
Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Кафедра конструирования и производства радиоаппаратуры

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Воронеж 2021

УДК ББК

Составители:

асс. А.С. Костюков д-р техн. наук А.В. Башкиров

Методические указания к курсовой работе « Расчет линейной электрической цепи при гармоническом воздействии » по дисциплине «Электротехника и электроника» для студентов направления подготовки 11.03.03. «Конструирование и технология электронных средств», (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: А.С. Костюков, А.В. Башкиров. Воронеж: Изд-во ВГТУ, 2021. 16 с.

Методические указания подготовлены в электронном виде в текстовом редакторе MS Word 2007 и содержатся в файле ELTEH_KURS.pdf

Табл. 1. Ил.9. Библиогр.: 2 назв.

УДК ББК

Рецензент - О. Ю. Макаров, д-р техн. наук, проф. кафедры конструирования и производства радиоаппаратуры ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

1. Цель работы:

Цель курсовой работы состоит в практическом освоении методов расчета простых и сложных электрических цепей при воздействии на них гармонических колебаний.

2. Постановка задачи

В курсовой работе требуется определить токи и напряжения в ветвях простой и сложной электрических цепей при наличии в них источников гармонического напряжения, а также АЧХ и ФЧХ четырехполюсника.

Рассчитываемые электрические цепи представляют собой модели реальных электрических цепей, используемых в различных радиотехнических устройствах. С методикой построения моделей на основе реальных цепей можно познакомиться в соответствующей литературе [1. с.24-30]. Численные расчеты проводятся на ЭВМ с использованием современных вычислительных и моделирующих программных продуктов и языков программирования высокого уровня.

3. Задание к курсовой работе.

- 3.1. Каждому студенту в соответствии порядковым номером по журналу выбрать вариант схемы по рисунку 1. Различные конфигурации схемы образуются в зависимости от положения ключей « К1 - К5 », которые устанавливаются по номеру варианта, представленному в двоичном коде. Номера позиций единиц и нулей в номере варианта следуют слева направо.
- 3.2. Определить величины элементов схемы рисунка 1 и частоту генераторов с помощью следующих формул:

$$R = 100 \cdot [4 + 0.2 \cdot N] \quad [O_{M}]; \tag{1}$$

$$C = 100 \cdot [5 + 0.2 \cdot N] [\Pi \phi];$$
 (2)

$$\dot{E}_{n} = 2 \; [\; 7 + (\text{-}1)^{n+N} \cdot 0, 2 \cdot N \;] \; \cdot \; e^{(-1)^{n+N} \cdot j(25+0,2N)} \quad [B]; \quad (\; 3\;)$$

$$f_n = 10 [7 + (-1)^N \cdot 0.2 \cdot N] [\kappa \Gamma \mu],$$
 (4)

где N - номер студента по журналу, а $\, n - \,$ номер элемента в схеме.

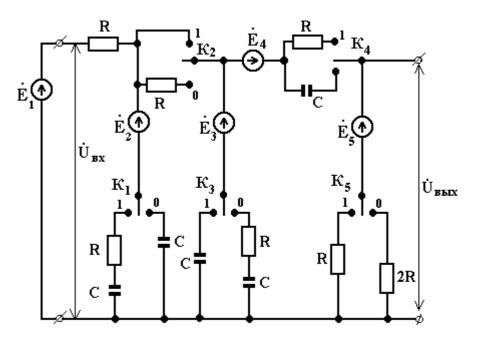


Рисунок 1 - Схема электрической цепи для выбора своего варианта

3.3. В схеме, полученной в п. 3.1., исключить (замкнуть) все источники кроме \dot{E}_1 и рассчитать, используя простые пре-

образования цепей, ток в цепи источника \dot{E}_1 . По результатам расчета построить векторную диаграмму.

- 3.4. Используя схему п. 3.1 рассчитать токи и напряжения на её элементах, используя формулы Крамера, а также обращение матриц. Осуществить проверку.
- 3.5. Для схемы из п. 3.3 найти выражение для комплексного коэффициента передачи электрической цепи.
- 3.6. Используя формулу для комплексного коэффициента передачи цепи определить выражение для АЧХ и ФЧХ цепи.
- 3.7. Построить, используя выражения из п. 3.6, графики для АЧХ и Φ ЧХ цепи.
- 3.8. Определить граничные частоты полосы пропускания и коэффициент прямоугольности цепи, используя результаты п. 3.7.
- 3.9. Дать характеристику исследуемой цепи по п. 3.3 с токи зрения фильтрации электрических колебаний.

4 Этапы выполнения курсовой работы

Курсовая работа выполняется по этапам с контролем результатов. Сроки представления материалов устанавливаются преподавателем.

Первый этап — представление в двоичном коде номера варианта и выбор схемы с частотой генераторов по формулам (1), (2), (3), (4).

Второй этап — расчет простой электрической цепи по n. 3.3.

Третий этап — расчет сложной электрической цепи по п. 3.4. методом Крамера и методом обращения матрицы.

Четвертый этап — определение выражения для комплексного коэффициента передачи цепи для схемы из п. 3.3. и построение АЧХ и ФЧХ цепи с указанием граничных частот и коэффициента прямоугольности.

Пятый этап — представление отчета (пояснительной записки) по курсовой работе.

5 Методика выполнения курсовой работы

5.1 Первый этап

Для выбора схемы необходимо представить свой номер по журналу студенческой группы в двоичной записи согласно таблице 1. Для студентов заочного обучения можно использовать вместо номера по журналу две последние цифры в номере зачетной книжки. Если этот номер превышает число 31, то берется любая цифра из двух.

Таблица 1 – Перевод десятичных чисел в двоичные числа

1	00001	11	01011	21	10101
2	00010	12	01100	22	10110
3	00011	13	01101	23	10111
4	00100	14	01110	24	11000
5	00101	15	01111	25	11001
6	00110	16	10000	26	11010
7	00111	17	10001	27	11011
8	01000	18	10010	28	11100
9	01001	19	10011	29	11101
10	01010	20	10100	30	11110
				31	11111

Далее установить переключатели К1- К5 (рисунок 1) в положения, соответствующие Вашему номеру N в двоичной записи. Пример приводится в таблице 2.

Таблица 2 – Положение ключей в схеме

Ключи	К1	К2	К3	К4	К5
Двоичная форма записи числа 12	0	1	1	0	0
Положение ключей	0	1	1	0	0

Зарисуйте получившуюся схему без переключателей и отсоединенных элементов.

Определение величин элементов схемы и частоты генераторов осуществляется по формулам : (1), (2), (3), (4). Все генераторы в схеме имеют одинаковую частоту, определяемую по формуле (4).

5.2 Второй этап.

Второй этап заключается в определении тока в цепи источника \dot{E}_1 , когда все остальные источники закорочены (удалены).

Здесь требуется воспользоваться формулами для последовательного и параллельного соединения нескольких элементов, вычислив эквивалентное комплексное сопротивление Z_3 . Значение тока в цепи источника определяется по формуле

$$\dot{I} = \frac{\dot{E}_1}{Z_9} = I \cdot e^{j\phi}$$

и затем выражается во временной форме, т.е.

$$i(t) = I_m \cdot \cos(\omega t + \varphi)$$
.

По результатам расчетов строится векторная диаграмма.

5.3 Третий этап

Третий этап заключается в расчете сложной электрической цепи по схеме из п. 3.4., т.е. определении токов и напря-

жений на всех элементах цепи при известных значениях R, C и $\dot{E}.$

Для расчета электрической схемы необходимо составить систему уравнений по методу контурных токов [1].

Вначале составляется граф электрической схемы, по которому выбираются независимые контуры и задаются контурные токи. Для этих контуров составляются уравнения по второму закону Кирхгофа с учетом совместного влияния одного контура на другой. Направление обхода во всех контурах выбираются одинаковыми.

Знак падения напряжения в основном контуре от токов соседних контуров выбирается плюс, если их направление совпадает с основным контурным током, и минус в случае несовпадения.

По системе уравнений составляется матрица сопротивлений Z, т.е. выписываются соответствующие коэффициенты при токах $\dot{I}_1,~\dot{I}_2,~...,~\dot{I}_n.$

Токи в контурах (контурные токи) определяются по формуле Крамера [1]

$$\dot{I}_{n} = \frac{\dot{D}_{n}}{\dot{D}} (n = 1, 2, ..., \ell),$$
 (5)

где \dot{D} - полный определитель матрицы сопротивлений Z;

 \dot{D}_n — определитель, получающийся из \dot{D} при замене его элементов к-го столбца соответствующими правыми частями уравнений.

Все расчеты необходимо производить на ЭВМ в среде, например, Mathcad 15 [2] или других аналогичных версиях.

Для этой цели необходимо на экран ЭВМ вывести основное окно Mathcad. С помощью нажатия левой кнопки мыши открыть панель «Просмотр» (View) и далее указатель мыши перевести на строку «Панели» и перемещая указатель вправо установить его на надписи «Математика» и щелкнуть левой

кнопкой. В появившейся панели выбрать изображение матрицы и далее в следующей появившейся панели щелкнуть кнопкой на изображении матрицы и затем выбрать необходимую ее размерность.

В появившийся трафарет матрицы следует вводить комплексные числа в виде, например 2-3і или действительные числа, например 10. Синий уголок ввода числа перемещается стрелкой мыши с последующим нажатием левой кнопки или кнопками «— \updownarrow —». После набора всех чисел следует выделить синим уголком всю матрицу. Это осуществляется путем нажатия клавиши «Пробел» или клавиши «—». Затем следует ввести в матрицу знак определителя |X| из иконки действий с матрицами и потом в иконке знаков выбрать действие «=». Значение определителя матрицы D будет найдено.

Аналогично следует вычислить все определители \dot{D}_n и воспользовавшись выражением (5) найти значения всех контурных токов \dot{I}_n , через которые затем определить токи во всех элементах схемы, воспользовавшись правилом, когда ток в элементе равен контурному току, если он протекает здесь один и равен алгебраической сумме контурных токов, если их несколько.

Затем следует определить эти же токи методом обращения матрицы, принимая во внимание выражение

$$\vec{\dot{I}}_{n} = \overline{Z}_{n}^{-1} \cdot \vec{\dot{E}}_{n}, \tag{6}$$

где \overline{Z}_n^{-1} - обратная матрица комплексных сопротивлений схемы, состоящая из коэффициентов

$$\begin{bmatrix} \dot{b}_{11} & \dot{b}_{12} & \dot{b}_{13} \\ \dot{b}_{21} & \dot{b}_{22} & \dot{b}_{23} \\ \dot{b}_{31} & \dot{b}_{32} & \dot{b}_{33} \end{bmatrix}. \tag{7}$$

Значения контурных токов \dot{I}_n в этом случае определяются через формулы:

$$\begin{split} \dot{I}_{1} &= \dot{\mathbf{b}}_{11} \dot{\mathbf{E}}_{1} + \dot{\mathbf{b}}_{12} \cdot \dot{\mathbf{E}}_{2} + \dot{\mathbf{b}}_{13} \cdot \dot{\mathbf{E}}_{3}, \\ \dot{I}_{2} &= \dot{\mathbf{b}}_{21} \dot{\mathbf{E}}_{1} + \dot{\mathbf{b}}_{22} \cdot \dot{\mathbf{E}}_{2} + \dot{\mathbf{b}}_{23} \cdot \dot{\mathbf{E}}_{3}, \\ \dot{I}_{3} &= \dot{\mathbf{b}}_{31} \dot{\mathbf{E}}_{1} + \dot{\mathbf{b}}_{32} \cdot \dot{\mathbf{E}}_{2} + \dot{\mathbf{b}}_{33} \cdot \dot{\mathbf{E}}_{3}, \end{split} \tag{8}$$

Значения токов в элементах схемы находятся аналогично как и в методе Крамера.

Для вычисления \overline{Z}_n^{-1} следует над введенной и выделенной синим уголком матрицей \overline{Z}_n поставить из иконки действий с матрицами знак степени « X^{-1} ». Затем следует выделить \overline{Z}_n^{-1} синим уголком и применить знак « = » из иконки знаков. В результате будут получены коэффициенты b_{in} из выражения (7).

Применив формулы (8) следует вычислить токи в ветвях и далее токи в элементах схемы.

Используя законы Кирхгофа проверить результаты расчетов.

5.4 Четвертый этап

Четвертый этап заключается в получении выражения (формулы) для комплексного коэффициента передачи \dot{K} схемы по п. 3.3 в соответствии с его определением

$$\dot{K} = \frac{\dot{U}_{BbIX}}{\dot{U}_{BX}} = \frac{\dot{U}_{BbIX}}{\dot{E}_{1}} \tag{9}$$

и построении графиков АЧХ и ФЧХ.

В соответствии с этим прежде всего необходимо найти выражение для $\dot{U}_{\text{вых}}.$

Напряжение $\dot{\mathbf{U}}_{\text{вых}}$ лучше всего определять используя метод контурных токов.

Так, например, для схемы, изображенной на рисунке 2 составим соответствующую для этого систему уравнений по методу контурных токов. Для всех вариантов значение $R=1000~\rm{Om}$, а $C=1~\rm{n}\Phi=1\cdot10^{-9}~\Phi$.

Используя принятые применительно к этому методу правила, получим систему уравнений

$$\begin{cases} \dot{I}_{1}(2R+Z_{c}) - \dot{I}_{2}(R+Z_{c}) = \dot{E}_{1} \\ \dot{I}_{2}(2R+2Z_{c}) - \dot{I}_{1}(R+Z_{c}) - \dot{I}_{3}R = 0 \\ \dot{I}_{3}(2R+Z_{c}) - \dot{I}_{2}R = 0, \end{cases}$$
 (10)

где
$$Z_c = -j x_c$$
, $x_c = \frac{1}{2\pi f c}$, $Z_c^2 = -x_c^2$, $Z_c^3 = j x_c^3$.

Определяя из первого уравнения \dot{I}_1 и подставляя его выражение во второе уравнение, находим \dot{I}_2 , которое затем подставляем в третье уравнение и из него определяем выражение для \dot{I}_3 .

Напряжение на выходе цепи $\dot{\mathbf{U}}_{\text{вых}}$ будет равно

$$\dot{\mathbf{U}}_{\mathrm{BMX}} = \dot{\mathbf{I}}_3 \cdot \mathbf{Z}_{\mathrm{c}} ,$$

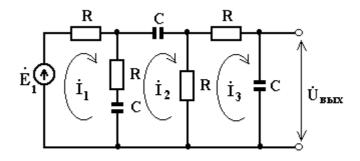


Рисунок 2 - Схема цепи для определения $\dot{\mathbf{U}}_{\mathbf{вых}}$ а выражение для комплексного коэффициента передачи может быть найдено в соответствии с (9).

В результате последующих преобразований необходимо сгруппировать действительные и мнимые части в числителе и знаменателе, получив, например, выражение для \dot{K} в виде

$$\dot{K} = \frac{a \pm jb}{c \pm id} \,. \tag{11}$$

Далее следует получить выражение для АЧХ

$$|\dot{K}| = \frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}$$
 (12)

Выражение для Φ ЧХ получают в соответствии с общими правилами, когда аргумент дроби равен аргументу числителя минус аргумент знаменателя.

При вычислении аргумента комплексной величины следует учитывать соотношение величин действительной и мнимой частей, т.е.

$$\varphi(\omega) = \begin{cases} \arctan \frac{b}{a}, & \text{если } a > 0 \\ \arctan \frac{b}{a} + \pi, & \text{если } a < 0 \end{cases}$$
 (13)

После определения выражений для АЧХ и ФЧХ необходимо осуществить построение их графиков с использованием соответствующих операций из программ Mathcad.

Для этой цели необходимо на экран ЭВМ вывести основное окно Mathcad. Открыть окно «Просмотр» (View) и далее через строку «Панели» открыть полосу «Математика», аналогично тому, как это делалось при расчете матриц. Затем вывести иконку «Матрица» и « x = y».

Далее следует ввести обозначения для j, т.е. $j := \sqrt{-1}$, значения элементов: $c := 1 \cdot 10^{-9}$, R := 1000 и изменения частоты, например f := 0, 1...400000. Установка для f многоточия (..) осуществляется из иконки матрицы « m.. n » или кнопкой « ; ». Знак присвоения « := » вводится c иконки « x = » или кнопками «Shift + : ». Затем следует набрать формулу для комплексного коэффициента передачи \dot{K} . При наборе необходимо пользоваться обычными правилами для системы «Mathcad».

Выделение элементов формулы производить клавишей «Пробел» или левой кнопкой мыши.

После набора формулы для \dot{K} следует построить графики АЧХ и ФЧХ. Для этой цели необходимо в иконке «Математика» нажать на пункт графика, а затем в появившейся иконке «Графика» выбрать также пункт изображения графика и нажать на левую кнопку мыши. В появившуюся заготовку графика в черную горизонтальную отметку ввести букву « f », а в отметку вертикальной оси набрать обозначение модуля комплексного коэффициента, т.е. |K(f)|. Знак модуля можно ввести с клавиатуры кнопками « Shift $+ \$ » или мышью с иконки «Матрица» знаком |X|.

Затем следует щелкнуть левой кнопкой мыши вне графика и он будет построен.

Для построения ФЧХ следует осуществить те же процедуры, что и для АЧХ, только вертикальную ось графика следует

поименовать как $arg(K(f))\cdot \frac{180}{\pi},$ что обеспечит значения ФЧХ в градусах.

Изменение в масштабах осей можно осуществить через панель, вызываемую двойным щелчком мыши на графике. Лучше использовать по горизонтальной оси логарифмический масштаб « X-AXiS, Log Scale ».

Изменения размера графиков можно осуществлять после их выделения рамкой (щелчок левой кнопкой мыши на графике) и перемещения отметок в виде квадратиков по осям через изображение двойной стрелки « \leftrightarrow » , которое появляется при подводке указателя мыши к ним. После нажатия левой кнопки мыши график можно увеличить или уменьшить как по горизонтали, так и по вертикали.

Из полученного графика АЧХ следует определить граничные частоты (уровень 0,707) и коэффициент прямоугольности (нижний уровень 0,1).

5.5 Пятый этап

Пятый этап заключается в оформлении отчета по курсовой работе.

Отчет по курсовой работе должен содержать следующие разделы :

- 1. Техническое задание на курсовую работу со схемами.
- 2. Выбор варианта схемы.
- 3. Расчет простой электрической цепи.
- 4. Составление системы уравнений для расчета токов и напряжений.
- 5. Расчет токов и напряжений в сложной электрической цепи методом Крамера.
- 6. Расчет токов и напряжений в сложной электрической цепи методом обращения матрицы.

- 7. Определение достоверности значения токов на основе закона Кирхгофа.
- 8. Определение выражения для комплексного коэффициента передачи.
- 9. Построение графиков АЧХ и ФЧХ с определением их характеристик.

Отчет оформляется на стандартных листах белой бумаги с соблюдением требований нормоконтроля.

Работа должна содержать:

титульный лист (см. приложение), содержание (перечисление разделов с указанием страниц), список использованных литературных источников, приложения (если они имеются),

БИБЛИОГРАФИЧЕСКИЙ СПИСОК ЛИТЕРАТУРЫ

- 1. Попов В.П. Основы теории цепей. -М.: Высшая школа, 1985.-420 с.
- 2. Дьяконов В. Mathcad 8/2000: специальный справочник СПб, Питер 2001.- 529 с.

Оформление титульного листа (образец)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Воронежский государственный технический университет

Кафедра конструирования и производства радиоаппаратуры

КУРСОВАЯ РАБОТА

по курсу «Электротехника и электроника» Расчет линейной электрической цепи при гармоническом воздействии

Работу выполнил	
студент группы	подпись
	фамилия, инициаль
Руморолители	
Руководитель	<u> </u>
уч.степень и звание	фамилия, инициалы

Воронеж 2021

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению курсовой работы по дисциплине

"Электротехника и электроника"

для студентов направления подготовки 11.03.03

«Конструирование и технология электронных средств», (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения

Составители: Костюков Александр Сергеевич Башкиров Алексей Викторович

Компьютерный набор А.С. Костюков

Подписано к изданию	
Учизд. л	

ФГБОУ ВО «Воронежский государственный технический университет»

394026 Воронеж, Московский просп., 14