнение	Выполнение	Выполнение	В тесте менее
	дифференциальное и		теста на 90-	теста на 80-	теста на 70-	70%
	интегральное		100%	90%	80%	правильных
	исчисления;					ответов
	дифференциальные					
	и интегральные					
	уравнения;					
	линейную алгебру;					
	аналитическую					
	геометрию;					
	вычислительные					
	методы; логику и					
	логический вывод;					
	дискретную					
	математику; теорию					
	вероятностей и					
	математическую					
	статистику; основы					
	математического					
	анализа; основы					
	современной					
	геометрии.					
	Уметь: применять	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	математические	стандартных	решены в	ирован	ирован	решены
	модели и методы,	практических	полном	верный ход	верный ход	1
	для решения	задач	объеме и	решения всех,	решения в	
	прикладных задач;	3.10	получены	но не получен	большинстве	
	npinaragneni saga i,		верные	верный ответ	задач	
			ответы	во всех	эиди 1	
			ОТВСТВІ	задачах		
	D на нати: мата нами	Решение	Задачи		Продемонстр	Задачи не
	Владеть: методами			Продемонстр		
	математического	прикладных	решены в	ирован	ирован	решены
	анализа и линейной	задач в	полном	верный ход	верный ход	
	алгебры; методами	конкретной	объеме и	решения всех,	решения в	
	решения систем	предметной	получены	но не получен	большинстве	
	дифференциальных	области	верные	верный ответ	задач	
	и алгебраических		ответы	во всех		
	уравнений;			задачах		
	методами теории					
	вероятностей и					
	математической					
	статистики.					
ОПК-3	Знать:	Тест	Выполнение	Выполнение	Выполнение	В тесте менее
	дифференциальное и		теста на 90-	теста на 80-	теста на 70-	70%
	интегральное		100%	90%	80%	правильных
	исчисления;			, ,,,	24,2	ответов
	дифференциальные					0150105
	и интегральные					
	уравнения;					
	линейную алгебру;					
		Ī	Ī	Ī		
	аналитическую					
	геометрию;					

логический вывод; дискретную					
математику; теорию					
вероятностей и					
математическую					
статистику; основы					
математического					
анализа; основы					
современной					
геометрии.					
Уметь: применять	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
математические	стандартных	решены в	ирован	ирован	решены
модели и методы,	практических	полном	верный ход	верный ход	решены
для решения	задач	объеме и	решения всех,	решения в	
прикладных задач;		получены	но не получен	большинстве	
		верные	верный ответ	задач	
		ответы	во всех	, ,	
			задачах		
Владеть: методами	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
математического	прикладных	решены в	ирован	ирован	решены
анализа и линейной	задач в	полном	верный ход	верный ход	
алгебры; методами	конкретной	объеме и	решения всех,	решения в	
решения систем	предметной	получены	но не получен	большинстве	
дифференциальных	области	верные	верный ответ	задач	
и алгебраических		ответы	во всех		
уравнений;			задачах		
методами теории					
вероятностей и					
математической					
статистики.					

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию (минимум 10 вопросов для тестирования с вариантами ответов)

1-й семестр

1. -6 2. 6 3. -30 4. 30

2. Формула вычисления определителя третьего порядка $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix}$ содержит

следующие произведения ...

1. *adf* 3. *cdk*

2. bfg 4. aek

3. Переменная
$$y$$
 системы уравнений
$$\begin{cases} x+2y-4z=0,\\ -3x+y+5z=4,\\ 4x+3y-6z=3 \end{cases}$$
 по формуле ...

1.
$$y = \begin{vmatrix} 1 & 2 & 0 \\ -3 & 1 & 4 \\ 4 & 3 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$
3. $y = \begin{vmatrix} 0 & 2 & -4 \\ 4 & 1 & 5 \\ 3 & 3 & -6 \end{vmatrix}$

$$\begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

3.
$$y = \frac{\begin{vmatrix} 4 & 1 & 5 \\ 3 & 3 & -6 \end{vmatrix}}{\begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}}$$

2.
$$y = \begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$
4. $y = \begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$

$$\begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$4. \quad y = \begin{vmatrix} -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$\begin{vmatrix} -3 & 1 & 5 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

- **4.** Даны векторы $\bar{a} = (3; -9)$, $\bar{b} = (-3; 6)$, тогда координаты вектора $5\bar{b} \frac{a}{3}$ равны ...
 - **1.** (-16; 33) 3. (16; -47)
 - 2. (-46; 31) 4. (-16; 27)
- **5.** Скалярное произведение векторов $\bar{a} = (-1; t)$ и $\bar{b} = (t; 0)$ удовлетворяет неравенству $\bar{a} \cdot \bar{b} \le 1$ при двух значениях параметра t, равных ...
 - **1.** 1
- **2.** 0
- **6.** Уравнение $x^2 + y^2 = 4y$ в полярных координатах имеет вид ...
 - 1. $\rho^2 = 4\cos\varphi$ 3. $\rho = 4\sin\varphi$
 - **2.** $\rho^2 = 4\sin\varphi$ **4.** $\rho = 4\cos\varphi$
- 7. Сопоставьте уравнениям прямых их названия.
 - 1. 8x+4y+1=0
- А) общее уравнение прямой

2.
$$\frac{x+1}{-3} = \frac{y+1}{-4}$$

- Б) уравнение прямой с угловым коэффициентом
- 3. y = -x + 5
- В) каноническое уравнение прямой

Ответ: 1А, 2В, 3Б.

- **8.** Среди прямых $l_1: 2x+y-3=0$, $l_2: 4x+2y-6=0$, $l_3: 4x-2y-6=0$, $l_4: -4x+2y-3=0$ параллельными являются . . .

 - 1. *l*₂ и *l*₃ 3. *l*₁ и *l*₃
 - **2.** l_3 и l_4 **4.** l_1 и l_2
- **9.** Радиус окружности, заданной уравнением $x^2 + y^2 2x + 2y 7 = 0$, равен ...
 - **1.** 3
- 3. $\sqrt{7}$
- 2. 7
- 4 9
- 10. Сопоставьте уравнениям линий их названия
 - 1. $(x+6)^2 + (y-2)^2 = 64$ A) окружность
 - 2. $x^2 + 4y = 16$
- Б) гипербола
- 3. $x^2 + 4y^2 = 4$
- В) парабола
- 4. $\frac{x^2}{9} \frac{y^2}{9} = 1$
- Г) эллипс

Ответ: 1А, 2В, 3Г, 4Б.

- 11. Укажите два предела, значения которых не больше 3.
 - 1. $\lim_{x \to 2} \frac{x^2 4x + 4}{x 2}$ 3. $\lim_{x \to 1} \frac{5x 5}{x 1}$
 - 2. $\lim_{x \to 0} \frac{3x x^2}{x}$ 4. $\lim_{x \to 3} \frac{x^2 9}{x 3}$
- **12.** Значение предела $\lim_{x\to\infty} \left(1 + \frac{6}{x-2}\right)^{\frac{x}{3}}$ равно...
- **1.** e^2 2. $e^{1/3}$ 3. $e^{1/18}$
- 4. 1
- 13. Установите соответствие между функцией и ее производной.

 - 1. $y = 3^x \cdot arctg \, 3x$ A) $y' = e^x \left(\frac{3}{1 + 9x^2} + arctg \, 3x \right)$

$$2. \quad y = tg \, 3x \cdot e^{x}$$

$$3. \quad y = arctg \, 3x \cdot e^x$$

3.
$$y = arctg 3x \cdot e^x$$
 B) $y' = e^x \frac{1 + \sin 3x}{\cos^2 3x}$

$$\Gamma) \quad y' = e^x \frac{6 + \sin 6x}{2\cos^2 3x}$$

Д)
$$y' = 3^x \left(arctg 3x + \frac{1}{1 + 9x^2} \right)$$

Ответ: 1Б, 2Г, 3А.

14. Вторая производная функции $y = 5x^2 - 3^x + 8$ имеет вид ...

1.
$$10+3^x \ln^2 3$$
 3. $18-3^x \ln^2 3$

3.
$$18-3^x \ln^2 3$$

2.
$$10-3^x \ln^2 3$$
 4. $10x-3^x \ln 3$

4.
$$10x - 3^x \ln 3$$

15. Вертикальными асимптотами кривой $y = \frac{x+7}{x(x-5)}$ являются следующие две прямые:

1.
$$x = -7$$
 3. $x = 5$

3.
$$x = 5$$

2.
$$x = 0$$

2.
$$x = 0$$
 4. $y = 0$

2-й семестр

1. Корнями уравнения $x^3 + 36x$ над полем комплексных чисел являются ...

2. Расположите комплексные числа в порядке расположения изображения в 1-й, 2-й, 3-й и 4-й четвертях комплексной плоскости.

1.
$$1+2i$$

3.
$$-4-i$$

2.
$$-8+5i$$
 4. $5-6i$

$$4.5-6i$$

Ответ: 1, 2, 3, 4.

3. Частная производная z'_x функции $z = 7 - x^4 + yx^2 - y^2$ имеет вид ...

1.
$$2xy - 4x^3 - 2y$$
 3. $2xy - 4x^3$

3.
$$2xy - 4x$$

2.
$$2xy - 4x^3 + 7$$

2.
$$2xy - 4x^3 + 7$$
 4. $2xy - 4x^3 - 2y + x^2$

4. Множество всех первообразных функции
$$f(x) = \frac{1}{\sin^2 x} - x^2 + 1$$
 имеет вид

1.
$$-ctgx - \frac{x^3}{3} + x + C$$
 3. $-ctgx - \frac{x^3}{2} + 1 + C$

3.
$$-ctgx - \frac{x^3}{2} + 1 + C$$

2.
$$-\frac{2\cos x}{\sin^3 x} - 2x$$
 4. $\cot x - \frac{x^3}{3} + x$

4.
$$ctgx - \frac{x^3}{3} + x$$

5. Установите соответствие между интегралами и методами их вычисления.

1. непосредственное интегрирование A)
$$\int x^3 \cos x dx$$

A)
$$\int x^3 \cos x dx$$

$$\mathsf{E}) \int x^4 dx$$

3. метод интегрирования по частям B)
$$\int (x^2 + 3)^5 x dx$$

B)
$$\int (x^2 + 3)^5 x dx$$

Ответ: 1Б, 2В, 3А.

6. Если в неопределенном интеграле $\int (7x-1)\cos\frac{x}{4}dx$, применяя метод интегрирования по частям: $\int u dv = uv - \int v du$, положить, что u(x) = 7x - 1, то функция v(x) будет равна ...

1.
$$\frac{1}{4}\sin\frac{x}{4}$$
 3. $4\sin\frac{x}{4}$

3.
$$4\sin\frac{x}{4}$$

2.
$$-4\cos\frac{x}{4}$$
 4. $\cos\frac{x}{4}$

4.
$$\cos \frac{x}{4}$$

7. Установите соответствие между неопределенными интегралами и разложениями подынтегральных функций на элементарные дроби.

$$1. \int \frac{1}{x(x+1)^2} dx$$

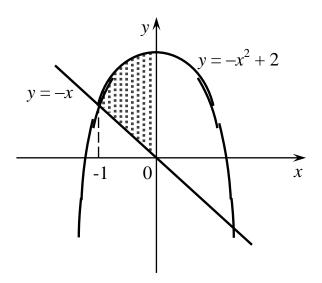
A)
$$\frac{A}{x^2} + \frac{B}{x} + \frac{Cx + D}{x^2 + 16}$$

$$2. \int \frac{x-7}{x(x-2)} dx$$

$$\mathsf{F}) \quad \frac{A}{x} + \frac{B}{x-2}$$

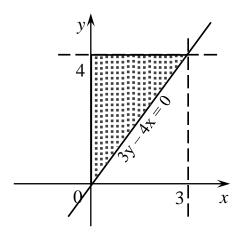
3.
$$\int \frac{2x+5}{(x-1)(x^2+1)} dx$$
 B) $\frac{A}{x-1} + \frac{Bx+C}{x^2+1}$

B)
$$\frac{A}{x-1} + \frac{Bx + C}{x^2 + 1}$$


$$4. \int \frac{2x-1}{x^2(x^2+16)} dx$$

$$\Gamma$$
) $\frac{A}{x} + \frac{B}{(x+1)^2} + \frac{C}{x+1}$

$$\coprod) \frac{A}{x-1} + \frac{B}{x^2+1}$$


Ответ: 1Г, 2Б, 3В, 4А.

- **8.** Значение интеграла $\int_{0}^{1} \sqrt{1+x} dx$ равно ...
 - 1. $\frac{2(\sqrt{8}-1)}{3}$ 3. $\frac{1}{\sqrt{8}}$
 - 2. $\frac{3(\sqrt{8}-1)}{2}$ 4. $\frac{15}{2}$
- 9. Несобственным интегралом является интеграл ...
 - 1. $\int_{2}^{3} \frac{\ln^{3} x}{x} dx$ 3. $\int_{1}^{+\infty} \frac{dx}{x^{5}}$
 - 2. $\int_{0}^{2} dx \int_{0}^{1} (x^{2} + y) dy$ 4. $\int x^{2} \operatorname{arcctg} x dx$
- **10.** Несобственный интеграл $\int_{3}^{+\infty} \frac{dx}{(x-2)^2}$ равен ...
 - 1. -1
- **2.** -∞ **4.** 1
- 11. Площадь фигуры, изображенной на рисунке, определяется интегралом

- 1. $\int_{-\sqrt{2}}^{0} ((-x) (-x^2 + 2)) dx$
- 2. $\int_{-\sqrt{2}}^{0} ((-x^2+2)-(-x)) dx$
- 3. $\int_{-1}^{0} ((-x) (-x^2 + 2)) dx$
 - **4.** $\int_{1}^{0} ((-x^{2} + 2) (-x)) dx$

12. Площадь заштрихованной на рисунке фигуры определяют два из приведенных интегралов ...

- **1.** $\int_{0}^{4} dy \int_{0}^{\frac{3}{4}y} dx$ 3. $\int_{0}^{\frac{3}{4}y} dx \int_{0}^{\frac{4}{3}x} dy$

- **2.** $\int_{0}^{3} dx \int_{-x}^{4} dy$ **4.** $\int_{0}^{3} dx \int_{0}^{3y-4x} dx$

3-й семестр

1. Разделение переменных дифференциальном уравнении $(e^y - 1)\cos x dx - e^y \sin x dy = 0$ приведет его к виду ...

1.
$$\frac{(e^y - 1)ctgxdx}{e^y} = dy$$
 3.
$$-ctgxdx = \frac{e^y dy}{e^y - 1}$$

$$3. - ctgxdx = \frac{e^y dy}{e^y - 1}$$

$$2. \quad tgxdx = \frac{e^y dy}{e^y - 1}$$

2.
$$tgxdx = \frac{e^y dy}{e^y - 1}$$
 4. $ctgxdx = \frac{e^y dy}{e^y - 1}$

2. Установите соответствие между записью дифференциальных уравнений первого порядка и их названиями.

1.
$$(x^2 + x + 2)dx + \frac{dy}{y} = 0$$

А) линейное дифференциальное уравнение

$$2. \quad y' = -\frac{x^3 + 2xy^2}{xy^2}$$

Б) однородное дифференциальное уравнение

$$3. \quad y' + yctgx = \frac{1}{\sin^2 x}$$

В) дифференциальное уравнение с разделенными переменными

Ответ: 1В, 2Б, 3А

3. Однородными дифференциальными уравнениями 1-го порядка являются следующие два уравнения ...

$$1. \quad x \ln \frac{x}{y} dy + y dx = 0$$

1.
$$x \ln \frac{x}{y} dy + y dx = 0$$
 3. $xy^2 dx + x(x^2 + y^2) dy = 0$

2.
$$\sqrt{y}dx + (1+x^2)dy = 0$$
 4. $y' + y = x^2$

4.
$$y' + y = x^2$$

4. Среди перечисленных дифференциальных уравнений уравнениями второго порядка являются ...

1.
$$xy \frac{\partial z}{\partial x} + 5y^2 \frac{\partial z}{\partial y} = 0$$

3.
$$xy \frac{d^2y}{dx^2} + y \frac{dy}{dx} + 3y = 7x$$

2.
$$y \frac{d^2y}{dx^2} + 4y \frac{dy}{dx} + 12x = 0$$
 4. $x^2y' + 2y - 15x + 3 = 0$

4.
$$x^2y' + 2y - 15x + 3 = 0$$

5. Общее решение дифференциального уравнения $y''' = \sin 2x$ имеет вид ...

1.
$$y = \frac{1}{8}\cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$$
 3. $y = \cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$

3.
$$y = \cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$$

2.
$$y = -\frac{1}{8}\cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$$
 4. $y = \frac{1}{8}\cos 2x + C_3$

4.
$$y = \frac{1}{8}\cos 2x + C$$

решение дифференциального 6. Определить частное уравнения $y'' + 4y' + 4y = e^{2x}$, учитывая форму правой части ...

1.
$$y = Ae^{2x} + Be^{-2x}$$
 3. $y = Ax^2e^{2x}$

3.
$$y = Ax^2e^{2x}$$

2.
$$y = Ae^{2x}$$

2.
$$y = Ae^{2x}$$
 4. $y = e^{2x}(A + Bx)$

7. Необходимое условие сходимости выполняется для двух рядов ...

1.
$$\sum_{n=1}^{\infty} \frac{2}{6^n}$$

1.
$$\sum_{n=1}^{\infty} \frac{2}{6^n}$$
 3. $\sum_{n=1}^{\infty} \frac{2}{4n+1}$

$$2. \sum_{n=1}^{\infty} 2^n \cdot n$$

2.
$$\sum_{n=1}^{\infty} 2^n \cdot n$$
 4. $\sum_{n=1}^{\infty} \frac{7n+2}{3+2n}$

8. Пятый член числового ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot (n^2+2)}{(n-1)!}$ равен ...

1.
$$\frac{27}{4}$$

2.
$$\frac{9}{8}$$

1.
$$\frac{27}{4}$$
 2. $\frac{9}{8}$ 3. -3 4. $-\frac{9}{8}$

9. Для исследования сходимости ряда $\sum_{n=1}^{\infty} \sin \frac{(n+3)^2}{n(n-2)^3}$ его достаточно сравнить с рядом...

1.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$
 3. $\sum_{n=1}^{\infty} \frac{1}{n^2}$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

2.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^3}$$
 4. $\sum_{n=1}^{\infty} 1$

4.
$$\sum_{n=1}^{\infty} 1$$

10. Применив	радикальный	признак	Коши	$\left(L = \lim_{n \to \infty} \sqrt[n]{a_n}\right)$	к ряду
$\sum_{n=1}^{\infty} \left(\frac{5n+3}{2n+1} \right)^{2n}, \Gamma$	получаем				

1.
$$L = \frac{5}{2}$$
, ряд расходится 3. $L = \frac{2}{5}$, ряд сходится

2.
$$L = \frac{25}{4}$$
, ряд сходится **4.** $L = \frac{25}{4}$, ряд расходится

11. Первый ненулевой член ряда Маклорена

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

для функции $y = \ln(1 + 8x)$ имеет вид ...

2.
$$32x^2$$
 4. x

12. Функция y = f(x), заданная на отрезке $[-\pi, \pi]$, является нечетной. Тогда разложение этой функции в ряд Фурье может иметь вид...

1.
$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$$

 3. $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$

2.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$
 4. $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} b_n \sin nx$

4-й семестр

1. В слове «WORD» меняют местами буквы. Тогда количество всех возможных различных «слов» равно...

2. Из ящика, где находится 15 деталей, пронумерованных от 1 до 15, требуется вынуть 3 детали. Тогда количество всевозможных комбинаций номеров вынутых деталей равно...

1.
$$\frac{15!}{12!}$$
 2. $\frac{15!}{3!12!}$ 3. 3! 4. 15!

- **3.** Какое утверждение неверно, если говорят о противоположных событиях:
 - 1. Событие, противоположное достоверному, есть невозможное

событие.

- 2. Сумма вероятностей двух противоположных событий равна единице.
- 3. Если два события единственно возможны и несовместны, то их называют противоположными
- 4. Вероятность появления одного из противоположных событий всегда больше вероятности другого.
- **4.** Если два события A и B образуют полную группу, то для их вероятностей выполнено соотношение...

1.
$$p(A) = p(B)$$

1.
$$p(A) = p(B)$$
 3. $p(A) \cdot p(B) = 0$

2.
$$p(A) = -p(B)$$

2.
$$p(A) = -p(B)$$
 4. $p(A) = 1 - p(B)$

- **5.** В урне находятся 6 шаров: 3 белых и 3 черных. Событие A «Вынули белый шар». Событие B – «Вынули черный шар». Опыт состоит в выборе только одного шара. Тогда для этих событий неверным будет утверждение:
 - 1. «События <math>A и B несовместны»
 - 2. «Вероятность события *B* равна $\frac{1}{2}$ »
 - 3. «Событие <math>A невозможно»
 - 4. «События <math>A и B равновероятны»
- 6. Игральный кубик бросается один раз. Тогда вероятность того, что на верхней грани выпадет 2 очка, равна...

1.
$$\frac{1}{2}$$
 2. $\frac{1}{6}$ 3. $\frac{1}{5}$ 4. $\frac{2}{3}$

- 7. Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго стрелков равны 0,4 и 0,9 соответственно. Тогда вероятность того, что цель будет поражена, равна...
 - 1. 0,994
 - 2. 0.36
- 3. 0,64
- **4**. 0,94
- **8.** Дискретная случайная величина X задана законом распределения вероятностей:

X	1	3	5	6
P	0,1	0,2	0,6	0,1

Пусть M(X) — математическое ожидание. Тогда $10 \cdot M(X)$ равно...

9. Функция распределения вероятностей дискретной случайной величины X имеет вид $F(X) = \begin{cases} 0, & x \leq 2, \\ 0.2, & 2 < x \leq 4, \\ 0.7, & 4 < x \leq 5, \\ 1, & x > 5. \end{cases}$ Тогда вероятность $P(1 \leq X \leq 3)$

равна...

10. Непрерывная случайная величина X задана плотностью распределения вероятностей $f(x) = \frac{1}{7\sqrt{2\pi}}e^{-\frac{(x-8)^2}{98}}$. Тогда математическое ожидание этой нормально распределенной случайной величины равно...

11. Непрерывная случайная величина X задана плотностью распределения вероятностей $f(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-3)^2}{8}}$. Тогда дисперсия этой нормально распределенной случайной величины равна...

12. Из генеральной совокупности извлечена выборка объема n = 50:

X_i	1	2	3	4
n_i	10	9	8	n_4

Тогда n_4 равно...

13. Мода вариационного ряда 1, 4, 4, 5, 6, 8, 9 равна...

7.2.2 Примерный перечень заданий для решения стандартных задач (минимум 10 вопросов для тестирования с вариантами ответов)
1-й семестр

- **2.** Формула вычисления определителя третьего порядка $\begin{vmatrix} a & b & c \\ d & e & f \\ o & h & k \end{vmatrix}$ содержит следующие произведения ...

 - 1. *adf* 3. *cdk*

 - 2. bfg 4. aek
- **3.** Переменная y системы уравнений $\begin{cases} x + 2y 4z = 0, \\ -3x + y + 5z = 4, \\ 4x + 3y 6z = 3 \end{cases}$ определяется по формуле ...

1.
$$y = \begin{vmatrix} 1 & 2 & 0 \\ -3 & 1 & 4 \\ 4 & 3 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$
3. $y = \begin{vmatrix} 0 & 2 & -4 \\ 4 & 1 & 5 \\ 3 & 3 & -6 \end{vmatrix}$

$$\begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

2.
$$y = \begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$
4. $y = \begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$

$$\begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

$$\mathbf{4.} \quad y = \begin{vmatrix} -3 & 4 & 5 \\ 4 & 3 & -6 \\ \hline 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$$

- **4.** Даны векторы $\bar{a} = (3, -9)$, $\bar{b} = (-3, 6)$, тогда координаты вектора $5\bar{b} \frac{a}{3}$ равны ...
 - **1.** (-16; 33) 3. (16; -47)
- - 2. (-46; 31) 4. (-16; 27)
- **5.** Скалярное произведение векторов $\bar{a} = (-1; t)$ и $\bar{b} = (t; 0)$ удовлетворяет неравенству $\bar{a} \cdot \bar{b} \le 1$ при двух значениях параметра t, равных ...

1. 1

3. -2

2. 0

4. -3

6. Уравнение $x^2 + y^2 = 4y$ в полярных координатах имеет вид ...

1.
$$\rho^2 = 4\cos\varphi$$
 3. $\rho = 4\sin\varphi$

2.
$$\rho^2 = 4\sin\varphi$$
 4. $\rho = 4\cos\varphi$

7. Сопоставьте уравнениям прямых их названия.

1.
$$8x+4y+1=0$$

А) общее уравнение прямой

2.
$$\frac{x+1}{-3} = \frac{y+1}{-4}$$

2. $\frac{x+1}{-3} = \frac{y+1}{-4}$ Б) уравнение прямой с угловым коэффициентом

3.
$$y = -x + 5$$

3. y = -x + 5 В) каноническое уравнение прямой

Ответ: 1А, 2В, 3Б.

8. Среди прямых $l_1: 2x+y-3=0$, $l_2: 4x+2y-6=0$, $l_3: 4x-2y-6=0$, $l_4: -4x+2y-3=0$ параллельными являются ...

1.
$$l_2$$
 и l_3

3. l_1 и l_3

9. Радиус окружности, заданной уравнением $x^2 + y^2 - 2x + 2y - 7 = 0$, равен ...

3. $\sqrt{7}$

4. 9

10. Сопоставьте уравнениям линий их названия

1.
$$(x+6)^2 + (y-2)^2 = 64$$
 A) окружность

2.
$$x^2 + 4y = 16$$

Б) гипербола

3.
$$x^2 + 4y^2 = 4$$

В) парабола

4.
$$\frac{x^2}{9} - \frac{y^2}{9} = 1$$

Г) эллипс

Ответ: 1А, 2В, 3Г, 4Б.

11. Укажите два предела, значения которых не больше 3.

1.
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2}$$
 3. $\lim_{x \to 1} \frac{5x - 5}{x - 1}$

3.
$$\lim_{x \to 1} \frac{5x - 5}{x - 1}$$

2.
$$\lim_{x\to 0} \frac{3x-x^2}{x}$$
 4. $\lim_{x\to 3} \frac{x^2-9}{x-3}$

4.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

12. Значение предела $\lim_{x\to\infty} \left(1 + \frac{6}{x-2}\right)^{\frac{x}{3}}$ равно...

1.
$$e^{2}$$

2.
$$e^{1/3}$$

$$e^{1/18}$$

4. 1

13. Установите соответствие между функцией и ее производной.

1.
$$y = 3^x \cdot arctg 3x$$

1.
$$y = 3^x \cdot arctg \, 3x$$
 A) $y' = e^x \left(\frac{3}{1 + 9x^2} + arctg \, 3x \right)$

$$2. \quad y = tg \, 3x \cdot e^x$$

3.
$$y = arctg 3x \cdot e^{-x}$$

3.
$$y = arctg 3x \cdot e^x$$
 B) $y' = e^x \frac{1 + \sin 3x}{\cos^2 3x}$

$$\Gamma) \quad y' = e^x \frac{6 + \sin 6x}{2\cos^2 3x}$$

$$\coprod y' = 3^x \left(arctg \, 3x + \frac{1}{1 + 9x^2} \right)$$

Ответ: 1Б, 2Г, 3А.

14. Вторая производная функции $y = 5x^2 - 3^x + 8$ имеет вид ...

1.
$$10 + 3^x \ln^2 3$$

1.
$$10+3^x \ln^2 3$$
 3. $18-3^x \ln^2 3$

2.
$$10-3^x \ln^2 3$$

2.
$$10-3^x \ln^2 3$$
 4. $10x-3^x \ln 3$

15. Вертикальными асимптотами кривой $y = \frac{x+7}{x(x-5)}$ являются следующие две прямые:

1.
$$x = -7$$
 3. $x = 5$

3.
$$x = 5$$

2.
$$x = 0$$

2.
$$x = 0$$
 4. $y = 0$

2-й семестр

1. Корнями уравнения $x^3 + 36x$ над полем комплексных чисел являются ...

1.
$$-6i$$

2. Расположите комплексные числа в порядке расположения ИХ изображения в 1-й, 2-й, 3-й и 4-й четвертях комплексной плоскости.

1.
$$1+2i$$

3.
$$-4-i$$

2.
$$-8+5i$$
 4. $5-6i$

4.
$$5-6i$$

Ответ: 1, 2, 3, 4.

3. Частная производная z'_x функции $z = 7 - x^4 + yx^2 - y^2$ имеет вид ...

1.
$$2xy - 4x^3 - 2y$$
 3. $2xy - 4x^3$

3.
$$2xy - 4x^3$$

2.
$$2xy - 4x^3 + 7$$

2.
$$2xy - 4x^3 + 7$$
 4. $2xy - 4x^3 - 2y + x^2$

4. Множество всех первообразных функции $f(x) = \frac{1}{\sin^2 x} - x^2 + 1$ имеет вид

. . .

1.
$$-ctgx - \frac{x^3}{3} + x + C$$
 3. $-ctgx - \frac{x^3}{2} + 1 + C$

3.
$$-ctgx - \frac{x^3}{2} + 1 + C$$

2.
$$-\frac{2\cos x}{\sin^3 x} - 2x$$
 4. $\cot x - \frac{x^3}{3} + x$

4.
$$ctgx - \frac{x^3}{3} + \frac{1}{3}$$

5. Установите соответствие между интегралами и методами их вычисления.

1. непосредственное интегрирование A) $\int x^3 \cos x dx$

A)
$$\int x^3 \cos x dx$$

2. метод замены переменной

$$\mathsf{E}) \quad \int x^4 dx$$

3. метод интегрирования по частям B) $\int (x^2 + 3)^5 x dx$

B)
$$\int (x^2 + 3)^5 x dx$$

Ответ: 1Б, 2В, 3А.

6. Если в неопределенном интеграле $\int (7x-1)\cos\frac{x}{4}dx$, применяя метод интегрирования по частям: $\int u dv = uv - \int v du$, положить, что u(x) = 7x - 1, то функция v(x) будет равна ...

1.
$$\frac{1}{4}\sin\frac{x}{4}$$
 3. $4\sin\frac{x}{4}$

3.
$$4\sin\frac{x}{4}$$

2.
$$-4\cos\frac{x}{4}$$
 4. $\cos\frac{x}{4}$

4.
$$\cos \frac{x}{4}$$

7. Установите соответствие между неопределенными интегралами и

разложениями подынтегральных функций на элементарные дроби.

$$1. \int \frac{1}{x(x+1)^2} dx$$

A)
$$\frac{A}{x^2} + \frac{B}{x} + \frac{Cx + D}{x^2 + 16}$$

$$2. \int \frac{x-7}{x(x-2)} dx$$

$$\mathbf{E}) \quad \frac{A}{x} + \frac{B}{x-2}$$

3.
$$\int \frac{2x+5}{(x-1)(x^2+1)} dx$$

B)
$$\frac{A}{x-1} + \frac{Bx + C}{x^2 + 1}$$

$$4. \int \frac{2x-1}{x^2(x^2+16)} dx$$

$$\Gamma$$
) $\frac{A}{x} + \frac{B}{(x+1)^2} + \frac{C}{x+1}$

$$\coprod) \frac{A}{x-1} + \frac{B}{x^2+1}$$

Ответ: 1Г, 2Б, 3В, 4А.

8. Значение интеграла $\int_{0}^{1} \sqrt{1+x} dx$ равно ...

1.
$$\frac{2(\sqrt{8}-1)}{3}$$
 3. $\frac{1}{\sqrt{8}}$

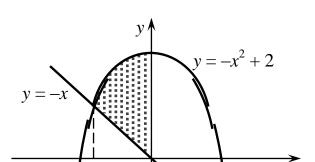
3.
$$\frac{1}{\sqrt{8}}$$

2.
$$\frac{3(\sqrt{8}-1)}{2}$$
 4. $\frac{15}{2}$

4.
$$\frac{15}{2}$$

9. Несобственным интегралом является интеграл ...

$$1. \int_{2}^{3} \frac{\ln^3 x}{x} dx$$

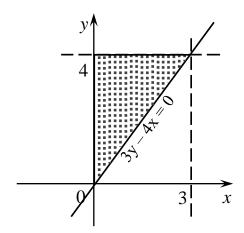

3.
$$\int_{1}^{+\infty} \frac{dx}{x^5}$$

2.
$$\int_{0}^{2} dx \int_{0}^{1} (x^{2} + y) dy$$
 4. $\int x^{2} arcctgx dx$

4.
$$\int x^2 arcctgx dx$$

10. Несобственный интеграл $\int_{2}^{+\infty} \frac{dx}{(x-2)^2}$ равен ...

11. Площадь фигуры, изображенной на рисунке, определяется интегралом


1.
$$\int_{-\sqrt{2}}^{0} ((-x) - (-x^2 + 2)) dx$$

2.
$$\int_{-\sqrt{2}}^{0} ((-x^2 + 2) - (-x)) dx$$

3.
$$\int_{-1}^{0} ((-x) - (-x^2 + 2)) dx$$

4.
$$\int_{-1}^{0} ((-x^2 + 2) - (-x)) dx$$

12. Площадь заштрихованной на рисунке фигуры определяют два из приведенных интегралов ...

1.
$$\int_{0}^{4} dy \int_{0}^{\frac{3}{4}y} dx$$

1.
$$\int_{0}^{4} dy \int_{0}^{\frac{3}{4}y} dx$$
 3. $\int_{0}^{\frac{3}{4}y} dx \int_{0}^{\frac{4}{3}x} dy$

2.
$$\int_{0}^{3} dx \int_{\frac{4}{3}x}^{4} dy$$

2.
$$\int_{0}^{3} dx \int_{\frac{4}{3}x}^{4} dy$$
 4. $\int_{0}^{3} dx \int_{0}^{3y-4x} dx$

3-й семестр

1. Разделение переменных В дифференциальном уравнении $(e^y - 1)\cos x dx - e^y \sin x dy = 0$ приведет его к виду ...

1.
$$\frac{(e^y - 1)ctgxdx}{e^y} = dy$$
 3.
$$-ctgxdx = \frac{e^y dy}{e^y - 1}$$

$$3. - ctgxdx = \frac{e^y dy}{e^y - 1}$$

2.
$$tgxdx = \frac{e^y dy}{e^y - 1}$$
 4. $ctgxdx = \frac{e^y dy}{e^y - 1}$

$$4. ctgxdx = \frac{e^{y}dy}{e^{y}-1}$$

- 2. Установите соответствие между записью дифференциальных уравнений первого порядка и их названиями.
 - 1. $(x^2 + x + 2)dx + \frac{dy}{y} = 0$
- А) линейное уравнение

дифференциальное

2.
$$y' = -\frac{x^3 + 2xy^2}{xy^2}$$

Б) однородное уравнение

дифференциальное

$$3. \quad y' + yctgx = \frac{1}{\sin^2 x}$$

В) дифференциальное уравнение с разделенными переменными

Ответ: 1В, 2Б, 3А

3. Однородными дифференциальными уравнениями 1-го порядка являются следующие два уравнения ...

$$1. \quad x \ln \frac{x}{y} dy + y dx = 0$$

1.
$$x \ln \frac{x}{y} dy + y dx = 0$$
 3. $xy^2 dx + x(x^2 + y^2) dy = 0$

2.
$$\sqrt{y}dx + (1+x^2)dy = 0$$
 4. $y' + y = x^2$

4.
$$y' + y = x^2$$

4. Среди перечисленных дифференциальных уравнений уравнениями второго порядка являются ...

1.
$$xy \frac{\partial z}{\partial x} + 5y^2 \frac{\partial z}{\partial y} = 0$$

1.
$$xy \frac{\partial z}{\partial x} + 5y^2 \frac{\partial z}{\partial y} = 0$$
 3. $xy \frac{d^2y}{dx^2} + y \frac{dy}{dx} + 3y = 7x$

2.
$$y \frac{d^2 y}{dx^2} + 4y \frac{dy}{dx} + 12x = 0$$
 4. $x^2 y' + 2y - 15x + 3 = 0$

4.
$$x^2y' + 2y - 15x + 3 = 0$$

5. Общее решение дифференциального уравнения $y''' = \sin 2x$ имеет вид ...

1.
$$y = \frac{1}{8}\cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$$

 3. $y = \cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$

3.
$$y = \cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$$

2.
$$y = -\frac{1}{8}\cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$$
 4. $y = \frac{1}{8}\cos 2x + C$

4.
$$y = \frac{1}{8}\cos 2x + C$$

решение дифференциального 6. Определить частное уравнения $y'' + 4y' + 4y = e^{2x}$, учитывая форму правой части ...

1.
$$y = Ae^{2x} + Be^{-2x}$$
 3. $y = Ax^2e^{2x}$

$$3. \quad v = Ax^2e^{2x}$$

2.
$$y = Ae^{2x}$$

2.
$$y = Ae^{2x}$$
 4. $y = e^{2x}(A + Bx)$

7. Необходимое условие сходимости выполняется для двух рядов ...

1.
$$\sum_{n=1}^{\infty} \frac{2}{6^n}$$

1.
$$\sum_{n=1}^{\infty} \frac{2}{6^n}$$
 3. $\sum_{n=1}^{\infty} \frac{2}{4n+1}$

$$2. \sum_{n=1}^{\infty} 2^n \cdot r$$

2.
$$\sum_{n=1}^{\infty} 2^n \cdot n$$
 4. $\sum_{n=1}^{\infty} \frac{7n+2}{3+2n}$

8. Пятый член числового ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot (n^2+2)}{(n-1)!}$ равен ...

1.
$$\frac{27}{4}$$
 2. $\frac{9}{8}$ 3. -3 4. $-\frac{9}{8}$

2.
$$\frac{9}{8}$$

4.
$$-\frac{9}{8}$$

9. Для исследования сходимости ряда $\sum_{n=1}^{\infty} \sin \frac{(n+3)^2}{n(n-2)^3}$ его достаточно сравнить с рядом...

1.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$
 3. $\sum_{n=1}^{\infty} \frac{1}{n^2}$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

2.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^3}$$
 4. $\sum_{n=1}^{\infty} 1$

4.
$$\sum_{n=1}^{\infty} 1$$

радикальный признак Коши $\left(L = \lim_{n \to \infty} \sqrt[n]{a_n}\right)$ **10.** Применив $\sum_{1}^{\infty} \left(\frac{5n+3}{2n+1} \right)^{2n}$, получаем ...

1.
$$L = \frac{5}{2}$$
, ряд расходится 3. $L = \frac{2}{5}$, ряд сходится

3.
$$L = \frac{2}{5}$$
, ряд сходится

2.
$$L = \frac{25}{4}$$
, ряд сходится

2.
$$L = \frac{25}{4}$$
, ряд еходится **4.** $L = \frac{25}{4}$, ряд расходится

11. Первый ненулевой член ряда Маклорена

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

для функции $y = \ln(1 + 8x)$ имеет вид ...

2.
$$32x^2$$
 4. x

12. Функция y = f(x), заданная на отрезке $[-\pi, \pi]$, является нечетной. Тогда разложение этой функции в ряд Фурье может иметь вид...

$$\mathbf{1.} \quad f(x) = \sum_{n=1}^{\infty} b_n \sin nx$$

3.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

2.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$
 4. $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} b_n \sin nx$

4.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} b_n \sin nx$$

4-й семестр

1. В слове «WORD» меняют местами буквы. Тогда количество всех возможных различных «слов» равно...

1.8	2. 16	3.4	4. 24
1.0	2. 10	J. T	T• 4-1

2. Из ящика, где находится 15 деталей, пронумерованных от 1 до 15, требуется вынуть 3 детали. Тогда количество всевозможных комбинаций номеров вынутых деталей равно...

1.
$$\frac{15!}{12!}$$
 2. $\frac{15!}{3!12!}$ 3. 3! 4. 15!

- 3. Какое утверждение неверно, если говорят о противоположных событиях:
- 1. Событие, противоположное достоверному, есть невозможное событие.
- 2. Сумма вероятностей двух противоположных событий равна единице.
- 3. Если два события единственно возможны и несовместны, то их называют противоположными
- 4. Вероятность появления одного из противоположных событий всегда больше вероятности другого.
- **4.** Если два события A и B образуют полную группу, то для их вероятностей выполнено соотношение.

1.
$$p(A) = p(B)$$

1.
$$p(A) = p(B)$$
 3. $p(A) \cdot p(B) = 0$

2.
$$p(A) = -p(B)$$

2.
$$p(A) = -p(B)$$
 4. $p(A) = 1 - p(B)$

- **5.** В урне находятся 6 шаров: 3 белых и 3 черных. Событие A «Вынули белый шар». Событие B – «Вынули черный шар». Опыт состоит в выборе только одного шара. Тогда для этих событий неверным будет утверждение:
 - 1. «События <math>A и B несовместны»
 - 2. «Вероятность события *B* равна $\frac{1}{2}$ »
 - 3. «Событие A невозможно»
 - 4. «События <math>A и B равновероятны»
- 6. Игральный кубик бросается один раз. Тогда вероятность того, что на верхней грани выпадет 2 очка, равна...

1.
$$\frac{1}{2}$$
 2. $\frac{1}{6}$ 3. $\frac{1}{5}$ 4. $\frac{2}{3}$

7. Два стрелка производят по одному выстрелу. Вероятность попадания в

цель для первого и второго стрелков равны 0,4 и 0,9 соответственно. Тогда вероятность того, что цель будет поражена, равна...

1. 0.994

2. 0.36

3. 0.64

4. 0.94

8. Дискретная случайная величина X задана законом распределения вероятностей:

X	1	3	5	6
P	0,1	0,2	0,6	0,1

Пусть M(X) — математическое ожидание. Тогда $10 \cdot M(X)$ равно...

1. 10 **2**. 16

3. 150

4. 1,6

9. Функция распределения вероятностей дискретной случайной величины X имеет вид $F(X) = \begin{cases} 0, & x \le 2, \\ 0.2, & 2 < x \le 4, \\ 0.7, & 4 < x \le 5, \\ 1 & x > 5 \end{cases}$ Тогда вероятность $P(1 \le X \le 3)$

равна...

1. 0,2 2. 0,5 3. 0,7 4. 0,9

10. Непрерывная случайная величина Xзадана плотностью распределения вероятностей $f(x) = \frac{1}{7\sqrt{2\pi}}e^{-\frac{(x-8)^2}{98}}$. Тогда математическое ожидание этой нормально распределенной случайной величины равно...

1.8

2.7

3. 49 4. 98

случайная величина X11. Непрерывная задана плотностью распределения вероятностей $f(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-3)^2}{8}}$. Тогда дисперсия этой нормально распределенной случайной величины равна...

1.3

2. 2

3. 4

4.8

12. Из генеральной совокупности извлечена выборка объема n = 50:

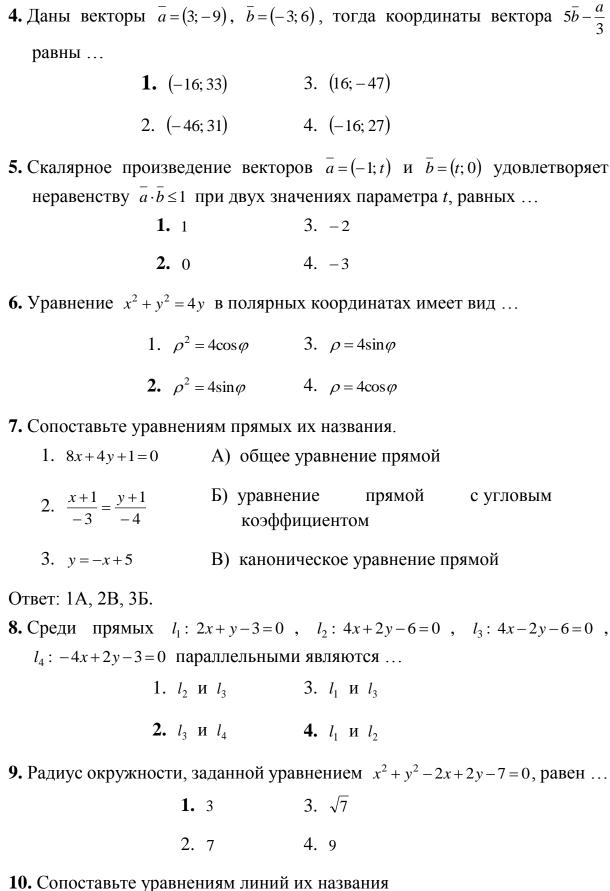
X_i	1	2	3	4
n_i	10	9	8	n_4

Тогда n_4 равно...

- **13.** Мода вариационного ряда 1, 4, 4, 5, 6, 8, 9 равна...
 - **1.** 4
- 2. 1
- 3.9

4.5

7.2.3 Примерный перечень заданий для решения прикладных задач (минимум 10 вопросов для тестирования с вариантами ответов) 1-й семестр


- **1.** Определитель $\begin{vmatrix} 4 & 7 & -3 \\ 0 & -3 & 0 \\ 2 & 5 & -1 \end{vmatrix}$ равен ... **1.** -6

 2. 6

 3. -30

 4. 30

- **2.** Формула вычисления определителя третьего порядка $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix}$ содержит
 - следующие произведения ...
 - 1. *adf* 3. *cdk*
 - 2. bfg 4. aek
- **3.** Переменная y системы уравнений $\begin{cases} x + 2y 4z = 0, \\ -3x + y + 5z = 4, \end{cases}$ определяется 4x + 3y 6z = 3по формуле ...
 - 1. $y = \begin{vmatrix} 1 & 2 & 0 \\ -3 & 1 & 4 \\ 4 & 3 & 3 \end{vmatrix}$ $\begin{vmatrix} 1 & 2 & -4 \\ 4 & 3 & 3 \end{vmatrix}$ $\begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$ 3. $y = \begin{vmatrix} 0 & 2 & -4 \\ 4 & 1 & 5 \\ 3 & 3 & -6 \end{vmatrix}$ $\begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$
 - 2. $y = \begin{vmatrix} 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & -6 \end{vmatrix}$ $\begin{vmatrix} 1 & 0 & -4 \\ -3 & 4 & 5 \\ 4 & 3 & -6 \end{vmatrix}$ $\begin{vmatrix} 4 & 3 & -6 \\ 1 & 2 & -4 \\ -3 & 1 & 5 \\ 4 & 3 & 6 \end{vmatrix}$

1.
$$(x+6)^2 + (y-2)^2 = 64$$
 A) окружность

2.
$$x^2 + 4y = 16$$

Б) гипербола

3.
$$x^2 + 4y^2 = 4$$

В) парабола

4.
$$\frac{x^2}{9} - \frac{y^2}{9} = 1$$

Г) эллипс

Ответ: 1А, 2В, 3Г, 4Б.

11. Укажите два предела, значения которых не больше 3.

1.
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2}$$
 3. $\lim_{x \to 1} \frac{5x - 5}{x - 1}$

3.
$$\lim_{x \to 1} \frac{5x-5}{x-1}$$

2.
$$\lim_{x\to 0} \frac{3x-x^2}{x}$$
 4. $\lim_{x\to 3} \frac{x^2-9}{x-3}$

4.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

12. Значение предела $\lim_{x\to\infty} \left(1 + \frac{6}{x-2}\right)^{\frac{x}{3}}$ равно...

1.
$$e^{2}$$

2.
$$e^{1/3}$$

1.
$$e^2$$
 2. $e^{1/3}$ 3. $e^{1/18}$

4. 1

13. Установите соответствие между функцией и ее производной.

1.
$$y = 3^x \cdot arctg \, 3x$$

1.
$$y = 3^x \cdot arctg 3x$$
 A) $y' = e^x \left(\frac{3}{1 + 9x^2} + arctg 3x \right)$

$$2. \quad y = tg \, 3x \cdot e^x$$

$$3. \quad y = arctg \, 3x \cdot e^{x}$$

3.
$$y = arctg 3x \cdot e^x$$
 B) $y' = e^x \frac{1 + \sin 3x}{\cos^2 3x}$

$$\Gamma) \quad y' = e^x \frac{6 + \sin 6x}{2\cos^2 3x}$$

$$\coprod y' = 3^x \left(arctg \, 3x + \frac{1}{1 + 9x^2} \right)$$

Ответ: 1Б, 2Г, 3А.

14. Вторая производная функции $y = 5x^2 - 3^x + 8$ имеет вид ...

1.
$$10+3^x \ln^2 3$$
 3. $18-3^x \ln^2 3$

3.
$$18-3^x \ln^2 3$$

2.
$$10-3^x \ln^2 3$$
 4. $10x-3^x \ln 3$

4.
$$10x - 3^x \ln 3$$

15. Вертикальными асимптотами кривой $y = \frac{x+7}{x(x-5)}$ являются следующие две прямые:

1.
$$x = -7$$
 3. $x = 5$

3.
$$x = 5$$

2.
$$x = 0$$
 4. $y = 0$

4.
$$y = 0$$

2-й семестр

1. Корнями уравнения $x^3 + 36x$ над полем комплексных чисел являются ...

2. Расположите комплексные числа в порядке расположения ИХ изображения в 1-й, 2-й, 3-й и 4-й четвертях комплексной плоскости.

1.
$$1+2i$$

3.
$$-4-i$$

2.
$$-8+5i$$
 4. $5-6i$

4.
$$5-6i$$

Ответ: 1, 2, 3, 4.

3. Частная производная z'_x функции $z = 7 - x^4 + yx^2 - y^2$ имеет вид ...

1.
$$2xy - 4x^3 - 2y$$
 3. $2xy - 4x^3$

3.
$$2xy - 4x^3$$

2.
$$2xy - 4x^3 + 7$$

2.
$$2xy - 4x^3 + 7$$
 4. $2xy - 4x^3 - 2y + x^2$

4. Множество всех первообразных функции $f(x) = \frac{1}{\sin^2 x} - x^2 + 1$ имеет вид

. . .

3.
$$-ctgx - \frac{x^3}{2} + 1 + C$$

2.
$$-\frac{2\cos x}{\sin^3 x} - 2x$$
 4. $ctgx - \frac{x^3}{3} + x$

4.
$$ctgx - \frac{x^3}{3} + x$$

5. Установите соответствие между интегралами и методами их вычисления.

1. непосредственное интегрирование A) $\int x^3 \cos x dx$

A)
$$\int x^3 \cos x dx$$

2. метод замены переменной

$$\mathsf{E}) \ \int x^4 dx$$

3. метод интегрирования по частям B) $\int (x^2 + 3)^5 x dx$

B)
$$\int (x^2 + 3)^5 x dx$$

Ответ: 1Б, 2В, 3А.

6. Если в неопределенном интеграле $\int (7x-1)\cos\frac{x}{4}dx$, применяя метод

интегрирования по частям: $\int u dv = uv - \int v du$, положить, что u(x) = 7x - 1, то функция v(x) будет равна ...

1.
$$\frac{1}{4}\sin\frac{x}{4}$$
 3. $4\sin\frac{x}{4}$

3.
$$4\sin\frac{x}{4}$$

2.
$$-4\cos\frac{x}{4}$$
 4. $\cos\frac{x}{4}$

4.
$$\cos \frac{x}{4}$$

7. Установите соответствие между неопределенными интегралами и разложениями подынтегральных функций на элементарные дроби.

$$1. \int \frac{1}{x(x+1)^2} dx$$

A)
$$\frac{A}{x^2} + \frac{B}{x} + \frac{Cx + D}{x^2 + 16}$$

$$2. \int \frac{x-7}{x(x-2)} dx$$

$$\mathsf{E}) \ \frac{A}{x} + \frac{B}{x-2}$$

3.
$$\int \frac{2x+5}{(x-1)(x^2+1)} dx$$
 B) $\frac{A}{x-1} + \frac{Bx+C}{x^2+1}$

$$B) \frac{A}{x-1} + \frac{Bx + C}{x^2 + 1}$$

$$4. \int \frac{2x-1}{x^2(x^2+16)} dx$$

$$\Gamma$$
) $\frac{A}{x} + \frac{B}{(x+1)^2} + \frac{C}{x+1}$

$$\prod_{x=1}^{A} + \frac{B}{x^2 + 1}$$

Ответ: 1Г, 2Б, 3В, 4А.

8. Значение интеграла $\int_{0}^{1} \sqrt{1+x} dx$ равно ...

1.
$$\frac{2(\sqrt{8}-1)}{3}$$
 3. $\frac{1}{\sqrt{8}}$

3.
$$\frac{1}{\sqrt{8}}$$

2.
$$\frac{3(\sqrt{8}-1)}{2}$$
 4. $\frac{15}{2}$

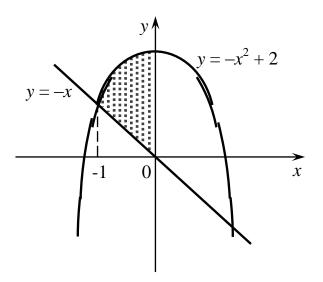
4.
$$\frac{15}{2}$$

9. Несобственным интегралом является интеграл ...

1.
$$\int_{2}^{3} \frac{\ln^{3} x}{x} dx$$
 3. $\int_{1}^{+\infty} \frac{dx}{x^{5}}$

$$3. \int_{1}^{+\infty} \frac{dx}{x^5}$$

2.
$$\int_{0}^{2} dx \int_{0}^{1} (x^{2} + y) dy$$
 4. $\int x^{2} arcctgx dx$

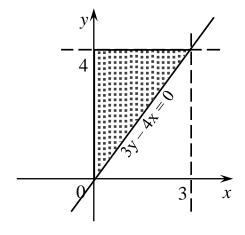

4.
$$\int x^2 arcctgxdx$$

10. Несобственный интеграл $\int_{2}^{+\infty} \frac{dx}{(x-2)^2}$ равен ...

3. 2

4. 1

11. Площадь фигуры, изображенной на рисунке, определяется интегралом


1.
$$\int_{-\sqrt{2}}^{0} ((-x) - (-x^2 + 2)) dx$$

2.
$$\int_{-\sqrt{2}}^{0} ((-x^2 + 2) - (-x)) dx$$

3.
$$\int_{-1}^{0} ((-x) - (-x^2 + 2)) dx$$

4.
$$\int_{-1}^{0} ((-x^2 + 2) - (-x)) dx$$

12. Площадь заштрихованной на рисунке фигуры определяют два из приведенных интегралов ...

1.
$$\int_{0}^{4} dy \int_{0}^{\frac{3}{4}y} dx$$

1.
$$\int_{0}^{4} dy \int_{0}^{\frac{3}{4}y} dx$$
 3. $\int_{0}^{\frac{3}{4}y} dx \int_{0}^{\frac{4}{3}x} dy$

2.
$$\int_{0}^{3} dx \int_{\frac{4}{3}x}^{4} dy$$

2.
$$\int_{0}^{3} dx \int_{\frac{4}{3}x}^{4} dy$$
 4.
$$\int_{0}^{3} dx \int_{0}^{3y-4x} dx$$

3-й семестр

1. Разделение дифференциальном переменных В уравнении $(e^y - 1)\cos x dx - e^y \sin x dy = 0$ приведет его к виду ...

1.
$$\frac{(e^y - 1)ctgxdx}{e^y} = dy$$
 3.
$$-ctgxdx = \frac{e^y dy}{e^y - 1}$$

3.
$$-ctgxdx = \frac{e^y dy}{e^y - 1}$$

$$2. \quad tgxdx = \frac{e^y dy}{e^y - 1}$$

$$4. ctgxdx = \frac{e^{y}dy}{e^{y}-1}$$

2. Установите соответствие между записью дифференциальных уравнений первого порядка и их названиями.

1.
$$(x^2 + x + 2)dx + \frac{dy}{y} = 0$$

дифференциальное А) линейное уравнение

$$2. \quad y' = -\frac{x^3 + 2xy^2}{xy^2}$$

Б) однородное дифференциальное уравнение

$$3. \quad y' + yctgx = \frac{1}{\sin^2 x}$$

В) дифференциальное уравнение с разделенными переменными

Ответ: 1В, 2Б, 3А

3. Однородными дифференциальными уравнениями 1-го порядка являются следующие два уравнения ...

$$1. \quad x \ln \frac{x}{y} dy + y dx = 0$$

1.
$$x \ln \frac{x}{y} dy + y dx = 0$$
 3. $xy^2 dx + x(x^2 + y^2) dy = 0$

2.
$$\sqrt{y}dx + (1+x^2)dy = 0$$
 4. $y' + y = x^2$

4.
$$y' + y = x^2$$

4. Среди перечисленных дифференциальных уравнений уравнениями второго порядка являются ...

1.
$$xy \frac{\partial z}{\partial x} + 5y^2 \frac{\partial z}{\partial y} = 0$$

3.
$$xy \frac{d^2y}{dx^2} + y \frac{dy}{dx} + 3y = 7x$$

4.
$$x^2y' + 2y - 15x + 3 = 0$$

5. Общее решение дифференциального уравнения $y''' = \sin 2x$ имеет вид ...

1.
$$y = \frac{1}{8}\cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$$

 3. $y = \cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$

3.
$$y = \cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$$

2.
$$y = -\frac{1}{8}\cos 2x + \frac{C_1}{2}x^2 + C_2x + C_3$$
 4. $y = \frac{1}{8}\cos 2x + C$

4.
$$y = \frac{1}{8}\cos 2x + C$$

решение 6. Определить частное дифференциального уравнения $y'' + 4y' + 4y = e^{2x}$, учитывая форму правой части ...

1.
$$y = Ae^{2x} + Be^{-2x}$$
 3. $y = Ax^2e^{2x}$

$$3. \quad y = Ax^2 e^{2x}$$

$$2. \quad y = Ae^{2x}$$

2.
$$y = Ae^{2x}$$
 4. $y = e^{2x}(A + Bx)$

7. Необходимое условие сходимости выполняется для двух рядов ...

1.
$$\sum_{n=1}^{\infty} \frac{2}{6^n}$$

1.
$$\sum_{n=1}^{\infty} \frac{2}{6^n}$$
 3. $\sum_{n=1}^{\infty} \frac{2}{4n+1}$

$$2. \sum_{n=1}^{\infty} 2^n \cdot n$$

2.
$$\sum_{n=1}^{\infty} 2^n \cdot n$$
 4. $\sum_{n=1}^{\infty} \frac{7n+2}{3+2n}$

8. Пятый член числового ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot (n^2+2)}{(n-1)!}$ равен ...

1.
$$\frac{27}{4}$$

2.
$$\frac{9}{8}$$

1.
$$\frac{27}{4}$$
 2. $\frac{9}{8}$ 3. -3 4. $-\frac{9}{8}$

9. Для исследования сходимости ряда $\sum_{n=1}^{\infty} \sin \frac{(n+3)^2}{n(n-2)^3}$ его достаточно сравнить с рядом...

1.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$
 3. $\sum_{n=1}^{\infty} \frac{1}{n^2}$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

2.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^3}$$
 4. $\sum_{n=1}^{\infty} 1$

4.
$$\sum_{n=1}^{\infty} 1$$

10. Применив радикальный признак Коши $\left(L = \lim_{n \to \infty} \sqrt[n]{a_n}\right)$ к ряду $\sum_{n=1}^{\infty} \left(\frac{5n+3}{2n+1} \right)^{2n}$, получаем ...

1.
$$L = \frac{5}{2}$$
, ряд расходится 3. $L = \frac{2}{5}$, ряд сходится

3.
$$L = \frac{2}{5}$$
, ряд сходится

2.
$$L = \frac{25}{4}$$
, ряд сходится

2.
$$L = \frac{25}{4}$$
, ряд сходится **4.** $L = \frac{25}{4}$, ряд расходится

11. Первый ненулевой член ряда Маклорена

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

для функции $y = \ln(1 + 8x)$ имеет вид ...

2.
$$32x^2$$
 4. x

12. Функция y = f(x), заданная на отрезке $[-\pi, \pi]$, является нечетной. Тогда

разложение этой функции в ряд Фурье может иметь вид...

$$\mathbf{1.} \quad f(x) = \sum_{n=1}^{\infty} b_n \sin nx$$

3.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

2.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$
 4. $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} b_n \sin nx$

4.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} b_n \sin nx$$

4-й семестр

1. В слове «WORD» меняют местами буквы. Тогда количество всех возможных различных «слов» равно...

2. 16 3. 4 **4.** 24

2. Из ящика, где находится 15 деталей, пронумерованных от 1 до 15, требуется вынуть 3 детали. Тогда количество всевозможных комбинаций номеров вынутых деталей равно...

1.
$$\frac{15!}{12!}$$

1. $\frac{15!}{12!}$ 2. $\frac{15!}{3!12!}$ 3. 3! 4. 15!

3. Какое утверждение неверно, если говорят о противоположных событиях:

1. Событие, противоположное достоверному, есть невозможное событие.

2. Сумма вероятностей двух противоположных событий равна единице.

3. Если два события единственно возможны и несовместны, то их называют противоположными

4. Вероятность появления одного из противоположных событий всегда больше вероятности другого.

4. Если два события A и B образуют полную группу, то для их вероятностей выполнено соотношение...

$$1. \ p(A) = p(B)$$

1.
$$p(A) = p(B)$$
 3. $p(A) \cdot p(B) = 0$

2.
$$p(A) = -p(B)$$

2.
$$p(A) = -p(B)$$
 4. $p(A) = 1 - p(B)$

5. В урне находятся 6 шаров: 3 белых и 3 черных. Событие A – «Вынули белый шар». Событие B – «Вынули черный шар». Опыт состоит в выборе только одного шара. Тогда для этих событий неверным будет утверждение:

1. «События <math>A и B несовместны»

- 2. «Вероятность события *B* равна $\frac{1}{2}$ » 3. «Событие <math>A невозможно»
- 4. «События <math>A и B равновероятны»

6. Игральный кубик бросается один раз. Тогда вероятность того, что на верхней грани выпадет 2 очка, равна...

1.
$$\frac{1}{2}$$
 2. $\frac{1}{6}$ 3. $\frac{1}{5}$ 4. $\frac{2}{3}$

7. Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго стрелков равны 0,4 и 0,9 соответственно. Тогда вероятность того, что цель будет поражена, равна...

1. 0.994

2. 0.36

3. 0.64

4. 0,94

8. Дискретная случайная величина X задана законом распределения вероятностей:

X	1	3	5	6
P	0,1	0,2	0,6	0,1

M(X) — математическое ожидание. Тогда $10 \cdot M(X)$ равно...

1. 10 **2**. 16 3. 150

4. 1.6

9. Функция распределения вероятностей дискретной случайной величины X имеет вид $F(X) = \begin{cases} 0, & x \le 2, \\ 0.2, & 2 < x \le 4, \\ 0.7, & 4 < x \le 5, \end{cases}$ Тогда вероятность $P(1 \le X \le 3)$

равна...

1. 0.2 2. 0.5 3. 0.7 4. 0.9

10. Непрерывная случайная величина Xзадана плотностью распределения вероятностей $f(x) = \frac{1}{7\sqrt{2\pi}}e^{-\frac{(x-8)^2}{98}}$. Тогда математическое ожидание этой нормально распределенной случайной величины равно...

1.8

2.7

3. 49

4.98

11. Непрерывная случайная величина Xзадана плотностью распределения вероятностей $f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-3)^2}{8}}$. Тогда дисперсия этой нормально распределенной случайной величины равна...

1. 3 2. 2 **3.** 4 4. 8

12. Из генеральной совокупности извлечена выборка объема n = 50:

χ_i	1	2	3	4
n_i	10	9	8	n_4

Тогда n_4 равно...

1. 7 2. 50 **3.** 23 4. 24

13. Мода вариационного ряда 1, 4, 4, 5, 6, 8, 9 равна...

1. 4 2. 1 3. 9 4. 5

7.2.4 Примерный перечень вопросов для подготовки к зачету

Укажите вопросы для зачета

- 1. Определители 2-го, 3-го и *n*-го порядков. Способы их вычисления и свойства.
- 2. Системы линейных алгебраических уравнений. Основные определения.
- 3. Решение систем линейных алгебраических уравнений методом Крамера.
- 4. Решение систем линейных алгебраических уравнений методом Гаусса.
- 5. Векторы. Основные определения и понятия.
- 6. Линейные операции над векторами. Их свойства.
- 7. Проекция вектора на ось и на вектор.
- 8. Разложение вектора по ортам координатных осей.
- 9. Длина вектора. Направляющие косинусы.
- 10. Действия над векторами, заданными проекциями.
- 11.Скалярное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 12.Векторное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 13.Смешанное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 14. Прямоугольная система координат на плоскости. Уравнение линии в декартовой системе координат.
- 15.Основные приложения метода координат на плоскости: расстояние

- между двумя точками; деление отрезка в данном отношении.
- 16.Полярная система координат. Ее связь с декартовой системой координат. Уравнение линии в полярной системе координат.
- 17. Преобразование системы координат. Параллельный перенос осей координат. Поворот осей координат.
- 18. Различные виды уравнений прямой на плоскости.
- 19.Угол между прямыми. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой.
- 20. Кривые второго порядка. Окружность.
- 21. Кривые второго порядка. Эллипс.
- 22. Кривые второго порядка. Гипербола.
- 23. Кривые второго порядка. Парабола.
- 24. Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям.
- 25. Общее уравнение кривой второго порядка. Приведение уравнения к каноническому виду.
- 26. Различные виды уравнений плоскости в пространстве.
- 27. Угол между плоскостями. Условия параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.
- 28. Прямая линия в пространстве. Различные виды уравнений прямой в пространстве.
- 29.Угол между прямыми в пространстве. Условия параллельности и перпендикулярности прямых. Условие, при котором две прямые лежат в одной плоскости.
- 30.Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости. Точка пересечения прямой с плоскостью. Условие принадлежности прямой плоскости.
- 31. Поверхности второго порядка. Цилиндрические поверхности.
- 32. Поверхности вращения. Конические поверхности.
- 33.Метод сечений. Канонические уравнения поверхностей второго порядка: эллипсоид, конус, гиперболоиды и параболоиды.
- 34. Элементы теории множеств. Числовые множества. Числовые промежутки. Окрестность точки.
- 35. Функция. Понятие функции. Способы задания функции. Некоторые характеристики функции (четность, нечетность, монотонность, ограниченность, периодичность).
- 36.Обратная и сложная функции. Основные элементарные функции и их графики. Элементарная функция.
- 37. Числовая последовательность. Предел числовой последовательности.
- 38.Предел функции в точке. Односторонние пределы.
- 39. Предел функции при $x \to \infty$. Бесконечно большая функция.
- 40. Бесконечно малые функции. Определение и основные теоремы. Связь между функцией, ее пределом и бесконечно малой функцией.
- 41. Теоремы о пределах суммы, разности, произведении и частном

функций. Теорема о пределе промежуточной функции.

- 42.Первый замечательный предел.
- 43.Второй замечательный предел.
- 44.Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции и их применение при раскрытии неопределенностей.
- 45. Непрерывность функции в точке, в интервале и на отрезке.
- 46. Классификация точек разрыва функции.
- 47.Основные теоремы о непрерывных функциях. Свойства функций, непрерывных на отрезке.
- 48.Задачи, приводящие к понятию производной: задача о скорости прямолинейного движения точки; задача о касательной к кривой.
- 49.Определение производной, ее механический, физический и геометрический смысл. Уравнение касательной и нормали к кривой.
- 50.Связь между непрерывностью и дифференцируемостью функции. Таблица производных основных элементарных функций.
- 51. Производная суммы, разности, произведения и частного функций. Производная сложной и обратной функций.
- 52. Дифференцирование неявных и параметрически заданных функций. Логарифмическое дифференцирование. Производные высших порядков. Механический смысл производной второго порядка.
- 53. Дифференциал функции и его геометрический смысл. Основные теоремы о дифференциалах. Таблица дифференциалов. Применение дифференциала к приближенным вычислениям.
- 54. Теоремы Ролля, Коши и Лагранжа о дифференцируемых функциях.
- 55.Правило Лопиталя для раскрытия неопределенностей $\left\{\frac{0}{0}\right\}$, $\left\{\frac{\infty}{\infty}\right\}$. Раскрытие неопределенностей вида $\{0\cdot\infty\}$, $\{\infty-\infty\}$, $\left\{0^0\right\}$, $\left\{\infty^0\right\}$, $\left\{1^\infty\right\}$.
- 56.Возрастание и убывание функций. Максимум и минимум функций. Наибольшее и наименьшее значение функции на отрезке.
- 57. Выпуклость и вогнутость графика функции. Точки перегиба.
- 58. Асимптоты графика функции. Общая схема исследования функции и построение графика.
- 59. Формула Тейлора для многочлена и для произвольной функции. Формула Маклорена.
- 60. Разложение основных элементарных функций по формуле Маклорена. Применение формулы Маклорена к вычислению пределов.

- 1. Понятие функции двух переменных. Основные определения.
- 2. Полное и частные приращения функции двух переменных. Частные производные первого порядка.
- 3. Частные производные высших порядков.

- 4. Полный дифференциал функции двух переменных.
- 5. Касательная плоскость и нормаль к поверхности.
- 6. Экстремум функции двух переменных. Необходимые и достаточные условия экстремума.
- 7. Наибольшее и наименьшее значения функции двух переменных в замкнутой области.
- 8. Производная по направлению. Градиент функции и его свойства.
- 9. Комплексные числа. Основные определения. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Формы записи комплексного числа. Формула Эйлера. Действия над комплексными числами.
- 10.Многочлены. Основные понятия. Дробно рациональные функции. Представление неправильной рациональной дроби в виде суммы целой части и правильной дроби. Представление правильной рациональной дроби в виде суммы простейших дробей. Метод неопределенных коэффициентов.
- 11. Первообразная функции и неопределенный интеграл, их определение и свойства. Таблица неопределенных интегралов.
- 12.Замена переменной и интегрирование по частям в неопределенном интеграле.
- 13.Интегрирование выражений, зависящих от квадратного трехчлена.
- 14.Интегрирование рациональных функций.
- 15.Интегрирование некоторых тригонометрических выражений. Универсальная тригонометрическая подстановка.
- 16.Интегрирование иррациональных выражений. Дробно линейная подстановка.
- 17. «Неберущиеся» интегралы.
- 18. Задачи, приводящие к понятию определенного интеграла.
- 19. Определение определенного интеграла.
- 20. Формула Ньютона Лейбница.
- 21.Свойства определенного интеграла. Определенный интеграл с переменным верхним пределом.
- 22.Интегрирование по частям и замена переменной в определенном интеграле.
- 23. Несобственные интегралы с бесконечными пределами (несобственные интегралы I рода). Несобственные интегралы от разрывных функций (несобственные интегралы II рода).
- 24. Вычисление площади плоской фигуры в декартовых координатах.
- 25. Вычисление площади плоской фигуры в полярных координатах.
- 26. Вычисление длины дуги плоской кривой в декартовых и в полярных координатах.
- 27.Вычисление объема тела по известным площадям параллельных поперечных сечений. Объем тела вращения.
- 28. Определение двойного интеграла и его свойства.
- 29. Геометрический и физический смысл двойного интеграла.

- 30. Правильные области на плоскости. Вычисление двойного интеграла в декартовых координатах.
- 31.Замена переменных в двойном интеграле. Вычисление двойного интеграла в полярных координатах.
- 32. Приложения двойных интегралов: вычисление объема цилиндрического тела и площади плоской фигуры; нахождение массы, статических моментов, координат центра тяжести и моментов инерции тонкой пластинки.
- 33. Определение и свойства криволинейных интегралов I рода.
- 34. Вычисление и приложения криволинейных интегралов І рода.
- 35.Определение и свойства криволинейных интегралов II рода.
- 36. Вычисление криволинейных интегралов II рода.
- 37. Формула Остроградского Грина.
- 38.Приложения криволинейных интегралов II рода.

- 1. Обыкновенные дифференциальные уравнения. Основные определения.
- 2. Примеры задач, приводящих к дифференциальным уравнениям.
- 3. Дифференциальные уравнения первого порядка. Основные определения. Задача Коши. Теорема существования и единственности задачи Коши.
- 4. Дифференциальные уравнения с разделяющимися переменными.
- 5. Однородные дифференциальные уравнения первого порядка.
- 6. Линейные дифференциальные уравнения первого порядка. Метод И. Бернулли.
- 7. Линейные дифференциальные уравнения первого порядка. Метод Лагранжа (метод вариации произвольной постоянной).
- 8. Дифференциальные уравнения Я. Бернулли.
- 9. Уравнения в полных дифференциалах.
- 10. Дифференциальные уравнения высших порядков. Основные определения. Задача Коши. Теорема существования и единственности задачи Коши.
- 11. Уравнения второго порядка, допускающие понижение порядка. Уравнения вида y'' = f(x), y'' = f(x, y'), y'' = f(y, y').
- 12. Линейные однородные дифференциальные уравнения второго порядка (ЛОДУ II). Определения и основные свойства решений ЛОДУ II.
- 13. Линейная зависимость и независимость функций. Определитель Вронского. Свойства определителя Вронского.
- 14. Структура общего решения ЛОДУ II.
- 15. ЛОДУ II с постоянными коэффициентами. Характеристическое уравнение. Общее решение.

- 16. Структура общего решения линейного неоднородного дифференциального уравнения второго порядка (ЛНДУ II).
- 17. Наложение решений ЛНДУ II.
- 18. Решение ЛНДУ ІІ методом вариации произвольных постоянных.
- 19. Решение ЛНДУ II с постоянными коэффициентами и специальной правой частью.
- 20. Системы дифференциальных уравнений. Основные определения. Интегрирование нормальных систем.
- 21. Числовые ряды. Основные определения. Свойства числовых рядов.
- 22. Геометрическая прогрессия. Гармонический ряд. Обобщенный гармонический ряд.
- 23. Необходимый признак сходимости. Достаточные признаки сходимости знакоположительных рядов: признаки сравнения.
- 24. Достаточные признаки сходимости знакоположительных рядов: признак Даламбера, интегральный и радикальный признаки Коши.
- 25. Функциональные ряды. Основные определения. Область сходимости функционального ряда.
- 26. Степенные ряды. Теорема Абеля. Интервал и радиус сходимости степенного ряда. Свойства степенных рядов.
- 27. Ряды Тейлора и Маклорена. Разложение элементарных функций в ряд Маклорена.
- 28. Тригонометрический ряд Фурье. Коэффициенты Фурье.
- 29. Теорема Дирихле. Разложение функций в ряд Фурье на отрезке $[-\pi,\pi]$.

4-й семестр (экзамен)

- 1. Элементы комбинаторики. Перестановки, сочетания и размещения.
- 2. Предмет теории вероятностей. Случайные события, основные определения.
- 3. Классическое определение вероятности случайного события. Свойства вероятностей.
- 4. Статистическое и геометрическое определения вероятности случайного события.
- 5. Алгебра случайных событий. Сложение и умножение случайных событий. Зависимые и независимые события. Условная вероятность.
- 6. Теоремы умножения вероятностей.
- 7. Теоремы сложения вероятностей. Вероятность появления хотя бы одного события.
- 8. Формула полной вероятности.
- 9. Схема Бернулли, формула Бернулли, формула Пуассона.
- 10. Схема Бернулли. Локальная и интегральная теоремы Лапласа.
- 11. Случайная величина. Основные определения. Закон распределения дискретной случайной величины.

- 12. Функция распределения дискретной случайной величины и ее свойства.
- 13. Функция распределения непрерывной случайной величины и ее свойства.
- 14. Функция плотности вероятности. Ее свойства.
- 15. Математическое ожидание дискретной случайной величины. Свойства математического ожидания.
- 16. Дисперсия дискретной случайной величины. Свойства дисперсии.
- 17. Среднее квадратическое отклонение.
- 18. Математическое ожидание, дисперсия и среднее квадратическое отклонение непрерывной случайной величины.
- 19. Биномиальное распределение случайной величины.
- 20. Равномерное распределение случайной величины.
- 21. Показательное распределение случайной величины.
- 22. Нормальное распределение случайной величины.
- 23. Предмет математической статистики. Выборочный метод.
- 24. Вариационный ряд. Полигон, гистограмма, эмпирическая функция распределения.
- 25. Числовые характеристики выборки.
- 26. Статистические оценки параметров распределения. Основные понятия.
- 27. Точечные оценки параметров распределения.
- 28. Интервальная оценка параметров распределения. Построение доверительных интервалов.

7.2.5 Примерный перечень заданий для решения прикладных задач Укажите вопросы для экзамена

- 61.Определители 2-го, 3-го и *n*-го порядков. Способы их вычисления и свойства.
- 62.Системы линейных алгебраических уравнений. Основные определения.
- 63. Решение систем линейных алгебраических уравнений методом Крамера.
- 64. Решение систем линейных алгебраических уравнений методом Гаусса.
- 65. Векторы. Основные определения и понятия.
- 66. Линейные операции над векторами. Их свойства.
- 67. Проекция вектора на ось и на вектор.
- 68. Разложение вектора по ортам координатных осей.
- 69. Длина вектора. Направляющие косинусы.
- 70. Действия над векторами, заданными проекциями.
- 71.Скалярное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.

- 72. Векторное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 73.Смешанное произведение векторов: определение, свойства, вычисление в декартовых координатах, приложения.
- 74. Прямоугольная система координат на плоскости. Уравнение линии в декартовой системе координат.
- 75.Основные приложения метода координат на плоскости: расстояние между двумя точками; деление отрезка в данном отношении.
- 76.Полярная система координат. Ее связь с декартовой системой координат. Уравнение линии в полярной системе координат.
- 77. Преобразование системы координат. Параллельный перенос осей координат. Поворот осей координат.
- 78. Различные виды уравнений прямой на плоскости.
- 79.Угол между прямыми. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой.
- 80. Кривые второго порядка. Окружность.
- 81. Кривые второго порядка. Эллипс.
- 82. Кривые второго порядка. Гипербола.
- 83. Кривые второго порядка. Парабола.
- 84. Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям.
- 85.Общее уравнение кривой второго порядка. Приведение уравнения к каноническому виду.
- 86. Различные виды уравнений плоскости в пространстве.
- 87. Угол между плоскостями. Условия параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.
- 88. Прямая линия в пространстве. Различные виды уравнений прямой в пространстве.
- 89.Угол между прямыми в пространстве. Условия параллельности и перпендикулярности прямых. Условие, при котором две прямые лежат в одной плоскости.
- 90. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости. Точка пересечения прямой с плоскостью. Условие принадлежности прямой плоскости.
- 91. Поверхности второго порядка. Цилиндрические поверхности.
- 92. Поверхности вращения. Конические поверхности.
- 93.Метод сечений. Канонические уравнения поверхностей второго порядка: эллипсоид, конус, гиперболоиды и параболоиды.
- 94. Элементы теории множеств. Числовые множества. Числовые промежутки. Окрестность точки.
- 95. Функция. Понятие функции. Способы задания функции. Некоторые характеристики функции (четность, нечетность, монотонность, ограниченность, периодичность).
- 96.Обратная и сложная функции. Основные элементарные функции и их

- графики. Элементарная функция.
- 97. Числовая последовательность. Предел числовой последовательности.
- 98. Предел функции в точке. Односторонние пределы.
- 99. Предел функции при $x \to \infty$. Бесконечно большая функция.
- 100. Бесконечно малые функции. Определение и основные теоремы. Связь между функцией, ее пределом и бесконечно малой функцией.
- 101. Теоремы о пределах суммы, разности, произведении и частном функций. Теорема о пределе промежуточной функции.
- 102. Первый замечательный предел.
- 103. Второй замечательный предел.
- 104. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции и их применение при раскрытии неопределенностей.
- 105. Непрерывность функции в точке, в интервале и на отрезке.
- 106. Классификация точек разрыва функции.
- 107. Основные теоремы о непрерывных функциях. Свойства функций, непрерывных на отрезке.
- 108. Задачи, приводящие к понятию производной: задача о скорости прямолинейного движения точки; задача о касательной к кривой.
- 109. Определение производной, ее механический, физический и геометрический смысл. Уравнение касательной и нормали к кривой.
- 110. Связь между непрерывностью и дифференцируемостью функции. Таблица производных основных элементарных функций.
- 111. Производная суммы, разности, произведения и частного функций. Производная сложной и обратной функций.
- 112. Дифференцирование неявных и параметрически заданных функций. Логарифмическое дифференцирование. Производные высших порядков. Механический смысл производной второго порядка.
- 113. Дифференциал функции и его геометрический смысл. Основные теоремы о дифференциалах. Таблица дифференциалов. Применение дифференциала к приближенным вычислениям.
- 114. Теоремы Ролля, Коши и Лагранжа о дифференцируемых функциях.
- 115. Правило Лопиталя для раскрытия неопределенностей $\left\{\frac{0}{0}\right\}, \left\{\frac{\infty}{\infty}\right\}$. Раскрытие неопределенностей вида $\left\{0\cdot\infty\right\}, \left\{\infty-\infty\right\}, \left\{0^0\right\}, \left\{\infty^0\right\}, \left\{1^\infty\right\}$.
- 116. Возрастание и убывание функций. Максимум и минимум функций. Наибольшее и наименьшее значение функции на отрезке.
- 117. Выпуклость и вогнутость графика функции. Точки перегиба.
- 118. Асимптоты графика функции. Общая схема исследования функции и построение графика.
- 119. Формула Тейлора для многочлена и для произвольной функции. Формула Маклорена.

120. Разложение основных элементарных функций по формуле Маклорена. Применение формулы Маклорена к вычислению пределов.

- 39. Понятие функции двух переменных. Основные определения.
- 40.Полное и частные приращения функции двух переменных. Частные производные первого порядка.
- 41. Частные производные высших порядков.
- 42.Полный дифференциал функции двух переменных.
- 43. Касательная плоскость и нормаль к поверхности.
- 44. Экстремум функции двух переменных. Необходимые и достаточные условия экстремума.
- 45. Наибольшее и наименьшее значения функции двух переменных в замкнутой области.
- 46. Производная по направлению. Градиент функции и его свойства.
- 47. Комплексные числа. Основные определения. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Формы записи комплексного числа. Формула Эйлера. Действия над комплексными числами.
- 48.Многочлены. Основные понятия. Дробно рациональные функции. Представление неправильной рациональной дроби в виде суммы целой части и правильной дроби. Представление правильной рациональной дроби в виде суммы простейших дробей. Метод неопределенных коэффициентов.
- 49. Первообразная функции и неопределенный интеграл, их определение и свойства. Таблица неопределенных интегралов.
- 50.Замена переменной и интегрирование по частям в неопределенном интеграле.
- 51. Интегрирование выражений, зависящих от квадратного трехчлена.
- 52.Интегрирование рациональных функций.
- 53.Интегрирование некоторых тригонометрических выражений. Универсальная тригонометрическая подстановка.
- 54.Интегрирование иррациональных выражений. Дробно линейная подстановка.
- 55. «Неберущиеся» интегралы.
- 56. Задачи, приводящие к понятию определенного интеграла.
- 57. Определение определенного интеграла.
- 58. Формула Ньютона Лейбница.
- 59.Свойства определенного интеграла. Определенный интеграл с переменным верхним пределом.
- 60.Интегрирование по частям и замена переменной в определенном интеграле.
- 61. Несобственные интегралы с бесконечными пределами

- (несобственные интегралы I рода). Несобственные интегралы от разрывных функций (несобственные интегралы II рода).
- 62. Вычисление площади плоской фигуры в декартовых координатах.
- 63. Вычисление площади плоской фигуры в полярных координатах.
- 64. Вычисление длины дуги плоской кривой в декартовых и в полярных координатах.
- 65. Вычисление объема тела по известным площадям параллельных поперечных сечений. Объем тела вращения.
- 66.Определение двойного интеграла и его свойства.
- 67. Геометрический и физический смысл двойного интеграла.
- 68. Правильные области на плоскости. Вычисление двойного интеграла в декартовых координатах.
- 69.Замена переменных в двойном интеграле. Вычисление двойного интеграла в полярных координатах.
- 70. Приложения двойных интегралов: вычисление объема цилиндрического тела и площади плоской фигуры; нахождение массы, статических моментов, координат центра тяжести и моментов инерции тонкой пластинки.
- 71. Определение и свойства криволинейных интегралов І рода.
- 72. Вычисление и приложения криволинейных интегралов І рода.
- 73. Определение и свойства криволинейных интегралов II рода.
- 74. Вычисление криволинейных интегралов II рода.
- 75. Формула Остроградского Грина.
- 76. Приложения криволинейных интегралов II рода.

- 1. Обыкновенные дифференциальные уравнения. Основные определения.
- 2. Примеры задач, приводящих к дифференциальным уравнениям.
- 3. Дифференциальные уравнения первого порядка. Основные определения. Задача Коши. Теорема существования и единственности задачи Коши.
- 4. Дифференциальные уравнения с разделяющимися переменными.
- 5. Однородные дифференциальные уравнения первого порядка.
- 6. Линейные дифференциальные уравнения первого порядка. Метод И. Бернулли.
- 7. Линейные дифференциальные уравнения первого порядка. Метод Лагранжа (метод вариации произвольной постоянной).
- 8. Дифференциальные уравнения Я. Бернулли.
- 9. Уравнения в полных дифференциалах.
- 10. Дифференциальные уравнения высших порядков. Основные определения. Задача Коши. Теорема существования и единственности задачи Коши.
- 11. Уравнения второго порядка, допускающие понижение порядка.

- Уравнения вида y'' = f(x), y'' = f(x, y'), y'' = f(y, y').
- 12. Линейные однородные дифференциальные уравнения второго порядка (ЛОДУ II). Определения и основные свойства решений ЛОДУ II.
- 13. Линейная зависимость и независимость функций. Определитель Вронского. Свойства определителя Вронского.
- 14. Структура общего решения ЛОДУ ІІ.
- 15. ЛОДУ ІІ с постоянными коэффициентами. Характеристическое уравнение. Общее решение.
- 16. Структура общего решения линейного неоднородного дифференциального уравнения второго порядка (ЛНДУ II).
- 17. Наложение решений ЛНДУ II.
- 18. Решение ЛНДУ II методом вариации произвольных постоянных.
- 19. Решение ЛНДУ II с постоянными коэффициентами и специальной правой частью.
- 20. Системы дифференциальных уравнений. Основные определения. Интегрирование нормальных систем.
- 21. Числовые ряды. Основные определения. Свойства числовых рядов.
- 22. Геометрическая прогрессия. Гармонический ряд. Обобщенный гармонический ряд.
- 23. Необходимый признак сходимости. Достаточные признаки сходимости знакоположительных рядов: признаки сравнения.
- 24. Достаточные признаки сходимости знакоположительных рядов: признак Даламбера, интегральный и радикальный признаки Коши.
- 25. Функциональные ряды. Основные определения. Область сходимости функционального ряда.
- 26. Степенные ряды. Теорема Абеля. Интервал и радиус сходимости степенного ряда. Свойства степенных рядов.
- 27. Ряды Тейлора и Маклорена. Разложение элементарных функций в ряд Маклорена.
- 28. Тригонометрический ряд Фурье. Коэффициенты Фурье.
- 29. Теорема Дирихле. Разложение функций в ряд Фурье на отрезке $[-\pi,\pi]$.

4-й семестр (экзамен)

- 29. Элементы комбинаторики. Перестановки, сочетания и размещения.
- 30. Предмет теории вероятностей. Случайные события, основные определения.
- 31. Классическое определение вероятности случайного события. Свойства вероятностей.
- 32. Статистическое и геометрическое определения вероятности случайного события.
- 33. Алгебра случайных событий. Сложение и умножение случайных

событий. Зависимые и независимые события. Условная вероятность.

- 34. Теоремы умножения вероятностей.
- 35. Теоремы сложения вероятностей. Вероятность появления хотя бы одного события.
- 36. Формула полной вероятности.
- 37. Схема Бернулли, формула Бернулли, формула Пуассона.
- 38. Схема Бернулли. Локальная и интегральная теоремы Лапласа.
- 39. Случайная величина. Основные определения. Закон распределения дискретной случайной величины.
- 40. Функция распределения дискретной случайной величины и ее свойства.
- 41. Функция распределения непрерывной случайной величины и ее свойства.
- 42. Функция плотности вероятности. Ее свойства.
- 43. Математическое ожидание дискретной случайной величины. Свойства математического ожидания.
- 44. Дисперсия дискретной случайной величины. Свойства дисперсии.
- 45. Среднее квадратическое отклонение.
- 46. Математическое ожидание, дисперсия и среднее квадратическое отклонение непрерывной случайной величины.
- 47. Биномиальное распределение случайной величины.
- 48. Равномерное распределение случайной величины.
- 49. Показательное распределение случайной величины.
- 50. Нормальное распределение случайной величины.
- 51. Предмет математической статистики. Выборочный метод.
- 52. Вариационный ряд. Полигон, гистограмма, эмпирическая функция распределения.
- 53. Числовые характеристики выборки.
- 54. Статистические оценки параметров распределения. Основные понятия.
- 55. Точечные оценки параметров распределения.
- 56. Интервальная оценка параметров распределения. Построение доверительных интервалов.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 20 практических тест-заданий. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.

4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.

7.2.7 Паспорт оценочных материалов

	7.2.7 паспорт оценочных мат	сриалов	_
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Линейная и векторная алгебра	ОПК-1, ОПК-2, ОПК-3	Тестирование (Т) Коллоквиум (КЛ) Экзамен
2	Аналитическая геометрия и основы современной геометрии	ОПК-1, ОПК-2, ОПК-3	Расчетно-графическая работа (РГР) Контрольная работа (КР) Коллоквиум (КЛ) Экзамен
3	Введение в математический анализ и дифференциальное исчисление функций одной переменной	ОПК-1, ОПК-2, ОПК-3	Расчетно-графическая работа (РГР) Контрольная работа (КР) Коллоквиум (КЛ) Экзамен
4	Дифференциальное исчисление функций нескольких переменных	ОПК-1, ОПК-2, ОПК-3	Тестирование (Т) Коллоквиум (КЛ) Экзамен
5	Интегральное исчисление функций одной и нескольких переменных	ОПК-1, ОПК-2, ОПК-3	Расчетно-графическая работа (РГР) Контрольная работа (КР) Коллоквиум (КЛ) Экзамен
6	Обыкновенные дифференциальные уравнения	ОПК-1, ОПК-2, ОПК-3	Расчетно-графическая работа (РГР) Контрольная работа (КР) Коллоквиум (КЛ) Экзамен
7	Числовые и функциональные ряды	ОПК-1, ОПК-2, ОПК-3	Контрольная работа (КР) Тестирование (Т) Коллоквиум (КЛ) Экзамен
8	Дискретная математика, Теория вероятностей и основы математической статистики	ОПК-1, ОПК-2, ОПК-3	Тестирование (Т) Коллоквиум (КЛ) Экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. *Беклемишев Д.В.* Курс аналитической геометрии и линейной алгебры [Электронный ресурс]: учебник/ Беклемишев Д.В.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2007.— 312 с.— Режим доступа: http://www.iprbookshop.ru/12873.— ЭБС «IPRbooks», по паролю
- 2. *Гусак А.А.* Математический анализ и дифференциальное уравнение. Примеры и задачи [Электронный ресурс]: учебное пособие/ Гусак А.А.— Электрон. текстовые данные.— Минск: ТетраСистемс, 2011.— 415 с.— Режим доступа: http://www.iprbookshop.ru/28122.— ЭБС «IPRbooks», по паролю
- 3. *Бочаров П.П.* Теория вероятностей. Математическая статистика [Электронный ресурс]/ Бочаров П.П., Печинкин А.В.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2005.— 296 с.— Режим доступа: http://www.iprbookshop.ru/25717.— ЭБС «IPRbooks», по паролю
- 4. *Алейников С.М.* Высшая математика. Контрольно–измерительные материалы для аттестации обучающихся в технических вузах: практикум / *С.М. Алейников*, *В.В. Горяйнов*.; Воронеж. гос. арх.—строит. ун—т. Воронеж, 2006. 131 с.
- 5. Берман Г.Н. Сборник задач по курсу математического анализа / Г.Н. Берман. СПб. : Профессия, 2005г. 432 с.
- 6. Горяйнов В.В. Дифференциальные уравнения. Ряды.: учебное пособие /В.В. Горяйнов, Т.Г. Святская, Л.В. Акчурина, В.А. Попова; под ред. проф. С.М. Алейникова; Воронеж. гос. арх.-строит. ун-т. Воронеж, 2007. 136 с.
- 7. Данко П. Е. Высшая математика в упражнениях и задачах: в 2 ч. Ч. 1. / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова.— М.: Издательский дом «ОНИКС 21 Век»: Мир и Образование, 2008. 368 с.
- 8. Данко П. Е. Высшая математика в упражнениях и задачах: в 2 ч. Ч. 2. / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова.— М.: Издательский дом «ОНИКС

- 21 Beк»: Мир и Образование, 2008. 448 c.
- 9. Дементьева А.М. Интегральное исчисление функций одной и нескольких переменных: учебное пособие / А.М. Дементьева, С.В. Артыщенко, В.А. Попова; Воронеж. гос. архит.-строит. ун-т. Воронеж, 2010. 163 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - 1. Консультирование посредством электронный почты.
 - 2. Использование презентаций при проведении лекционных занятий. Для работы в сети рекомендуется использовать сайты:
 - http://encycl.yandex.ru (Энциклопедии и словари).
 - http://www.intuit.ru/department/mathematics/intmath/
 Вводный курс в высшую математику. Рассматриваются основы высшей математики для «нематематических» специальностей. Изложение сопровождается большим количеством специально подобранных примеров, поясняющих суть исследуемых понятий и фактов).
 - http://mathelp.spb.ru (Лекции, учебники on-line, web-сервисы по высшей математике в помощь студентам).
 - http://mathem.by.ru (Справочная информация по математическим дисциплинам).
 - http://www.exponenta.ru (Материалы по высшей математике).
- <u>http://teorver-online.narod.ru/teorver73.html</u> (Манита А. Д. Теория вероятностей и математическая статистика. Интернет-учебник).
 <u>http://eqworld.ipmnet.ru/ru/library/mathematics.htm.</u> (Книги в форматах PDF и DjVu).

Для работы с электронными учебниками требуется наличие таких программных средств, как Adobe Reader для Windows и DjVuBrowserPlugin.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения ряда лекционных занятий по дисциплине необходимы аудитории, оснащенные презентационным оборудованием (компьютер с ОС Windows и программой PowerPoint или Adobe Reader, мультимедийный проектор и экран).

Для обеспечения практических занятий требуется компьютерный

класс с комплектом лицензионного программного обеспечения (при использовании электронных изданий — компьютерный класс с выходом в Интернет).

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Математика» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета ______. Занятия проводятся путем решения конкретных задач в аудитории.

Вид учебных	_		
занятий	Деятельность студента		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.		
Практическое	Конспектирование рекомендуемых источников. Работа с конспектом		
занятие	лекций, подготовка ответов к контрольным вопросам, просмотр		
	рекомендуемой литературы. Прослушивание аудио- и видеозаписей		
	по заданной теме, выполнение расчетно-графических заданий,		
	решение задач по алгоритму.		
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения		
работа	учебного материала и развитию навыков самообразования.		
	Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;		
	- выполнение домашних заданий и расчетов;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций, олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в		
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не		
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные		
	перед экзаменом, зачетом, зачетом, экзаменом, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.		