Аннотация

Б2.2 «Научно-исследовательская практика»

Общая трудоемкость практики составляет: 6 ЗЕТ (216 ч). Цели и задачи практики:

Систематизация, расширение и закрепление профессиональных знаний, формирование у аспирантов навыков ведения самостоятельной научно-исследовательской работы: теоретического анализа, экспериментального исследования и компьютерного моделирования физических процессов.

Компетенции обучающегося, формируемые в результате прохождения практики

ПК-1	способностью строить физические и математические модели при-
	боров, схем, устройств и установок электроники и наноэлектрони-
	ки различного функционального назначения, а также использовать
	стандартные программные средства их компьютерного моделиро-
	вания
ПК-2	способностью аргументированно выбирать и реализовывать на
	практике эффективную методику экспериментального исследова-
	ния параметров и характеристик приборов, схем, устройств и уста-
	новок электроники и наноэлектроники различного функционально-
	го назначения
ПК-3	готовностью выполнять расчет и проектирование электронных
	приборов, схем и устройств различного функционального назначе-
	ния в соответствии с техническим заданием с использованием
	средств автоматизации проектирования

Основные дидактические единицы (разделы).

Во время научно-исследовательской практики аспирант должен:

изучить:

- патентные и литературные источники по разрабатываемой теме с целью их дальнейшего использования при работе над магистерской диссертацией;
 - методы проведения экспериментальных работ;
- правила эксплуатации научно-исследовательского и измерительного оборудования;
 - методы анализа и обработки экспериментальных данных;

- физические и математические модели исследуемых процессов и явлений;
 информационные технологии в научных исследованиях и программные продукты, относящиеся к профессиональной сфере;
 - требования к выполнению научно-технической документации;

выполнить:

- анализ, систематизацию и обобщение научно-технической информации по теме исследований;
- самостоятельное экспериментальное или теоретическое исследование в рамках поставленных задач;
 - анализ достоверности полученных результатов;
- сравнение результатов исследований с аналогичными отечественными и зарубежными результатами;
 - анализ научной и практической значимости проводимых исследований;
- формулирование темы магистерской диссертации и составление программы ее реализации, написание отчета.

В результате прохождения научно-исследовательской практики аспирант должен:

знать:

- современные проблемы электроники и наноэлектроники (ПК-2);
- состояние, проблемы, перспективы развития и использование достижений электроники и наноэлектроники в различных областях науки и техники (ПК-2);
- физические процессы, используемые для совершенствования известных и создания новых приборов и устройств микро- и наноэлектроники (ПК-1, ПК-3).

уметь:

- проводить анализ, систематизацию и обобщение научно-технической информации по теме исследований (ПК-1);
- применять информационные технологии в научных исследованиях и программные продукты, относящиеся к профессиональной сфере (ПК-1, ПК-2);
- применять физические принципы и явления для решения прикладных задач в области микро- и наноэлектроники (ПК-1, ПК-2, ПК-3).

владеть:

методикой систематизации и оформления результатов научной работы (ПК-1);

– навыками написания научных статей в журналах по перечню ВАК РФ, например, «Вестник ВГТУ» и тезисов докладов на конференции различных уровней (ПК-2, ПК-3);

сформировать профессионально-значимые качества личности:

- способность разрабатывать и оптимизировать современные наукоемкие технологии в различных областях электроники и наноэлектроники с учетом экономических и экологических требований;
- готовность и способность применять физические методы теоретического и экспериментального исследования, методы математического анализа и моделирования для постановки задач по развитию, внедрению и коммерциализации новых наукоемких технологий в области электроники и наноэлектроники.

Формы контроля: зачет.