ФГБОУ ВО «Воронежский государственный технический университет»

Кафедра системного анализа и управления в медицинских системах

171-2016

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине

"Управление в биотехнических системах"

для студентов направления 12.03.04

"Биотехнические системы и технологии"

(профили «Биотехнические и медицинские аппараты и системы»,

«Менеджмент и управление качеством в здравоохранении»)

очной формы обучения

Воронеж 2016

Составители: д-р техн. наук Е.Н. Коровин, ассистент М.А. Сергеева

УДК 681.327.8

Методические указания к выполнению лабораторных работ по дисциплине "Управление в биотехнических системах" для студентов направления 12.03.04 «Биотехнические системы и технологии» (профили «Биотехнические и медицинские аппараты и системы», «Менеджмент и управление качеством в здравоохранении») очной формы обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост. Е.Н. Коровин, М.А. Сергеева. Воронеж, 2016. 25 с.

Данные методические указания предназначены для выполнения лабораторных работ по дисциплине «Управление в биотехнических системах».

Предназначены для студентов 4 курса.

Табл. 5. Ил. 21. Библиогр.: 3 назв.

Рецензент д-р техн. наук, проф. И.Я. Львович

Ответственный за выпуск зав. кафедрой д-р техн. наук, проф. О.В. Родионов

Печатается по решению редакционно-издательского совета Воронежского государственного технического университета

© ФГБОУ ВО «Воронежский государственный технический университет», 2016

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ

Целью лабораторных работ является приобретение навыков по теории автоматического управления.

В результате выполнения лабораторных работ студенты должны уметь:

- определять передаточные функции;
- находить переходные и импульсные характеристики по заданными передаточным функциям;
 - определять типовые динамические звенья;
 - рассчитывать амплитудно-фазовые частотные характеристики;
- определять устойчивость линейной системы автоматического регулирования по различным критериям;
- рассчитывать запас устойчивости по фазе и по амплитуде при помощи AФЧX и логарифмическим характеристикам.

Используемые программно-аппаратные средства: ПЭВМ класса IBM PC стандартной конфигурации, пакет MathCad.

Перед выполнением лабораторных работ каждый студент должен:

- изучить правила техники безопасности и пожарной безопасности при работе с ПЭВМ в лаборатории кафедры;
- ознакомиться с методическими рекомендациями по лабораторным работам.

Лабораторная работа № 1 «Передаточная функция и динамические характеристики»

1.1. Определите передаточную функцию цепи в общем виде, а затем в числовых значениях, изображенной на рис. 1, параметры цепи приведены в табл. 1.

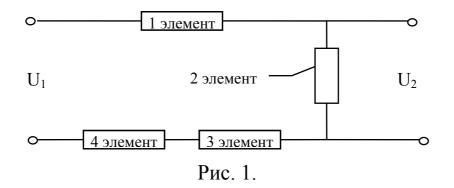


Таблица 1

Вариант	1 элемент	2 элемент	3 элемент	4 элемент
1	$R_1 = 2 O_M$	$R_2 = 1 O_M$	$R_3 = 4 O_M$	$C = 6*10^{-6} \Phi$
2	$R_1 = 1 O_M$	$R_2 = 3 O_M$	$C = 6*10^{-6} \Phi$	$L = 4*10^6 \Gamma_{\rm H}$
3	$R_1 = 1 O_M$	$R_2 = 5 \text{ Om}$	$L = 4*10^6 \Gamma_{\rm H}$	$C = 2*10^{-6} \Phi$
4	$R_1 = 3 \text{ OM}$	$C = 6*10^{-6} \Phi$	$R_2 = 3 \text{ Om}$	$L = 4*10^6 \Gamma_{\rm H}$
5	$R = 4 O_M$	$C_1 = 4*10^{-6} \Phi$	$C_2 = 2*10^{-6} \Phi$	$L = 5*10^6 \Gamma_{\rm H}$
6	$R_1 = 2 O_M$	$C = 3*10^{-6} \Phi$	$L = 4*10^6 \Gamma_{\rm H}$	$R_2 = 8 \text{ Om}$
7	$R_1 = 6 O_M$	$L = 2*10^6 \Gamma_{\rm H}$	$R_2 = 5 O_M$	$C = 4*10^{-6} \Phi$
8	$R = 4 O_M$	$L = 3*10^6 \Gamma_{\rm H}$	$C_1 = 6*10^{-6} \Phi$	$C_2 = 1*10^{-6} \Phi$
9	$R = 2 O_M$	$L_1 = 5*10^6 \Gamma_{\rm H}$	$L_2 = 4*10^6 \Gamma_{\rm H}$	$C = 2*10^{-6} \Phi$
10	$C_1 = 1*10^{-6} \Phi$	$R_1 = 6 O_M$	$R_2 = 4 O_M$	$C_2 = 3*10^{-6} \Phi$
11	$C_1 = 4*10^{-6} \Phi$	$R = 3 O_M$	$L = 3*10^6 \Gamma_{\rm H}$	$C_2 = 5*10^{-6} \Phi$
12	$C_1 = 3*10^{-6} \Phi$	$C_2 = 4*10^{-6} \Phi$	$R = 2 O_M$	$C_3 = 3*10^{-6} \Phi$
13	$C_1 = 2*10^{-6} \Phi$	$C_2 = 3*10^{-6} \Phi$	$C_3 = 3*10^{-6} \Phi$	$L = 5*10^6 \Gamma_{\rm H}$
14	$C_1 = 3*10^{-6} \Phi$	$L = 2*10^6 \Gamma_{\rm H}$	$C_2 = 4*10^{-6} \Phi$	$R = 3 O_M$
15	$L_1 = 1*10^6 \Gamma_{\rm H}$	$R_1 = 2 O_M$	$R_2 = 4 O_M$	$L_2 = 1*10^6 \Gamma_{\rm H}$
16	$C = 4*10^{-6} \Phi$	$L_1 = 4*10^6 \Gamma_{\rm H}$	$L_2 = 3*10^6 \Gamma_{\rm H}$	$R = 2 O_M$
17	$L_1 = 4*10^6 \Gamma_{\rm H}$	R = 6 Om	$L_2 = 3*10^6 \Gamma_{\rm H}$	$C = 4*10^{-6} \Phi$
18	$L_1 = 7*10^6 \Gamma_{\rm H}$	$C_1 = 7*10^{-6} \Phi$	$C_2 = 2*10^{-6} \Phi$	$L_2 = 6*10^6 \Gamma_{\rm H}$
19	$L_1 = 3*10^6 \Gamma_{\rm H}$	$C = 5*10^{-6} \Phi$	$L_1 = 1*10^6 \Gamma_{\rm H}$	$R = 4 O_M$
20	$L_1 = 6*10^6 \Gamma_{\rm H}$	$L_2 = 5*10^6 \Gamma$ н	$R = 3 O_M$	$L_3 = 2*10^6 \Gamma_{\rm H}$
21	$L_1 = 8*10^6 \Gamma_{\rm H}$	$L_2 = 4*10^6 \Gamma_{\rm H}$	$L_3 = 4*10^6 \Gamma_{\rm H}$	$C = 3*10^{-6} \Phi$
22	$R_1 = 1 O_M$	$C_1 = 4*10^{-6} \Phi$	$R_2 = 5 O_M$	$C_2 = 5*10^{-6} \Phi$
23	$R_1 = 4 O_M$	$L_1 = 5*10^6 \Gamma_{\rm H}$	$R_2 = 6 O_M$	$L_2 = 3*10^6 \Gamma_{\rm H}$
24	$C_1 = 5*10^{-6} \Phi$	$R_1 = 4 O_M$	$C_2 = 7*10^{-6} \Phi$	$R_2 = 4 \text{ OM}$
25	$C_1 = 7*10^{-6} \Phi$	$C_2 = 5*10^{-6} \Phi$	$C_3 = 3*10^{-6} \Phi$	$R = 2 O_M$
26	$L_1 = 5*10^6 \Gamma_{\rm H}$	$L_2 = 5*10^6 \Gamma H$	$L_3 = 5*10^6 \Gamma_{\rm H}$	$R = 1 O_M$
27	$C_1 = 4*10^{-6} \Phi$	$L_1 = 1*10^6 \Gamma_{\rm H}$	$C_1 = 6*10^{-6} \Phi$	$L_2 = 5*10^6 \Gamma_{\rm H}$
28	$L_1 = 7*10^6 \Gamma_{\rm H}$	$R = 3 O_M$	$C = 4*10^{-6} \Phi$	$L_2 = 8*10^6 \Gamma_{\rm H}$
29	$C_1 = 5*10^{-6} \Phi$	$C_2 = 7*10^{-6} \Phi$	$L = 2*10^6 \Gamma_{\rm H}$	R = 5 Om
30	$L_1 = 3*10^6 \Gamma_{\rm H}$	$C = 3*10^{-6} \Phi$	$R = 5 O_M$	$L_2 = 3*10^6 \Gamma_{\rm H}$

1.2. Найдите переходную и импульсную (весовую) функции для заданной передаточной функции:

$$W(s) = \frac{As + B}{s^2 + Cs + D}. ag{1}$$

Параметры передаточной функции приведены в табл. 2.

Таблица 2

Вариант	A	В	С	D
1	65	9	10	9
2	42	192	14	48
3	16	168	13	42
4	32	0	8	0
5	-9	6	7	6
6	-8	54	11	18
7	26	144	17	72
8	32	56	11	28
9	25	360	13	36
10	-8	70	8	7
				35
11	-13	35	12	
12	10	90	8	15
13	28	168	13	42
14	-26	16	9	8
15	-42	54	10	9
16	24	256	12	32
17	20	80	8	16
18	39	432	17	72
19	-21	21	8	7
20	7	24	5	6
21	22	8	9	8
22	30	0	2	0
23	-3	6	3	2
24	19	15	8	15
25	22	36	5	6
26	30	0	6	0
27	33	252	13	42
28	19	105	8	15
29	39	108	9	18
30	-70	0	10	0

Пример выполнения лабораторной работы № 1

Параметры звена: R_1 =3 Ом; R_2 =3 Ом; L= $4*10^4$ Гн; C= $6*10^{-6}$ Ф.

Передаточная функция равна отношению выходного напряжения к входному:

$$W(s) = \frac{U_{BbIX}}{U_{BX}}. (2)$$

Входное и выходное напряжения равны:

$$U2 = I \cdot Z_{BbIX}$$

$$U1 = I \cdot Z_{OE}$$
(3)

то есть

$$W(s) = \frac{Z_{BbIX}}{Z_{OF}} \tag{4}$$

Рассчитаем Z_{OБ}:

$$Z_{OB} = R_1 + L \cdot s + \frac{1}{C \cdot s} + R_2. \tag{5}$$

Таким образом получаем W(s)

$$W(s) = \frac{1}{C \cdot L \cdot s^2 + s \cdot C \cdot (R_1 + R_2) + 1}.$$
 (6)

Выразим передаточную функцию W(s) в численном виде:

$$W(s) = \frac{1}{24 \cdot s^2 + 36 \cdot 10^{-6} \cdot s + 1}. (7)$$

В пакете MathCad построим график полученной передаточной функции (рис 2).

Определим переходную и импульсную характеристики цепи по известной переходной функции.

Переходная характеристика цепи представляет собой обратное преобразование Лапласа передаточной функции

$$h(t) = L^{-1} \{W(S)/S\},$$
 (8)

используя функцию «invlaplace» пакета MathCad получим:

$$h(t) = 4 - 4 \cdot e^{-8 \cdot t} \tag{9}$$

Построим график переходной характеристики h(t) (рис. 3).

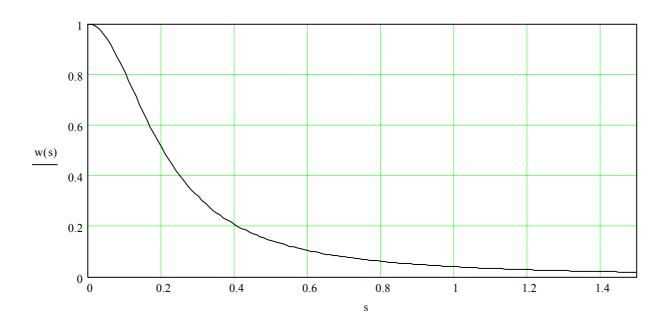


Рис. 2. Передаточная функция W(s)

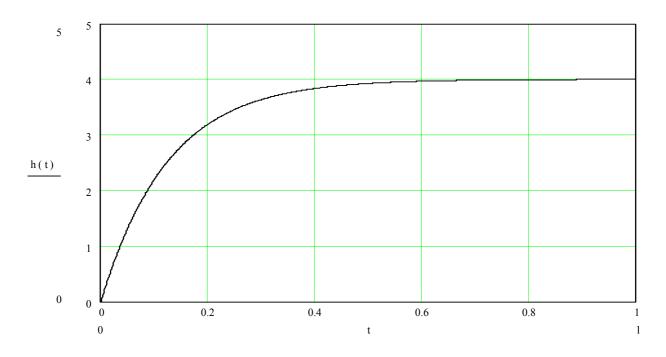


Рис. 3. Переходная характеристика

Найдем импульсную характеристику k(t)

$$k(t) = \frac{d(h(t))}{dt}$$

$$k(t) = 32 \cdot e^{-8 \cdot t}$$
(10)

$$k(t) = 32 \cdot e^{-8 \cdot t} \tag{11}$$

Построим график импульсной характеристики k(t) (рис. 4):

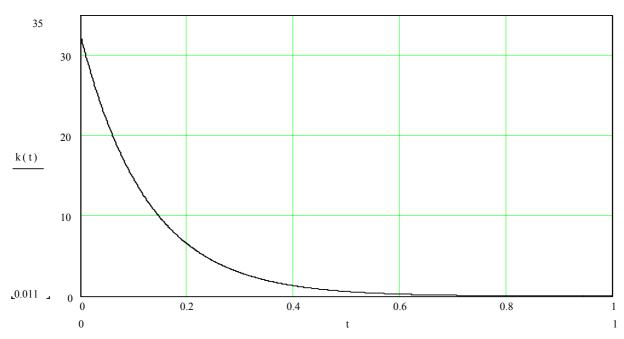
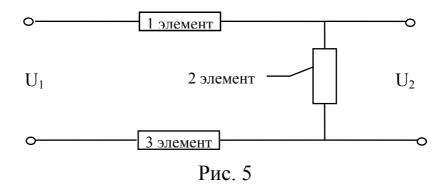



Рис. 4. График импульсной характеристики

Лабораторная работа № 2 «Типовые звенья САУ»

2.1. Определите передаточную функцию цепи в общем виде, а затем в числовых значениях, изображенной на рис. 5, параметры цепи приведены в табл. 3.

2.2. Определите, какому типовому динамическому звену соответствует передаточная функция. Получите в общем виде параметры К и Т, а затем в числовом виде.

Таблица 3

Вариант	1 элемент	2 элемент	3 элемент
1	$R_1 = 1 O_M$	$R_2 = 5 \text{ Om}$	С = 2 Ф
2	$L = 4 \Gamma_{H}$	$R_1 = 4 \text{ OM}$	$R_2 = 2 O_M$
3	R = 6 Om	$L_1 = 3 \Gamma_H$	$L_2 = 4 \Gamma_H$
4	$R_1 = 2 O_M$	С = 6 Ф	$R_2 = 3 \text{ Om}$
5	$L_1 = 3 \Gamma_H$	$R = 5 O_M$	$L_2 = 2 \Gamma_H$
6	$R_1 = 4 O_M$	$L = 4 \Gamma_H$	$R_2 = 2 O_M$
7	$C_1 = 6 \Phi$	$R = 8 O_M$	$C_2 = 4 \Phi$
8	$R = 3 O_M$	$C_1 = 5 \Phi$	$C_2 = 3 \Phi$
9	$L = 4 \Gamma_{H}$	$R = 3 O_M$	-
10	R = 6 Om	L = 3 Гн	-
11	С = 6 Ф	$R = 4 O_M$	-
12	$R = 2 O_M$	$C = 2 \Phi$	-
13	$L = 3 \Gamma_{H}$	$R = 4 O_M$	-
14	$R = 4 O_M$	$L = 2 \Gamma_H$	-
15	$C = 4 \Phi$	$R = 3 O_M$	-
16	$R = 1 O_M$	$C = 4 \Phi$	-
17	$R_1 = 2 O_M$	$R_2 = 4 O_M$	С = 1 Ф
18	$L = 5 \Gamma_{\rm H}$	$R_1 = 5 O_M$	$R_2 = 3 O_M$
19	$R = 5 O_M$	$L_1 = 2 \Gamma_H$	$L_2 = 3 \Gamma_H$
20	$R_1 = 3 O_M$	$C = 7 \Phi$	$R_2 = 4 \text{ Om}$
21	$L_1 = 2 \Gamma_H$	$R = 4 O_M$	$L_2 = 1 \Gamma_H$
22	$R_1 = 5 O_M$	$L = 5 \Gamma_H$	$R_2 = 3 \text{ Om}$
23	$C_1 = 5 \Phi$	$R = 7 O_M$	$C_2 = 3 \Phi$
24	$R = 2 O_M$	$C_1 = 4 \Phi$	$C_2 = 2 \Phi$
25	$L = 5 \Gamma_{\rm H}$	$R = 4 O_M$	-
26	R = 7 Om	L = 4 Гн	-
27	$C = 7 \Phi$	$R = 5 O_M$	-
28	$R = 3 O_M$	С = 3 Ф	-
29	$L = 4 \Gamma_{H}$	$R = 5 O_M$	-
30	$R = 5 O_M$	$L = 3 \Gamma_H$	-

2.3. Найдите переходную и импульсную характеристики на основе полученной передаточной функции. Постройте соответствующие графики.

- 2.4. Проанализируйте, как меняются переходная и импульсная функции, если значения исходных элементов увеличить в 2 раза. Построить соответствующие графики.
 - 2.5. Сделайте соответствующие выводы

Пример выполнения лабораторной работы № 2

Схема цепи, если первый элемент R1 = 1 Ом, второй элемент R2 = 5 Ом, третий элемент C = 2 Ф представлена на рис. 6.

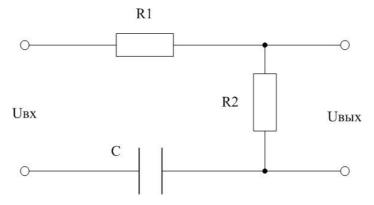


Рис. 6. Цепь с заданными параметрами

В общем виде передаточная функция W(S) будет иметь следующий вид:

$$W(S) = \frac{R_2}{R_1 + R_2 + \frac{1}{\tilde{N} \cdot S}} = \frac{R_2 \cdot \tilde{N} \cdot S}{\tilde{N} \cdot S \cdot (R_1 + R_2) + 1}$$
(12)

Подставляя в выражение (12) значение параметров цепи согласно варианту 1, получим:

$$W(S) = \frac{10 \cdot S}{12 \cdot S + 1} \tag{13}$$

Определим, какому типовому динамическому звену соответствует передаточная функция. Получим в общем виде параметры K и T, а затем в числовом.

$$W(S) = \frac{R_2 \cdot \tilde{N} \cdot S}{(R_1 + R_2) \cdot \tilde{N} \cdot S \cdot + 1} = \frac{K \cdot S}{\dot{O} \cdot S + 1},$$
(14)

где, $K=R_2\cdot C=10$, а $T=C\cdot (R_1+R_2)=12$.

Передаточная функция представленной схемы, соответствует инерционно-дифференцирующему звену.

Определим переходную и импульсную характеристики цепи по известной передаточной функции (13):

$$h(t) = \frac{5}{6} \cdot \exp(-\frac{1}{12} \cdot t),$$
 (15)

$$k(t) = -\frac{5}{72} \cdot \exp(-\frac{1}{12} \cdot t)$$
 (16)

Построим графики переходной характеристики h(t) (рис. 7) и импульсной характеристики k(t) (рис. 8).

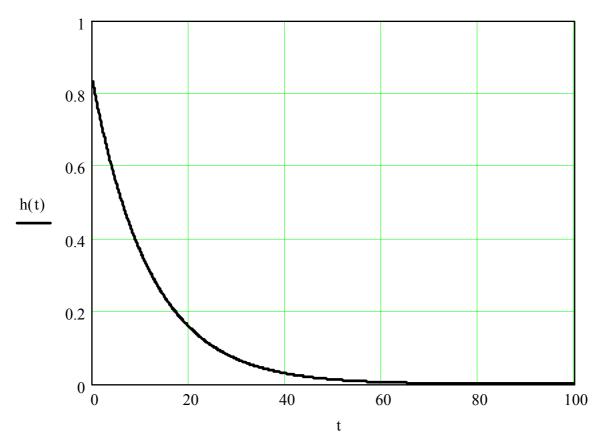


Рис. 7. Переходная характеристика инерционнодифференцирующему звену

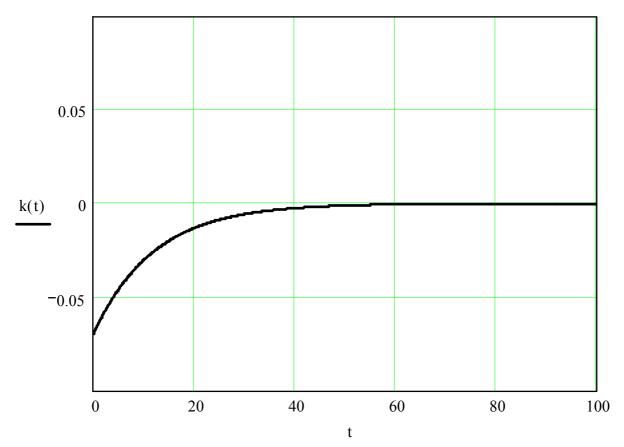


Рис. 8. Импульсная характеристика инерционнодифференцирующему звену

Проанализируем, как меняется переходная функция, если значения исходных элементов увеличить в 2 раза.

Значение элемента R1 увеличим в 2 раза. При R1=2 Ом, передаточная функция имеет вид:

$$W1(S) = \frac{10 \cdot S}{14 \cdot S + 1},$$
 (17)

а переходная характеристика:

$$h1(t) = \frac{5}{7} \cdot \exp(-\frac{1}{14} \cdot t),$$
 (18)

Построим графики соответствующих переходных характеристик (рис. 9). Как видно из представленного рис. 9, переходная характеристика немного уменьшится, так как при увеличении R1 в 2 раза по-

стоянная времени Т увеличивается, а коэффициент передачи К не меняется.

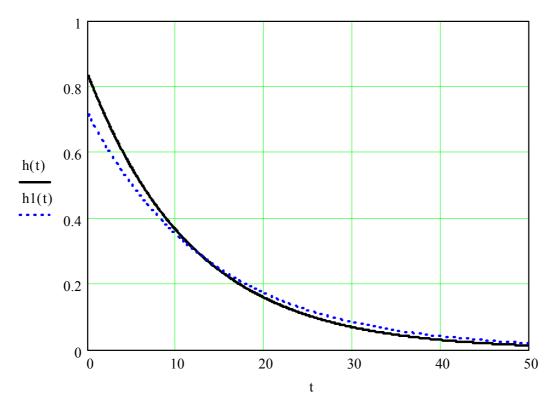


Рис. 9. Переходные характеристики инерционнодифференцирующему звену при изменении R1

Значение элемента R2 увеличим в 2 раза. При R2=10 Ом, передаточная функция имеет вид:

$$W2(S) = \frac{20 \cdot S}{22 \cdot S + 1},$$
 (19)

а переходная характеристика:

$$h2(t) = \frac{10}{11} \cdot \exp(-\frac{1}{22} \cdot t),$$
 (20)

Построим график соответствующих переходных характеристик (рис. 10). Как видно из представленного рис. 10 переходная характеристика увеличивается и сдвигается, так как при увеличении R2 в 2 раза коэффициент передачи К и постоянная времени Т увеличиваются.

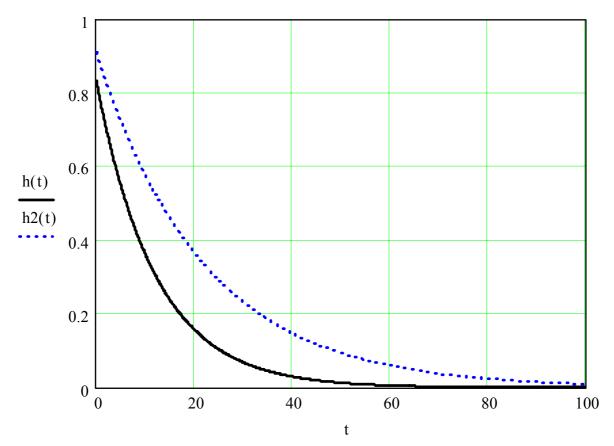


Рис. 10. Переходные характеристики инерционнодифференцирующему звену при изменении R2

Значение элемента С увеличим в 2 раза. При С=4 Ф, передаточная функция имеет вид:

$$W3(S) = \frac{20 \cdot S}{24 \cdot S + 1},$$
 (21)

а переходная характеристика:

$$h3(t) = \frac{5}{6} \cdot \exp(-\frac{1}{24} \cdot t),$$
 (22)

Построим график соответствующих переходных характеристик (рис. 11). Как видно из представленного рис. 11 переходная характеристика увеличивается, так как при увеличении С в 2 раза коэффициент передачи К и постоянная времени Т увеличиваются.

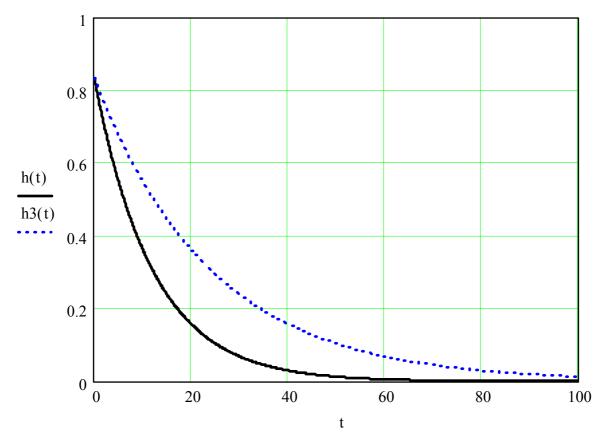


Рис. 11. Переходные характеристики инерционнодифференцирующему звену при изменении С

Лабораторная работа № 3 «Амплитудно-фазовые частотные характеристики САУ»

3.1. Рассчитайте АФЧХ (годограф) и постройте график соответствующей функции по заданной передаточной функции (23):

$$W(s) = \frac{A + Bs}{C + Ds},\tag{23}$$

параметры которой приведены в табл. 4.

3.2. Определите АЧХ (амплитудно-частотная характеристика) и ФЧХ (фазово-частотная характеристика) и постройте графики соответствующих функций.

Таблица 4

Вариант	A	В	С	D
1	3	-1	4	2
2	4	-4	4	8
3	5	-4	3	7
4	1	-2	2	5
5	8	-1	4	7
6	3	-3	2	7
7	4	-9	2 8	18
8	9	-2	2	9
9	4	-10	2	7
10	5	-10	4	9
11	10	-1	2	8
12	7	-6	2	2
13	8	-4	2	7
14	4	-2	2	1
15	5	-6	4	1
16	2	-8	2	5
17	2	-5	2 2	5
18	6	-6	4	2
19	5	-3	4	3
20	8	-4	4	7
21	10	-1	4	9
22	2	-7	2	7
23	4	-3	4	2
24	6	-1	2	4
25	9	-6	4	6
26	6	-1	4	5
27	1	-6	4	7
28	5	-7	2	6
29	3	-6	2	9
30	3	-2	2	2

3.3. Определите передаточную функцию замкнутой системы $\Phi(S)$ по заданной передаточной функции разомкнутой системы W(S) (23). Рассчитайте $A\Phi YX \Phi(j\omega)$, $AYX A_3(\omega)$ и $\Phi YX \Theta_3(\omega)$ и построите соответствующие графики функций замкнутой системы: $A_3(\omega)$, $\Theta_3(\omega)$ и $P(\omega)$.

Пример выполнения лабораторной работы № 3

Передаточная функция имеет вид:

$$W(s) = \frac{9 - 4s}{4 + 8s} \,, \tag{24}$$

Чтобы получить $A\Phi \Psi X$, надо в передаточной функции W(S), заменить S на $j\omega$:

$$W(j\omega) = \frac{9 - 4j\omega}{4 + 8j\omega}. (25)$$

Для расчета AЧX и ФЧX необходимо выделить действительную и мнимую части:

$$W(j\omega) = \frac{(9 - 4j\omega) \cdot (4 - 8j\omega)}{(4 + 8j\omega) \cdot (4 - 8j\omega)} = \frac{36 - 72j\omega - 16j\omega - 32\omega^{2}}{16 + 64\omega^{2}}.$$
 (26)

После некоторых преобразований получим:

$$W(j\omega) = \frac{9 - 8\omega^2}{4 + 16\omega^2} - j\frac{22\omega}{4 + 16\omega^2},$$
 (27)

где

$$U(\omega) = \frac{9 - 8\omega^2}{4 + 16\omega^2}, \quad V(\omega) = -\frac{22\omega}{4 + 16\omega^2}$$
 (28)

Годограф $W(j\omega)$ (АФЧХ) представлен на рис. 12.

Амплитудно-фазовая характеристика (модуль $W(j\omega)$) $A(\omega)$ находятся по формуле:

$$A(\omega) = |W(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)}.$$
 (29)

В результате преобразований, получим:

$$A(\omega) = \frac{\sqrt{81 + 340 \cdot \omega^2 + 64 \cdot \omega^4}}{4 + 16 \cdot \omega^2}.$$
 (30)

График данной функции представлен на рис. 13.

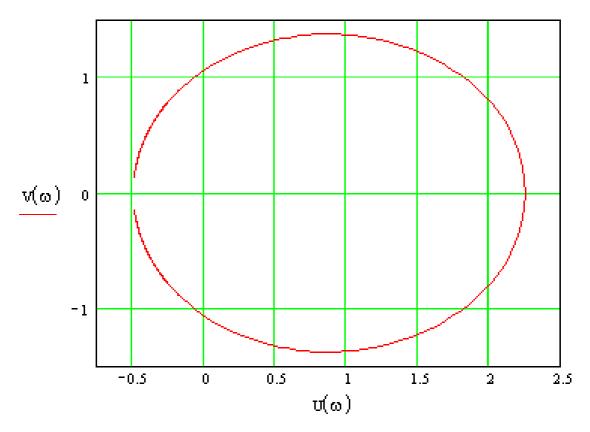


Рис. 12. Амплитудно-фазовая частотная характеристика (годограф)

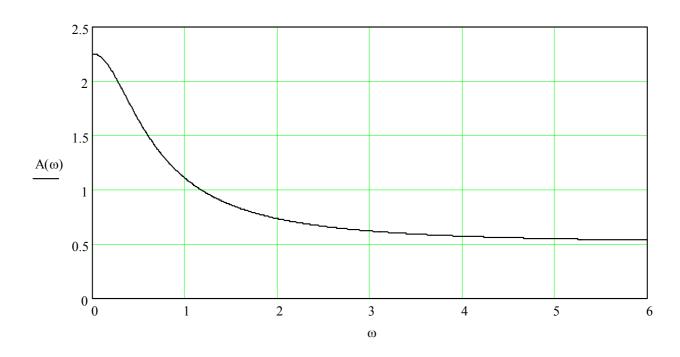


Рис. 13. Амплитудная частотная характеристика

Фазовая частотная характеристика (ФЧХ) $\phi(\omega)$ рассчитывается по формуле:

$$\phi(\omega) = \arg(W(\omega)) = arctg\left(\frac{V(\omega)}{U(\omega)}\right).$$
 (31)

После преобразований получим:

$$\phi(\omega) = arctg\left(\frac{-22 \cdot \omega}{9 - 8 \cdot \omega^2}\right). \tag{32}$$

График ФЧХ представлен на рис. 14.

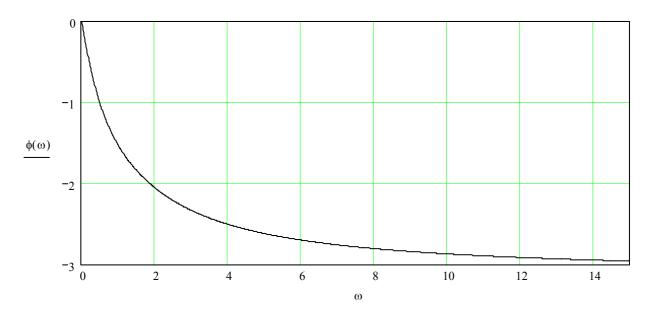


Рис. 14. Фазовая частотная характеристика

Чтобы получить передаточную функцию замкнутой системы воспользуемся формулой

$$\Phi(j\omega) = \frac{W(j\omega)}{1 + W(j\omega)},\tag{33}$$

где $W(j\omega)$ – передаточная функция разомкнутой системы.

После некоторых преобразований получим:

$$\Phi(j\omega) = \frac{9 - 4 \cdot j\omega}{13 + 4 \cdot j\omega},\tag{34}$$

выделив действительную и мнимую части, получим

$$\Phi(j\omega) = \frac{117 - 16 \cdot \omega^2}{169 + 16 \cdot \omega^2} - j\frac{88 \cdot \omega}{169 + 16 \cdot \omega^2},$$
 (35)

Амплитудно-частотную характеристику $Az(\omega)$ найдем по формуле:

$$Az(\omega) = |\Phi(\omega)|. \tag{36}$$

В пакете MathCad получим:

$$Az(\omega) = \frac{\sqrt{13689 + 4000 \cdot \omega^2 + 256 \cdot \omega^4}}{169 + 16 \cdot \omega^2}.$$
 (37)

График $Az(\omega)$ представлен на рис. 15.

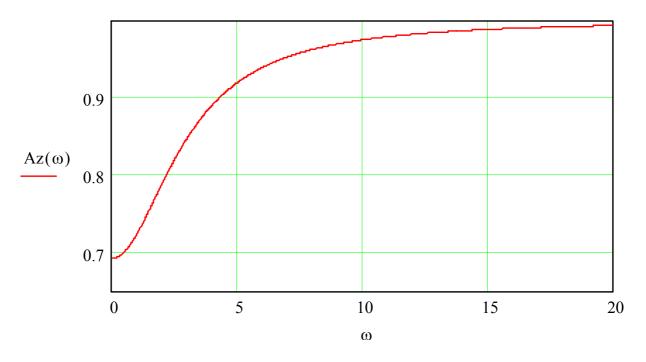


Рис. 15. Амплитудно-частотная характеристика (АЧХ)

Фазово-частотную характеристику $\Theta z(\omega)$ найдем по формуле:

$$\Theta Z(\omega) = \arg(\Phi(\omega))$$
 (38)

В пакете MathCad получим:

$$\Theta Z(\omega) = arctg \left(\frac{-88 \cdot \omega}{117 - 16 \cdot \omega^2} \right)$$
 (39)

Построим график ФЧХ (рис. 16).

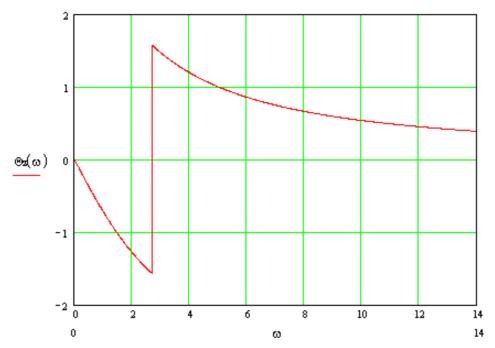


Рис. 16. Фазово-частотная характеристика (ФЧХ)

Определим вещественную часть передаточной функции:

$$P(\omega) = \frac{117 - 16 \cdot \omega^2}{169 + 16 \cdot \omega^2}.$$
 (40)

Построим график вещественной части передаточной функции (рис. 17).

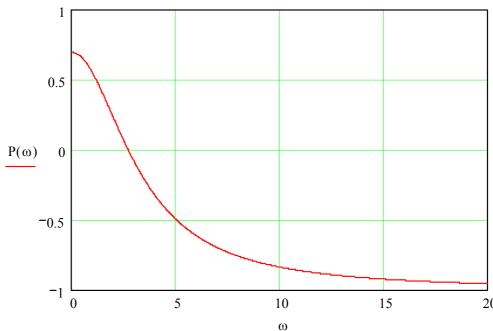


Рис. 17. Действительная часть передаточной функции замкнутой системы

Лабораторная работа № 4 «Критерий Найквиста»

4.1. Определить устойчивость системы автоматического регулирования (рис. 18) по критерию Найквиста, определить запас устойчивости по фазе и по амплитуде при помощи АФЧХ по логарифмическим характеристикам. Параметры системы приведены в табл. 5.

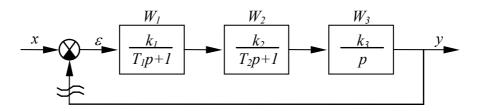


Рис. 18

Таблица 5

No	Параметры уравнения				
варианта	\mathbf{k}_1	\mathbf{k}_2	\mathbf{k}_3	T_1,c	T ₂ ,c
1	5	1	10	0,2	0,1
2	2	10	0,2	0,01	1
3	0,5	20	1	0,1	0,1
4	10	10	0,2	0,2	0,1
5	0,5	1	30	0,02	0,1
6	0,2	2	4	0,05	0,1
7	0,1	3	5	0,1	0,1
8	5	4	0,2	0,2	0,1
9	2	10	0,1	0,02	1
10	1	1	2	0,2	0,1
11	1	2	1	0,5	0,1
12	5	1	5	0,1	1
13	10	2	0,4	0,2	1
14	1	1	3	0,5	0,1
15	2	1	2	0,5	1
16	3	1	2	0,2	0,1
17	0,5	1	10	0,1	0,2
18	0,2	10	2	0,3	0,1
19	0,3	20	1	0,2	0,1

Продолжение табл. 5

No	Параметры уравнения					
варианта	\mathbf{k}_1	\mathbf{k}_2	\mathbf{k}_3	T_1,c	T_{2} ,c	
20	10	10	0,2	0,2	0,1	
21	0,3	1	30	0,02	0,1	
22	0,2	2	40	0,05	0,1	
23	0,1	3	50	0,1	0,1	
24	5	4	0,2	0,2	0,1	
25	10	2	0,1	0,2	0,1	
26	2	10	0,2	0,01	1	
27	0,5	20	1	0,1	0,1	
28	1	10	0,2	0,2	0,5	
29	1	1	3	0,02	0,1	
30	5	2	0,4	0,05	0,1	

Пример выполнения лабораторной работы № 4

Согласно заданию к лабораторной работе необходимо оценить устойчивость системы по критерию Найквиста. Для суждения об устойчивости замкнутой системы необходимо определить передаточную функцию разомкнутой системы, поэтому необходимо преобразовать исходную систему к общему виду, то есть произвести преобразование цепи.

Преобразование производилось по следующему принципу: так как элементы исходно цепи соединены последовательно, то их заменяем одним элементом, имеющим передаточную функцию равной произведению всех трех передаточных функций исходной цепи, то есть: $W=W_1*W_2*W_3$. Если использовать математический вид полученной передаточной функции, то он выглядит так:

$$W = \frac{10}{0.02 \cdot p^3 + 0.3 \cdot p^2 + p} \,. \tag{41}$$

Для того, чтобы применить критерий Найквиста необходимо построить амплитудно-фазовую частотную характеристику. Этот можно реализовать, заменив в формуле для передаточной функции преобразованной системы p на $j\omega$. Далее разделим на действительную и мнимую части передаточную функцию преобразованной системы: $W(j\omega) = U(\omega) + jV(\omega)$,

где
$$U(\omega) = \frac{-3 \cdot \omega^2}{0.09 \cdot \omega^4 + (0.02 \cdot \omega^3 - \omega)^2}, \quad V(\omega) = \frac{0.2 \cdot \omega^3 - 10 \cdot \omega}{0.09 \cdot \omega^4 + (0.02 \cdot \omega^3 - \omega)^2}.$$
 (42)

Теперь можно построить график амплитудно-фазовой частотной характеристики. Полученная зависимость представлена на рис. 19.

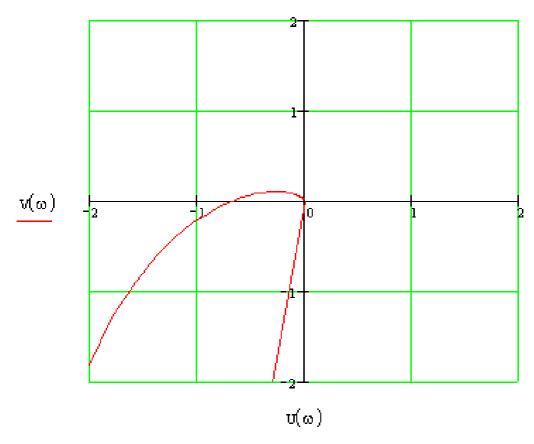


Рис. 19. Амплитудно-фазовая частотная характеристика.

Согласно критерию Найквиста, замкнутая система будет устойчива, если амплитудно-фазовая частотная характеристика разомкнутой системы не охватывает точку (-1,0). Анализируя полученный результат, устанавливаем, что полученная нами кривая не охватывает точку (-1,0), следовательно, система устойчива.

Далее определим запас устойчивости, используя график представленный на рис. 19. Запасом по модулю |М| является отрезок, начало которого находится в точке пересечения кривой с осью абсцисс, а конец –

точка (-1,0). Длина этого отрезка и будет являться запасом по модулю. В нашем случае M=0,31. Запас по фазе $\Delta \phi$ равен: $\Delta \phi$ = π - $|\phi(w_i)|$. В нашем случае запас по фазе составляет примерно -11° (рис. 20).

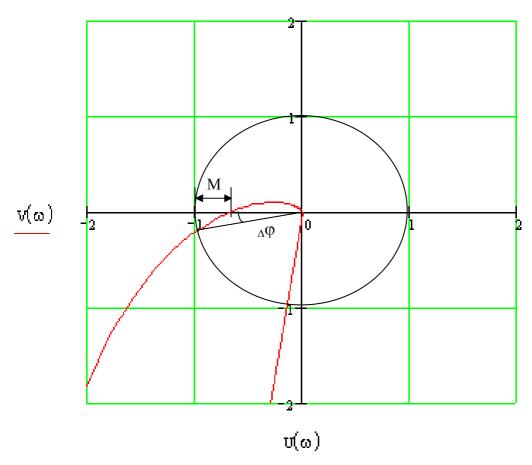


Рис. 20. Запасы устойчивости по критерию Найквиста

Далее необходимо провести расчет запасов по амплитуде и по фазе, используя логарифмическую зависимость амплитуды от частоты и фазовую зависимость (рис. 21). Система является устойчивой, так как при $\theta(\omega)=0$, $20\log(A(\omega))<0$, а при $20\log(A(\omega))=0$, $\theta(\omega)>0$.

Для анализа запасов устойчивости, определим точку пересечения логарифмической амплитудной зависимости с нулевым уровнем. При ω =5,716, $20\log(A(\omega))$ =0. Далее подставив найденное значение в формулу описывающую фазовую зависимость, получим, что запас по фазе составляет 0,199 рад. или 11,4°.

Для нахождения запаса по амплитуде, необходимо определить точку пересечения фазовой зависимости с уровнем 0, т.е. определить ω при которой $\theta(\omega)=0$, в данном случае $\omega=7,07$. Далее подставив найденное зна-

чение в формулу для логарифмической амплитудной характеристики, получим значение запаса устойчивости по амплитуде в децибелах: $20\log(A(7,07))=-3,519$.

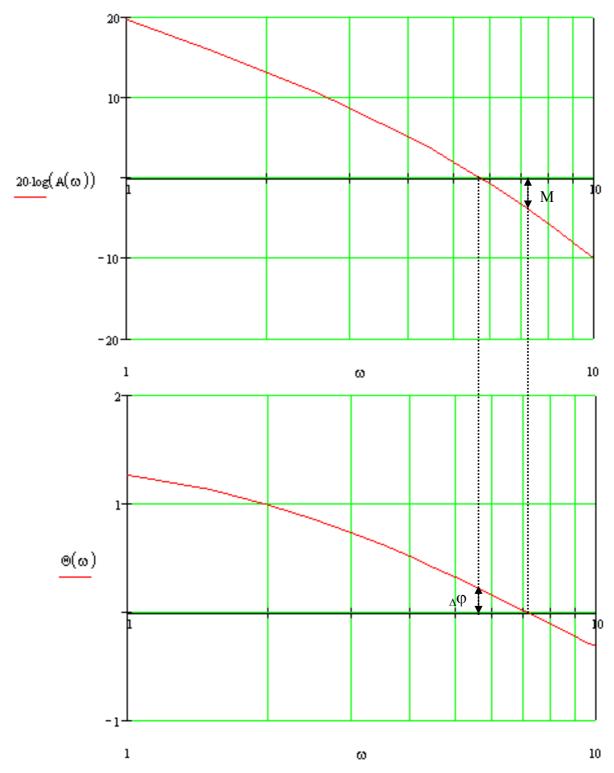


Рис. 21. Логарифмическая амплитудная и фазовая частотные характеристики

Библиографический список

- 1. Попов Е.П. Теория линейных систем автоматического регулирования и управления: учебное пособие для ВТУЗов / Е.П. Попов. М.:Наука, 1989. 304 с.
- 2. Зацепина С.А. Теория управления: учебное пособие / С.А. Зацепина, Я.Е. Львович, В.Н. Фролов. Воронеж: Изд-во ВГУ, 1989. 200 с.
- 3. Фролов В.Н. Управление в биологических и медицинских системах: учебное пособие для ВУЗов / В.Н. Фролов. Воронеж: ВГТУ, 2001. 327 с.

СОДЕРЖАНИЕ

1. Общие методические указания по выполнению лабораторных рабо	эт1
2. Лабораторная работа № 1	1
3. Лабораторная работа № 2	6
4. Лабораторная работа № 3	13
5. Лабораторная работа № 4	20
6. Библиографический список	25

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине

"Управление в биотехнических системах"

для студентов направления 12.03.04

«Биотехнические системы и технологии»

(профили "Биотехнические и медицинские аппараты и системы",

"Менеджмент и управление качеством в здравоохранении")

очной формы обучения

Составители: Коровин Евгений Николаевич Сергеева Маргарита Анатольевна

В авторской редакции

Подписано в печать 22.09.2016. Формат 60×84/16. Бумага для множительных аппаратов. Усл. печ. л. 1,8. Уч.-изд. л. 1,6. Тираж 50 экз. «С» Зак. №

ФГБОУ ВО «Воронежский государственный технический университет» 394026 Воронеж, Московский просп., 14