МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Утверждаю:

Зав. кафедрой строительной механики

Козлов В.А.

<31 » августа 2021 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

«МАТЕМАТИЧЕСКИЕ ПРОГРАММНЫЕ КОМПЛЕКСЫ»

Направление подготовки <u>08.04.01</u> Строительство
Программа <u>Теория и проектирование зданий и сооружений</u>
Квалификация выпускника <u>магистр</u>

Нормативный период обучения 2 года

Форма обучения очная

Год начала подготовки 2021

Разработчик ______ А.Н. Аверин

Процесс изучения дисциплины «Математические программные комплексы» направлен на формирование следующих компетенций:

- ПК-1 Овладение знаниями методов проектирования и мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчётного обоснования, в том числе с использованием универсальных и специализированных программно-вычислительных комплексов и систем автоматизированного проектирования
- ПК-2 Способностью вести разработку эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования
- ПК-3 Способностью разрабатывать методики, планы и программы проведения научных исследований и разработок, готовить задания для исполнителей, организовывать проведение экспериментов и испытаний, анализировать и обобщать их результаты

1. Перечень планируемых результатов обучения и показателей оценивания сформированности компетенций на этапе промежуточной аттестации

№ п/п	Компетенция	Результаты обучения, характеризую- щие сформированность компетенций	Тип ОМ	Показатели оценивания
1	ПК-1	знать теоретические основы современных методов проектирования и мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчётного обоснования	Тестовые за- дания, вопро- сы к зачету	Полнота знаний
		уметь использовать универсальные и специализированные программно-вычислительные комплексы и системы автоматизированного проектирования	Стандартные задания	Наличие умений
		владеть современными методами проектирования и мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчётного обоснования, с использованием универсальных и специализированных программновычислительных комплексов и систем автоматизированного проектирования	Прикладные задания	Наличие навыков
2	ПК-2	знать современные методики разработки эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования	Тестовые за- дания, вопро- сы к зачету	Полнота знаний

		уметь применять современные методики разработки эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования	Стандартные задания	Наличие умений
		владеть практическими приемами разработки эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования	Прикладные задания	Наличие навыков
3	ПК-3	знать современные методики подготовки планов и программ проведения научных исследований и разработок	Тестовые за- дания, опро- сы к зачету	Полнота знаний
		уметь организовывать проведение экспериментов и испытаний, анализировать и обобщать их результаты, готовить задания для исполнителей	Стандартные задания	Наличие умений
		владеть практическими приемами проведения научных исследований и разработок, а также проведения анализа и обобщения их результатов	Прикладные задания	Наличие навыков

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ, КРИТЕРИЕВ И ШКАЛ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА ЭТАПЕ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Показатели	Шкала и критерии оценки уровня сформированности компетенции					
оценивания компетенций	Неудовлетворительный	Минимально допустимый (пороговый)	Средний	Высокий		
Полнота зна- ний	Уровень знаний ниже минимальных требований. Имели место грубые ошибки ¹	Минимально допустимый уровень знаний. Допущены не грубые ошибки.	Уровень знаний в объёме, соответствующем программе подготовки. Допущены некоторые погрешности.	Уровень знаний в объёме, соответствующем программе подготовки		
Наличие уме- ний	При выполнении стандартных заданий не продемонстрированы основные умения. Имели место грубые ошибки.	Продемонстрированы основные умения. Выполнены типовые задания с не грубыми ошибками. Выполнены все задания, но не в полном объеме (отсутствуют пояснения, неполные выводы)	Продемонстрированы все основные умения. Выполнены все основные задания с некоторыми погрешностями. Выполнены все задания в полном объёме, но некоторые с недочетами.	Продемонстрированы все основные умения. Выполнены все основные и дополнительные задания без ошибок и погрешностей. Задания выполнены в полном объеме без недочетов.		
Наличие навыков (владение опытом)	При выполнении стандартных заданий не продемонстрированы базовые навыки. Имели место грубые ошибки	Имеется минимальный набор навыков для выполнения стандартных заданий с некоторыми недочетами.	Продемонстрированы базовые навыки при выполнении стандартных заданий с некоторыми недочетами.	Продемонстрированы все основные умения. Выполнены все основные и дополнительные задания без ошибок и погрешностей. Продемонстрирован творческий подход к решению нестандартных задач.		
Характери- стика сфор- мированности компетенции	Компетенция в полной мере не сформирована. Имеющихся знаний, умений, навыков недостаточно для решения практических (профессиональных) задач. Требуется повторное обучение.	Сформированность компетенции соответствует минимальным требованиям. Имеющихся знаний, умений, навыков в целом достаточно для решения практических (профессиональных) задач, но требуется дополнительная практика по большинству профессиональных задач.	Сформированность компетенций в целом соответствует требованиям. Имеющихся знаний, умений, навыков и мотивации в целом достаточно для решения стандартных профессиональных задач.	Сформированность компетенции полностью соответствует требованиям. Имеющихся знаний, умений, навыков и мотивации в полной мере достаточно для решения сложных профессиональных задач.		

3. ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ МАТЕРИАЛОВ, ХАРАКТЕРИЗУЮЩИХ СФОРМИРОВАННОСТЬ КОМПЕТЕНЦИЙ

- ПК-1 Овладение знаниями методов проектирования и мониторинга зданий и сооружений, их конструктивных элементов, включая методы расчётного обоснования, в том числе с использованием универсальных и специализированных программновычислительных комплексов и систем автоматизированного проектирования.
- ПК-2 Способностью вести разработку эскизных, технических и рабочих проектов сложных объектов, в том числе с использованием систем автоматизированного проектирования.
- ПК-3 Способностью разрабатывать методики, планы и программы проведения научных исследований и разработок, готовить задания для исполнителей, организовывать проведение экспериментов и испытаний, анализировать и обобщать их результаты

3.1 Примерный перечень заданий для подготовки к тестированию

1	Что называется пределом пропорциональности материала?			
1	- Максимальное напряжение, до которого материал подчиняется закону Гука.			
2	Что называется пределом текучести материала?			
	- Напряжение, при котором материал деформируется без увеличения нагрузки.			
3	Какие системы называются геометрически неизменяемыми?			
	-Системы, перемещения отдельных точек которых возможны только в результате дефор-			
	мации систем.			
4	Какие связи называются двухсторонними?			
	-Если условия, налагаемые связями $$ на перемещения (Δ_i) и усилия (X_i) в системе, выража-			
	ются уравнениями, то такие связи называются двухсторонними.			
5	Какие связи называются односторонними?			
	-Если условия, налагаемые связями $$ на перемещения (Δ_i) и усилия (X_i) в системе, выража-			
	ются неравенствами или совокупностью уравнений с неравенствами., то такие связи назы-			
	ваются односторонними.			
6	Что такое пластический шарнир?			
	- Состояние сечения, когда во всех его точках развиваются пластические деформации, назы-			
	вают пластическим шарниром. Появление пластического шарнира означает исчерпание несу-			
	щей способности сечения стержня.			
7	Как определяется предельный изгибающий момент в сечении балки из упругопластического			
	материала?			
	$M_{npeg} = \sigma_T \cdot W_{nn} \qquad W_{nn} = S_{cov} + S_p$			
	,			
	где $^{\sigma_{\mathrm{T}}}$ -предел текучести; $^{\mathrm{S}_{\mathrm{cx}}}$, $^{\mathrm{S}_{\mathrm{p}}}$ -статические моменты растянутой и сжатой частей			
	сечения относительно нулевой линии.			
8	Что такое линия влияния усилия? Что показывает ордината линии влияния?			
	- График изменения усилия в зависимости от положения единичного безразмерного груза $(P=1)$.			
	(r – 1). - Величину усилия при расположении единичного груза над данной ординатой.			
9	Что такое смешанная линия влияния усилия? Что показывает ордината смешанной линии			
	влияния?			
	- Смешанными линиями влияния называются кривые, выражающие закон изменения той или			
	иной величины, возникающей в сооружении, в функции от абсциссы движущегося груза P при			
	условии совместного действия этого груза с заданной неподвижной нагрузкой.			
	-Величину усилия в сечении при действии постоянной нагрузки и временной, расположенной			
	над этой ординатой.			

-Точное
$$\frac{\frac{d^2}{dx^2}V(x)}{\left[1 + \left(\frac{d}{dx}V(x)\right)^2\right]^{\left(\frac{3}{2}\right)}} = -M(x)$$

-Приближенное

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} V(x) = -\mathrm{M}(x)$$

3.2 Примерный перечень заданий для решения стандартных задач

Выполнить задания с использованием ручного счета и в системе инженерных расчетов

Записать систему уравнений в матричной форме

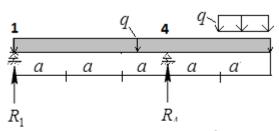
Записать систему уравнении в матричной фор
$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ 2x_1 - x_2 - 6x_3 = -1 \\ 3x_1 - 2x_2 = 8 \end{cases}$$
Ответ: $Ax = b$ $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -6 \\ 3 & -2 & 0 \end{pmatrix}$ $b = \begin{pmatrix} 2 \\ -1 \\ 8 \end{pmatrix}$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -6 \\ 3 & -2 & 0 \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} 2 \\ -1 \\ 8 \end{pmatrix}$$

2 Вычислить ранг и определитель матрицы А

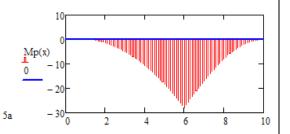
Ответ:


$$rank(A) = 3 \qquad |A| = -29$$

$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{12}{29} & \frac{2}{29} & \frac{5}{29} \\ \frac{18}{29} & \frac{3}{29} & -\frac{7}{29} \\ -\frac{1}{29} & -\frac{5}{29} & \frac{2}{29} \end{pmatrix}$$

4 Решить систему уравнений Ах=b методом обратной матрицы и методом Гаусса, сделать провер-

$$\mathbf{X} := \mathbf{A}^{-1} \cdot \mathbf{b} = \begin{pmatrix} 2.138 \\ -0.793 \\ 0.655 \end{pmatrix}$$

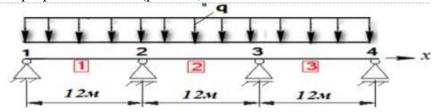
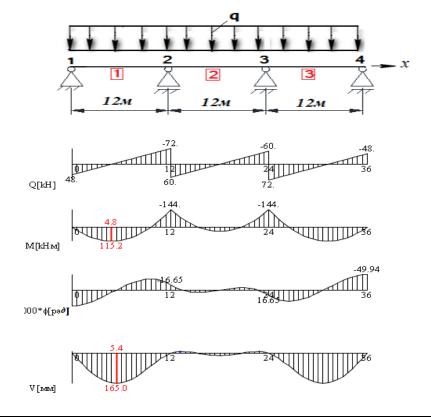

$$\mathbf{X} := \mathbf{A}^{-1} \cdot \mathbf{b} = \begin{pmatrix} 2.138 \\ -0.793 \\ 0.655 \end{pmatrix} \qquad \mathbf{X} := \mathbf{lsolve}(\mathbf{A}, \mathbf{b}) = \begin{pmatrix} 2.138 \\ -0.793 \\ 0.655 \end{pmatrix} \qquad \mathbf{A} \cdot \mathbf{X} = \begin{pmatrix} 2 \\ -1 \\ 8 \end{pmatrix}$$

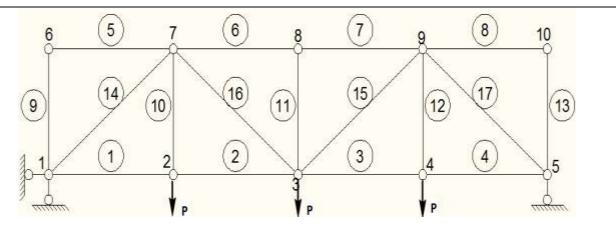
a=2m; q=2kH/m. $R_1 = \frac{4}{3}$ $R_4 = \frac{68}{3}$

Рис.5.1

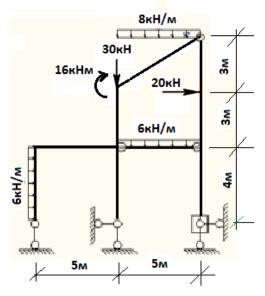
 $\begin{array}{ll} \textbf{OTBET} & & Mp(x) := & \\ R_1 \cdot x - q \cdot \frac{x^2}{2} & \text{if } 0 \leq x \leq 3 \cdot a \\ \\ R_1 \cdot x - q \cdot \frac{x^2}{2} + R_4 \cdot (x - a \cdot 3) & \text{if } a \cdot 3 \leq x \leq 4a \\ \\ R_1 \cdot x - q \cdot \frac{x^2}{2} + R_4 \cdot (x - a \cdot 3) - q \cdot (x - 4 \cdot a) \cdot \frac{(x - 4 \cdot a)}{2} & \text{if } a \cdot 4 \leq x \leq 5a \end{array}$

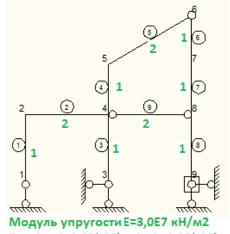
6 Выполнить расчет неразрезной балки (рис. 6. 1)

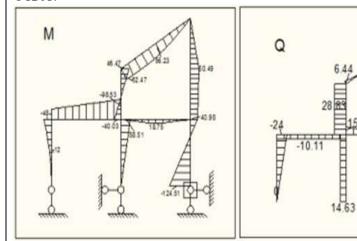

Рис.6.1

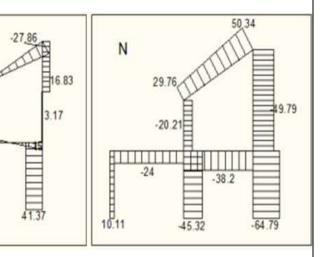
с помощью уравнений 3-х моментов и проверить результаты расчетов в ПВК Лира (q=10кH/м;EJ=6920кHм²)


Ответ:



7 Определить усилия в стержнях фермы и проверить результаты расчетов в ПВК Лира


8 Построить эпюры изгибающих моментов, поперечных и продольных сил в ПВК Лира



Тип 1 J=1.6E(-03) м4 ; A=1.2E(-01) м2 Тип 2 J=5.4E(-03) м4 ; A=1.8 E(-01) м2

Ответ:

9. Расчет балочных систем с односторонними связями.

На рис. 9.1 а представлена неразрезная балка с пятью двухсторонними опорами, а на рис. 9.1 б с пятью односторонними опорами (упорами). В системе Mathcad необходимо выполнить сравнительный расчет напряженно-деформированного состояния (НДС) двух балочных систем. Расчет системы с односторонними связями выполнить методом итераций на основе метода сил.

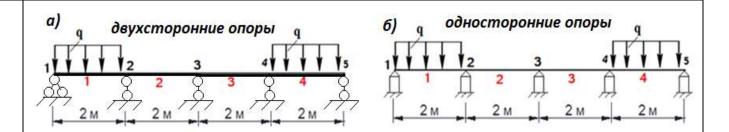
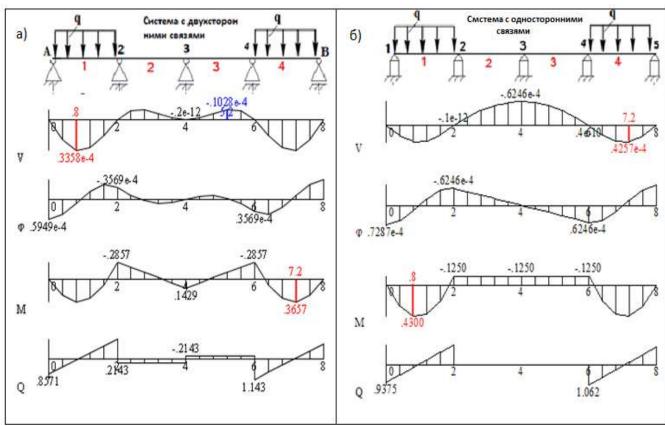



Рис.9.1

Ответ:

На рис. 10 представлена балка с односторонними шарнирами (угловые упоры). В зависимости от схемы нагрузки на балку, угловые упоры могут сближаться (взаимный угол поворота торцов сечений равен нулю), и между торцами смежных опорных сечений возникает монолитное соединение. При взаимном удалении жестких консолей (угловых упоров) в опорном сечении образуется шарнир.

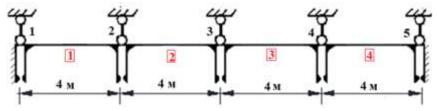
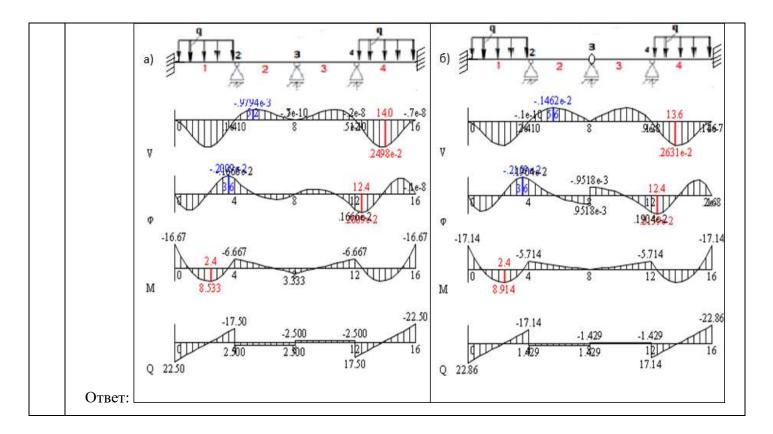



Рис. 10 Балка с односторонними шарнирами

В системе Mathcad необходимо выполнить сравнительный расчет напряженнодеформированного состояния (НДС) двух балочных систем (рис.4): неразрезной балки с двухсторонними связями и неразрезной балки с односторонними шарнирами. Расчет системы с односторонними связями выполнить методом итераций на основе метода перемещений.

3. 3 Примерный перечень заданий для решения прикладных задач

Функция напряжений задана формулой

$$\varphi = -50 \cdot y^3$$

найти выражения для нормальных и касательных напряжений

A.
$$\sigma_x = -300 \, y, \sigma_y = 0, \tau_{xy} = 0.$$

Б.
$$\sigma_x = -300 \, y, \sigma_y = 300, \tau_{xy} = 0.$$

B.
$$\sigma_x = 0, \sigma_y = 300 x, \tau_{xy} = 300 x$$

Γ.
$$\sigma_x = -300 \, y, \sigma_y = 0, \tau_{xy} = 150 \, y^2$$
.

2 Функция напряжений задана формулой

$$\varphi = -50 \cdot v^3$$

найти выражения для линейных и угловых деформаций

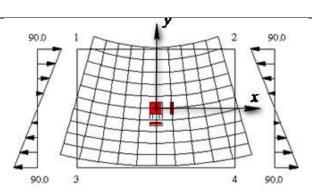
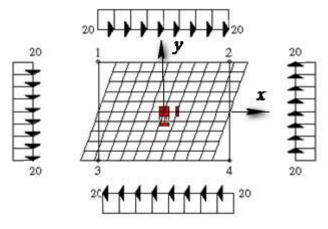
A.
$$\varepsilon_x = -\frac{300}{E}, \varepsilon_y = \frac{300 \,\mu y}{E}, \gamma_{xy} = 0.$$

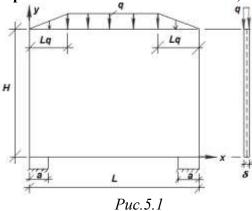
B.
$$\varepsilon_x = -\frac{300 \text{ y}}{E}, \varepsilon_y = \frac{300 \text{ }\mu\text{y}}{E}, \gamma_{xy} = 0.$$

B.
$$\varepsilon_x = -\frac{300 \, y}{E}$$
, $\varepsilon_y = \frac{300 \, y}{E}$, $\gamma_{xy} = 0$.

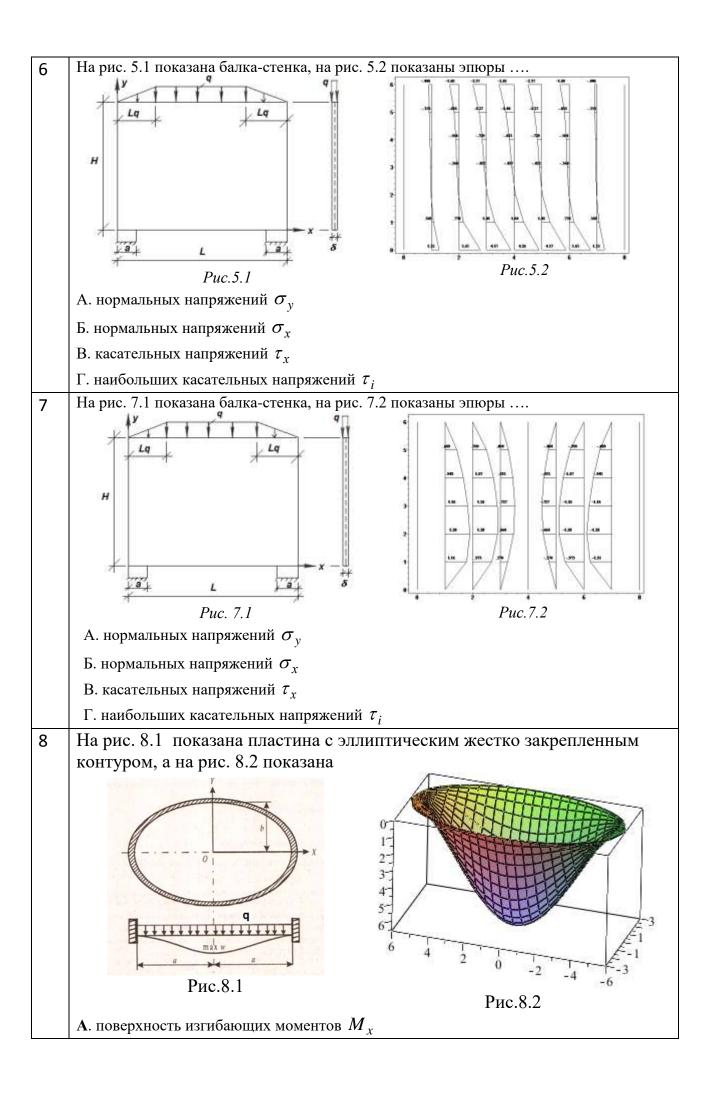
$$\Gamma. \ \varepsilon_x = -\frac{300 \,\mu y}{E}, \varepsilon_y = \frac{300 \,y}{E}, \gamma_{xy} = 0.$$

3 Напряженно-деформированное состояние пластинки, показанной на рис. 3.1 представляет собой


Рис.3.1

- А. чистый сдвиг
- Б. чистый изгиб
- В. чистое растяжение
- Г. растяжение-сжатие
- Напряженно-деформированное состояние пластинки, показанной 4 на рис. 4.1 представляет собой


Puc.4.1

- А. чистый сдвиг
- Б. чистый изгиб
- В. чистое растяжение
- Г. Растяжение-сжатие
- На рис. 5.1 показана балка-стенка, на рис. 5.2 показаны эпюры ... 5

Puc.5.2

- А. нормальных напряжений σ_{v}
- **Б**. нормальных напряжений σ_x
- В. касательных напряжений τ_x
- Γ . наибольших касательных напряжений τ_i

- Б. поверхность крутящих моментов M_{xy}
- В. поверхность изгибающих моментов M_{ν}
- Γ . изогнутая срединная поверхность пластины W
- На рис. 9.1 показана пластина с эллиптическим жестко закрепленным контуром, а на рис. 9.2 показана

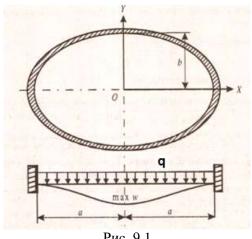


Рис. 9.1

Рис.9.2

- **A**. поверхность изгибающих моментов M_x
- Б. поверхность крутящих моментов M_{xy}
- В. поверхность изгибающих моментов M_{ν}
- Γ . изогнутая срединная поверхность пластины W
- На рис. 10.1 показана пластина с эллиптическим жестко закрепленным контуром, а на 10 рис. 10.2 показана

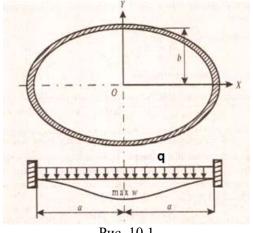


Рис. 10.1

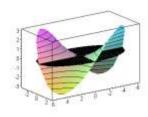


Рис. 10.2

- А. поверхность изгибающих моментов M_{x}
- **Б**. поверхность крутящих моментов M_{xy}
- В. поверхность изгибающих моментов M_y
- Γ . изогнутая срединная поверхность пластины W

3.4. Вопросы к зачету

- 1. Система Maple, введение. Команды Maple, стандартные библиотеки команд. Объекты Maple: последовательности, списки, множества. Структура и типы объектов. Конвертирование объектов. Графика в Maple.
- 2. Действия над матрицами. Численное и **символьное** решение систем линейных алгебраических уравнений. Собственные числа и собственные векторы матрицы. Решение системы нелинейных алгебраических уравнений.
- 3. Команды дифференцирования и интегрирования прямого и отложенного исполнения. Решение систем обыкновенных дифференциальных уравнений (краевая задача).
- 4. Изгиб стержня. Система дифференциальных уравнений относительно усилий и перемещений. Статические и кинематические краевые условия. Способы задания нагрузки на стержень с помощью обобщенных функций Хевисайда (Heaviside) и Дирака (Dirac). Определение реакций по концам стержня от смещения опор и действия нагрузки.
- 5. Построение матрицы жесткости и вектора реакций конечного элемента стержня в локальных осях. Формирование матрицы жесткости и вектора реакций стержневой системы. Формулы перехода от локальных осей к глобальным осям для матрицы жесткости и вектора реакций.
- 6. Введение в **Mahtcad.** Графический интерфейс. Панели инструментов. Построение арифметических выражений и их вычисления. Действия над матрицами и векторами. Решение систем линейных алгебраических уравнений (СЛАУ). Построение плоских и пространственных графических объектов. Работа с файлами данных.
- 7. Структура и организация файлов исходных данных метода конечных элементов для плоских стержневых систем. Программная генерация файлов для регулярных стержневых систем. Формирование матриц жесткости и векторов реакций для КЭ различных типов. Формирования разрешающих уравнений глобального ансамбля, способы их решений. Вычисление перемещений и усилий. Построение эпюр. Вычисление опорных реакций. Проверка равновесия узлов и стержней
- 8. Расчет прочности и жесткости балки -стенки методом конечного элемента в ПВК Лира.
- 9. Балка-стенка, анализ сходимости и оценка порядка точности конечноэлементных решений по перемещениям и усилиям на последовательности вложенных сеток.
- 10. Балка-стенка, повышение точности решений балки стенки на последовательности вложенных сеток, экстраполяция Ричардсона.

- 11. Расчет прочности и жесткости плиты с жестко закрепленным эллиптически контуром на действие равномерно распределенной нагрузки методом конечного элемента в ПК Лира.
- 12. Плита с жестко закрепленным эллиптически контуром, анализ сходимости и оценка порядка точности конечно-элементных решений плиты по перемещениям и усилиям на последовательности вложенных сеток.
- 13. Плита с жестко закрепленным эллиптически контуром, повышение точности решений на последовательности вложенных сеток, экстраполяция Ричардсона.
- 14. Расчет прочности и жесткости пологой оболочки с шарнирным опиранием по контуру на действие равномерно распределенной нагрузки методом конечного элемента в ПВК Лира.
- 15. Пологая оболочка, анализ сходимости и оценка порядка точности конечно-элементных решений по перемещениям и усилиям на последовательности вложенных сеток.
- 16. Пологая оболочка, повышение точности решений на последовательности вложенных сеток, экстраполяция Ричардсона.