МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета

«31» августа 20**21**

РАБОЧАЯ ПРОГРАММА

дисциплины

«Теплофизика»

Направление подготовки 22.03.02 Металлургия

Профиль Технология литейных процессов

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2021

Автор программы

/Д.А. Коновалов/

Заведующий кафедрой Теоретической и промышленной тепоэнергетики

Руководитель ОПОП

/В.В. Портнов/

/Л.С. Пёченкина/

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

- **1.1. Цели дисциплины:** обучить будущих специалистов основам теплофизического анализа различных процессов и методам решения теплофизических задач сложных систем металлургического производства.
- **1.2.** Задачи освоения дисциплины: формирование способности выполнять расчеты теплофизических процессов; формирование творческого мышления; объединение фундаментальных знаний основных законов и методов физических исследований формирование навыков самостоятельного проведения теплофизических исследований.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теплофизика» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Теплофизика» направлен на формирование следующих компетенций:

ПК-3 - Способен осуществлять и корректировать технологические процессы в металлургии и металлообработке

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-3	Знать:
	Основные понятия и определения теплофизики; законы
	теплопроводности и конвективного тепломассообмена,
	включая нестационарные процессы; теоремы и числа
	подобия; основы теории фазовых переходов; законы
	лучистого теплообмена; механизмы интенсификации
	теплофизических процессов
	Уметь:
	Выполнять расчеты для широкого круга задач
	теплопроводности, конвективного теплообмена при
	течении в каналах различной формы, радиационного
	теплообмена для сложных технических систем
	Владеть:
	Навыками выбора теплофизического инструментария для
	построения технологических процессов в металлургии и
	металлообработке; выбора способов интенсификации
	теплообмена.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Теплофизика» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Рини ущебией работи	Всего	Семестры
Виды учебной работы	часов	4
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	36	36
Самостоятельная работа	54	54
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Основные понятия и определения теплофизики. Теплофизические свойства веществ	Основные понятия и определения теплофизики. Перенос тепла и массы. Закон Фурье. Градиент температуры и концентрации. Коэффициент теплопроводности. Условия однозначности теплофизических процессов	4	6	8	18
2	Перенос теплоты теплопроводностью	Дифференциальное уравнение теплопроводности. Передача теплоты через плоскую и цилиндрическую стенку при различных граничных условиях. Передача теплоты через многослойные стенки. Нестационарная теплопроводность. Теплопроводность тел конечных размеров.	4	6	8	18
3		Основные понятия и определения конвективного тепломассообмена. Дифференциальные уравнения гидродинамики и тепломассообмена. Понятие пограничного слоя. Особенности определения величин гидродинамического и температурного пограничного слоев	4	6	8	18
4	Теория подобия. Конвективный теплообмен	Основы теории подобия. Теоремы подобия. Критерии подобия. Построение критериальных уравнений. Теплообмен при обтекании тел различной формы и при течении в каналах. Свободная конвекция	2	6	10	18
5	Фазовые переходы. Радиационный теплообмен	Основные понятия и определения при фазовых переходах. Теплообмен при пузырьковом и пленочном кипении. Определение критических значений плотностей теплового потока. Основные понятия и законы лучистого теплообмена. Эффективность защитных экранов	2	6	10	18
6	Интенсификация теплообмена. Теплофизические основы нагрева и охлаждения тел	Способы интенсификации теплообмена и оценка их эффективности. Наножидкости и особенности их применения. Особенности режимов нагрева термически тонких и массивных тел. Расчеты нагрева тел различной формы.	2	6	10	18
		Итого	18	36	54	108

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-3	Знать: Основные понятия и определения теплофизики; законы теплопроводности и конвективного тепломассообмена, включая нестационарные процессы; теоремы и числа подобия; основы теории фазовых переходов; законы лучистого теплообмена; механизмы интенсификации теплофизических процессов Уметь: Выполнять расчеты для широкого круга задач теплопроводности, конвективного	подобия; основы теории фазовых переходов; законы лучистого теплообмена; механизмы интенсификации теплофизических процессов	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах Невыполнение работ в срок, предусмотренный в рабочих программах
	различной формы, радиационного теплообмена для сложных технических систем Владеть: Навыками выбора теплофизического инструментария для построения технологических	металлообработке; выбора способов интенсификации теплообмена	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

ſ	металлообработке;		
	выбора способов		
	интенсификации		
	теплообмена.		

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 4 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе-	Результаты обучения, характеризующие	Критерии	Зачтено	Не зачтено
тенция	сформированность компетенции	оценивания	Зачтено	пс зачтено
ПК-3	Знать: Основные понятия и определения теплофизики; законы теплопроводности и конвективного тепломассообмена, включая нестационарные процессы; теоремы и числа подобия; основы теории фазовых переходов; законы лучистого теплообмена; механизмы интенсификации теплофизических	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	процессов Уметь: Выполнять расчеты для широкого круга задач теплопроводности, конвективного теплообмена при течении в каналах различной формы, радиационного теплообмена для сложных технических систем	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	Владеть:	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - 7.2.1 Примерный перечень заданий для подготовки к тестированию
- 1. Какой механизм переноса теплоты **не** относится к сложному теплообмену:

- А) радиационно-кондуктивный теплообмен;
- Б) радиационно-конвективный теплообмен;
- В) конвекция;
- Г) теплопередача.
- 2. Как изменяется коэффициент теплопроводности для строительных материалов с ростом температуры?
 - А) увеличивается;
 - Б) уменьшается;
 - В) остается неизменным;
 - Γ) для разных материалов изменяется по разному.
 - 3. Сколько существует типов граничных условий?
 - А) Один;
 - Б) Два;
 - В) Три;
 - Г) Четыре.
- 4. Для описания какого типа граничных условий используется закон Ньютона-Рихмана?
 - А) Граничные условия первого рода;
 - Б) Граничные условия второго рода;
 - В) Граничные условия третьего рода;
- Г) Закон Ньютона-Рихмана не применяют при описании граничных условий.
 - 5. Что характеризует величина δ/λ , $(M^2 \cdot K)/Bm$?
 - А) Термическое сопротивление стенки;
 - Б) Тепловую проводимость стенки;
 - В) Теплопередачу;
 - Γ) Теплоотдачу.
 - 6. Каков физический смысл числа Фурье?
 - А) Характеризует безразмерное время;
 - Б) Характеризует безразмерную скорость;
 - В) Характеризует термическое сопротивление;
 - Г) Характеризует влияние вязких сил.
 - 7. Укажите два верных положения о числе Рейнольдса:
 - А) число Рейнольдса характеризует режим течения жидкости;
 - Б) число Рейнольдса не зависит от вязкости жидкости;
- В) переход от ламинарного режима течения к турбулентному в трубе круглого сечения происходит при Re = 2300;
 - Г) при уменьшении поперечного сечения трубы, по которой течёт

идеальная жидкость число Рейнольдса не изменяется.

- 8. С увеличением скорости течения теплоносителя в теплообменнике, коэффициент теплопередачи:
 - А) увеличивается;
 - Б) уменьшается;
 - В) остается неизменным;
- Г) нельзя сделать выводы, поскольку неизвестен коэффициент теплоотдачи второго теплоносителя
 - 9. Какой способ позволяет обеспечить больший перенос теплоты
 - А) свободная конвекция;
 - Б) вынужденная конвекция;
 - В) фазовый переход;
 - Г) теплопроводность
- 10. Что наиболее эффективно позволяет увеличить теплосъем при теплопроводности:
 - А) варьирование температурами на поверхности стенки;
 - Б) использование ребер;
 - В) увеличение скорости потока;
 - Г) нет правильного ответа

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Каков может быть максимальный расход в трубопроводе диаметром $d=80\,$ мм, чтобы при протекании в нем воды ($\nu=1\cdot10$ -6 м²/с) наблюдался устойчивый ламинарный режим движения?
 - A) 45 n/c
 - Б) 88 л/с
 - В) 145,7 л/с
 - Γ) 254 π/c
- 2. Определить коэффициент теплопроводности материала стенки, если при её толщине $\delta=40$ мм и разности температур на поверхностях $\Delta t=20^{\circ} C$ плотность теплового потока q=145 Bt/м2.
 - A) 1 BT/m K
 - \mathbf{B}) 0,3 Вт/м К
 - B) 0.03 BT/M K
 - Γ) 1,4 BT/M K
- 3. Определить поток тепла от кирпичной стенки площадью $S = 2.0,8 \text{ м}^2$, нагретой до 120°C в помещении, температура воздуха в котором 20°C . Коэффициент теплоотдачи от стенки к воздуху $\alpha = 6,82 \text{ BT/m}^2\text{K}$.
 - А) 0,5 кВт

- **Б**) 1,1 кВт
- В) 1,7 кВт
- Г) 2,2 кВт
- 4. Определить коэффициент облучённости между двумя стальными параллельно расположенными дисками с центрами на общей оси (нормали). Температура поверхности дисков $t1=300^{\circ}\text{C}$ и $t2=100^{\circ}\text{C}$; диски имеют одинаковый диаметр d1=d2=300 мм, расстояние между ними h=100 мм. Степень черноты дисков $\epsilon 1=\epsilon 2=0,24$.
 - A) 0,52
 - Б) 0,62
 - B) 0,72
 - Γ) 0,88
- 5. Поверхность стального изделия имеет температуру 727°C и степень черноты $\varepsilon = 0,7$. Излучающую поверхность можно считать серой. Вычислить плотность потока излучения.
 - A) 2 kBt/m^2
 - \mathbf{F}) 4 к \mathbf{B} т/м²
 - B) 12 kBt/m^2
 - Γ) 15 kBt/m²
- 6. Вычислить плотность теплового потока через плоскую однородную стенку, если стенка выполнена из бетона λ =1,1 Вт/м К. Толщина стенки δ =50 мм, температуры на поверхностях стенок поддерживаются постоянными t1=100°C, t2=90°C.
 - A) 110 BT/m^2
 - \mathbf{B}) 220 $\mathbf{B} \mathbf{T} / \mathbf{M}^2$
 - B) 400 BT/m^2
 - Γ) 420 BT/M²
- 7. Определить поток излучения трубки диаметром d=2 см и длиной l=1 м, нагретой до температуры 60° C в большом помещении с температурой 20° C. Степень черноты материала трубки $\epsilon = 0,2$.
 - A) 2 B_T
 - **Б**) 3,5 Вт
 - B) 5 B_T
 - Γ) 7 B_T
- 8. Найти мощность электрического тока, необходимую для накаливания нити диаметром 1 мм и длиной 20 см до температуры 3500 К. С читать, что нить излучает как чёрное тело. Потерями тепла на теплопроводность и конвекцию пренебречь.
 - A) 2,5 κBτ
 - Б) 4,2 кВт

- B) 5,3 κBτ
- Г) 6,1 кВт
- 9. Определить, во сколько раз уменьшается поток энергии излучения, если между серыми пластинами ($\varepsilon 1=\varepsilon 2=0,8$) установлен экран с более высокой отражающей способностью ($\varepsilon 9=0,2$).
 - A) 2
 - Б) 4
 - **B**) 7
 - Γ) 8
- 10. Вычислить плотность теплового потока через плоскую однородную стенку, если стенка выполнена: из стали(λ =40 Вт/м К); Толщина стенки δ =50 мм, температуры на поверхностях стенок поддерживаются постоянными t1=100°C, t2=90°C.
 - A) 1500 BT/m^2
 - \mathbf{E}) 2700 $\mathbf{B} \mathbf{T} / \mathbf{M}^2$
 - B) 4000 BT/m^2
 - Γ) 8000 BT/ M^2

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Определить скорости, при которых сохраняется устойчивый ламинарный режим при протекании мазута ($\nu = 0.6 \cdot 10-4$ м 2 /c) по трубопроводу диаметром d = 100 мм?
 - A) 1 m/c
 - \mathbf{F}) 1,4 м/с
 - B) 2.8 m/c
 - Γ) 5 m/c
- 2. Определить плотность теплового потока через плоскую стальную стенку котла толщиной δ_1 =10 мм с теплопроводностью λ =50 BT/(м K) для нагрева воды. В процессе эксплуатации поверхность нагрева со стороны газов покрылась слоем сажи толщиной δ_2 =2 мм с λ_2 =0,09 BT/(м·K). Температура газов t_{c1} =1127°C, температура кипящей воды t_{c2} =227°C, коэффициент теплоотдачи от газов к стенке α_1 =100 BT/(м²K) и от стенки к кипящей воде α_2 =5000 BT/(м² K). Вычислить сколько раз уменьшится теплопередача с появлением слоя сажи.
 - A) 1,5 pa3a
 - **Б**) 3,1 раза
 - B) 4 pasa
 - Г) Не изменится
- 3. Через плоскую металлическую стенку топки котла толщиной δ =14 мм от газов к кипящей воде проходит удельный тепловой поток q = 25 000

 $Bт/м^2$. Коэффициент теплопроводности стали λст = 50 Bτ/(м-К). Определить перепад температуры на поверхностях стенки.

- A) 1°C
- **Б**) 7°С
- B) 12°C
- Γ) 15°C
- 4. Вычислить тепловой поток через 1 м 2 чистой поверхности нагрева парового котла, если заданы следующие величины: температура дымовых газов Tcp $_1$ = 1000 °C, температура кипящей воды Tcp $_2$ = 200 °C, коэффициенты теплоотдачи от газов к стенке α_1 = 100 Bt/(м -К) и от стенки к кипящей воде α_2 = 5000 Bt/(м -К). Коэффициент теплопроводности материала стенки λ = 50 Bt/(м-К) и толщина стенки δ = 12 мм.
 - A) 15 kBt/m^2
 - Б) 38 кBт/м^2
 - B) 76 kBT/m^2
 - Γ) 108 kBt/m²
- 5. Определить величину теплового потока при лучистом теплообмене между стенками сосуда Дьюара, внутри которого хранится жидкий кислород, если на наружной поверхности внутренней стенки сосуда температура $t_1 = -183$ °C, а на внутренней поверхности наружной стенки $t_2 = 17$ °C. Стенки сосуда покрыты слоем серебра, степень черноты которого $\varepsilon_1 = \varepsilon_2 = 0.02$. Площади поверхности стенок $S_1 = S_2 = 0.1$ м2.
 - A) 0,2 BT
 - Б) 0,4 Вт
 - B) 0,8 B_T
 - Г) 1,0 Вт
- 6. Поверхность стального изделия имеет температуру 727°С и степень черноты $\varepsilon = 0,7$. Излучающую поверхность можно считать серой. Вычислить длину волны, которой будет соответствовать максимальное значение спектральной плотности излучения.
 - A) 2,1 mkm
 - **Б)** 2,9 мкм
 - В) 3,5 мкм
 - Г) 4,6 мкм
- 7. Определить коэффициент теплоотдачи излучением с поверхности металлической отливки в открытом пространстве при температуре t_n =1000°C, степень черноты отливки ϵ =0,8, температура окружающей среды t_c =20°C.
 - A) $107 \text{ BT/m}2 \cdot \text{K}$
 - Б) 121 Bт/м2·К
 - B) 153 B_T/_M2·K
 - Γ) 209 BT/M2·K

- 8. Определить потерю тепла q через свод пламенной печи, выложенной из шамотного кирпича [$\delta=250$ мм, $\lambda=1,28$ Bt/(м-К)]. Температура свода печи на горячей стороне T1 = 1000 °C, а на холодной T2 = 200 °C.
 - A) 2.2 kBt/m^2
 - \mathbf{F}) 4,1 к $\mathbf{B}\mathbf{T}/\mathbf{M}^2$
 - B) 5.3 kBt/m^2
 - Γ) 7.8 kBT/m²
- 9. Трубопровод диаметром d_1/d_2 = 44/51 мм, по которому течет масло, покрыт слоем бетона толщиной δ_2 = 80 мм. Коэффициент теплопроводности материала трубопровода λ_1 = 50 Bt/(м-K), коэффициент теплопроводности бетона λ_2 = 1,28 Bt/(м-K). Средняя температура масла на рассматриваемом участке трубопровода T_{cp1} = 120 °C, температура окружающего воздуха T_{cp2} = 20 °C. Коэффициенты теплоотдачи от масла к стенке α_1 = 100 Bt/(м2 -K) и от поверхности бетона к воздуху α_2 = 10 Bt/(м2-K). Определить потери тепла с 1 м трубопровода, покрытого бетоном.
 - A) 150 B_T/_M
 - **Б)** 250 Вт/м
 - B) 350 BT/M
 - Γ) 450 BT/M
- 10. Обмуровка топки парового котла состоит из двух слоев. Внутренний слой выполнен из шамотного кирпича: $\delta_1=400$ мм, $\lambda_1=1,4$ Вт/(м-К), а наружный из красного кирпича: $\delta_2=200$ мм, $\lambda_2=0,58$ Вт/(м-К). Температуры внутренней и наружной поверхности обмуровки соответственно $t_1=900$ °C и $t_3=90$ °C.

Определить наибольшую температуру t_2 красного кирпича.

- A) 480°C
- **Б)** 530°С
- B) 620°C
- Γ) 700°C

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Механизм переноса теплоты теплопроводностью.
- 2. Теплопередача.
- 3. Сложный теплообмен.
- 4. Условия однозначности, граничные условия.
- 5. Дифференциальное уравнение теплопроводности.
- 6. Теплопроводность через плоскую стенку.
- 7. Теплопроводность через цилиндрическую стенку.
- 8. Теплопроводность многослойных стенок.
- 9. Дифференциальные уравнения гидродинамики и тепломассообмена.
- 10. Теория пограничного слоя.
- 11. Конвективный теплообмен при обтекании пластины и пучков труб.

- 12. Конвективный теплообмен при течении охладителя в каналах различной формы.
- 13. Температурный напор, особенности расчета.
- 14. Основы теории подобия.
- 15. Теоремы подобия, критериальные числа.
- 16. Теплообмен при свободной конвекции.
- 17. Теплообмен при пузырьковом кипении в условиях вынужденной конвекции.
- 18. Теплообмен при пленочном кипении.
- 19. Кризисы теплообмена при фазовом переходе.
- 20. Основные законы лучистого теплообмена.
- 21. Лучистый теплообмен между стенками.
- 22. Лучистый теплообмен между телом и оболочками. Защитные экраны.
- 23. Излучение полупрозрачных сред.
- 24. Способы интенсификации теплообмена и оценка эффективности.
- 25. Выбор режимов нагрева/охлаждения термически тонких и массивных тел.

7.2.5 Примерный перечень заданий для решения прикладных задач

Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 2 вопроса и задачу. Каждый правильный ответ на вопрос в тесте оценивается 2 баллами, задача оценивается в 6 баллов (3 баллов верное решение и 3 баллов за верный ответ). Максимальное количество набранных баллов – 10.

- 1. Оценка «Незачет» ставится в случае, если студент набрал менее 4 баллов.
- 2. Оценка «Зачет» ставится в случае, если студент набрал от 4 до 10 баллов

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Основные понятия и определения теплофизики. Теплофизические свойства веществ		Тест
2	Перенос теплоты теплопроводностью		Тест, решение стандартных задач, решение прикладных задач
3	Фундаментальные законы	ПК-3	Тест, решение стандартных

	теплофизики. Теория		задач, решение прикладных
	пограничного слоя		задач
4	Теория подобия. Конвективный	ПК-3	Тест, решение стандартных
	теплообмен		задач, решение прикладных
			задач
5	Фазовые переходы.	ПК-3	Тест, решение стандартных
	Радиационный теплообмен		задач, решение прикладных
			задач
6	Интенсификация теплообмена.	ПК-3	Тест, решение стандартных
	Теплофизические основы		задач, решение прикладных
	нагрева и охлаждения тел		задач

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Коновалов Д. А. Теплофизика сложных систем: учебное пособие / Д. А. Коновалов; ФГБОУ ВО «Воронежский государственный технический университет».— Воронеж: Изд-во ВГТУ, 2020. 174 с.
- 2. Исаченко В.П. Теплопередача: учебник для вузов / В.П. Исаченко, В.А. Осипова, А.С. Сукомел. М.: Энергоатомиздат, 1981. 416 с.
- 3. Краснощеков Е.А. Задачник по теплопередаче: учебное пособие : допущено Министерством высшего и среднего специального образования. 4-е изд., перераб.; репринт. изд. Москва : Транспортная компания, 2016. 287 с.

8.2 Перечень информационных технологий, используемых при

осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Поисковые сервисы в сети «Интернет».

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированные лекционные аудитории, оснащенные оборудованием для лекционных демонстраций и проекционной аппаратурой.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Теплофизика» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета теплофизических процессов. Занятия проводятся путем решения конкретных задач в аудитории.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в

промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные
	перед зачетом три дня эффективнее всего использовать для повторения
	и систематизации материала.