МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Утверждаю Декан строительного факультета Панфилов Д.В. (31» августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Автоматизация расчета стальных строительных конструкций зданий и сооружений»

Направление подготовки 08.03.01 Строительство

Профиль Промышленное и гражданское строительство

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 4 года и 11 м.

Форма обучения очная / заочная

Год начала подготовки 2018

Автор программы

/Свентиков А.А. /

/Кузнецов Д.Н. /

Заведующий кафедрой Металлических и деревянных конструкций

/Свентиков А.А. /

Руководитель ОПОП

Понявина Н.А. /

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Цель изучения дисциплины: практически и теоретически подготовить будущих бакалавров, владеющих навыками работы в современных сертифицированных программных комплексах для расчета и проектирования строительных конструкций спортивных сооружений.

1.2. Задачи освоения дисциплины

В процессе обучения выполняются следующие задачи:

- изучение подходов в моделировании расчётной схемы для расчёта строительных конструкций зданий и сооружений;
- выполнение статических расчётов с учетом пространственной работы строительных конструкций зданий и сооружений, в современных сертифицированных программных комплексах;
- использование результатов компьютерного расчета строительных конструкций при проектировании конструкций зданий и сооружений.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Автоматизация расчета стальных строительных конструкций зданий и сооружений» относится к дисциплинам части, формируемой участниками образовательных отношений (дисциплина по выбору) блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Автоматизация расчета стальных строительных конструкций зданий и сооружений» направлен на формирование следующих компетенций:

ПК-2 - Способен применять методы проведения инженерных изысканий, технологии проектирования деталей и конструкций в соответствии с техническим заданием с использованием универсальных и специализированных программно-вычислительных комплексов и систем автоматизированных проектирования

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-2	знать методы проектирования и мониторинга зданий
	и сооружений и их конструктивных элементов
	уметь использовать универсальные и
	специализированные программно-вычислительные
	комплексы для автоматизированного
	проектирования
	владеть навыками работы в
	программно-вычислительных комплексах

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Автоматизация расчета стальных строительных конструкций зданий и сооружений» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Duran varafinaři nafaziv	Всего	Семестры
Виды учебной работы	часов	8
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	18	18
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	54	54
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

заочная форма обучения

Programa pagama	Всего	Семестры
Виды учебной работы		9
Аудиторные занятия (всего)	10	10
В том числе:		
Лекции	4	4
Лабораторные работы (ЛР)	6	6
Самостоятельная работа	94	94
Часы на контроль	4	4
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	проектирования строительных	Предмет автоматизации проектирования в строительстве. История развития численных методов расчёта строительных конструкций. Современные практики применения компьютерных программ при расчётах строительных конструкций. Сходства и различия численных методов и аналитических методов расчёта строительных конструкций.	4	6	8	18
2	Расчётная схема и расчётная модель сооружения	Понятие расчётной схемы и порядок схематизации реальных строительных конструкций. Понятие расчётной модели и порядок подготовки модели в современных программных комплексах. Принципиальная	4	6	8	18

3		сходства и различия в схемах и моделях конструкций. Элементы работы с интерфейсом современных расчётных комплексов. Инструментальные панели и расчётный аппарат программ. Последовательность ввода	4	6	8	18
4	Анализ результатов расчётов. Обратная связь результатов с исходными данными.	исходных данных и возможные ошибки. Верификация полученных результатов расчётов элементов строительных конструкций спортивных сооружений. Согласованность результатов расчётов с действующими нормами и правилами проектирования. Способы возможной корректировки результатов расчётов, перерасчёт.	4	12	20	36
5	Подготовка чертежей в составе комплекта рабочей документации	Структура рабочей документации в строительстве. Этапы подготовки чертежей. Порядок извлечения необходимых материалов из результатов расчётов и моделирования в современных программных комплексах	2	6	10	18
		Итого	18	36	54	108

заочная форма обучения

		заочная форма ооучения				
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Общие принципы расчёта и проектирования строительных конструкций с применением ПЭВМ	Предмет автоматизации проектирования в строительстве. История развития численных методов расчёта строительных конструкций. Современные практики применения компьютерных программ при расчётах строительных конструкций. Сходства и различия численных методов и аналитических методов расчёта строительных конструкций.	2	2	14	18
2	Расчётная схема и расчётная модель сооружения	Понятие расчётной схемы и порядок схематизации реальных строительных конструкций. Понятие расчётной модели и порядок подготовки модели в современных программных комплексах. Принципиальная сходства и различия в схемах и моделях конструкций.	2	2	16	20
3		Элементы работы с интерфейсом современных расчётных комплексов. Инструментальные панели и расчётный аппарат программ. Последовательность ввода исходных данных и возможные ошибки.	-	2	16	18
4	Анализ результатов расчётов. Обратная связь результатов с исходными данными.	Верификация полученных результатов расчётов элементов строительных конструкций спортивных сооружений. Согласованность результатов расчётов с действующими нормами и правилами проектирования. Способы возможной корректировки результатов расчётов, перерасчёт.	-	-	32	32
5	Подготовка чертежей в составе комплекта рабочей документации	Порядок извлечения необходимых материалов из результатов расчётов и моделирования в современных программных комплексах	-	-	16	16
		Итого	4	6	94	104

5.2 Перечень лабораторных работ

- 1. Знакомство с интерфейсом программного комплекса SCAD Office 21.1.
 - 2. Расчёт стропильной фермы с помощью программного комплекса

SCAD Office 21.1.

- 3. Расчёт рамной конструкции с помощью программного комплекса SCAD Office 21.1.
 - 4. Применение результатов расчётов при проектировании конструкций.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-2	знать методы проектирования и мониторинга зданий и сооружений и их конструктивных элементов	Активная работа на лабораторных работах, отвечает на теоретические вопросы при отчёте лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь использовать универсальные и специализированные программно-вычислительные комплексы для автоматизированного проектирования	Решение стандартных задач, выполнение лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками работы в программно-вычислительных комплексах	Решение прикладных задач, выполнение лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 8 семестре для очной формы обучения, 9 семестре для заочной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ПК-2	знать методы проектирования и мониторинга зданий и сооружений и их конструктивных элементов	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь использовать универсальные и специализированные программно-вычислительные комплексы для автоматизированного проектирования	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	
	владеть навыками работы в программно-вычислительных комплексах	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию 1. Что такое степень свободы

- а) Число конечных элементов системы;
- б) число загружений прикладываемых к системе;
- в) совокупность независимых координат (перемещения и/или вращения), полностью определяющая положение системы или тел в пространстве;
- г) число шарнирно-неподвижнгых опор.
- 2. Конечные элементы для расчёта тонких пологих оболочек имеют
- а) 6 степеней свободы;
- б) 2 степени свободы;
- в) 4 степени свободы;
- г) 8 степеней свободы.
- 3. Какие системы координат применяются в современных программных комплексах
- а) глобальные;
- б) локальные;
- в) глобальные и локальные;
- г) пространственные.

4. Какие системы координат применяются в современных программных комплексах

- а) глобальные;
- б) локальные и местные;
- в) глобальные и локальные;
- г) пространственные.

5. Сочетания каких нагрузок рассматривают при расчёте

а) основные;

- б) особые;
- в) основные и важные;
- г) основные и особые.

6. Временные нагрузки бывают

- а) длительные и мгновенные;
- б) длительные и кратковременные;
- в) в течении суток и в течении года;
- г) большие и малые.

7. Значение снеговой нагрузки следует брать

- а) в соответствии с снеговым районом;
- б) из ГОСТа;
- в) среднее в течении зимнего периода за год;
- г) по сортаменту.

8. Метод конечных элементов подразумевает

- а) разбиение системы на подоблости и элементы;
- б) разбиение на отрезки;
- в) ограничение числа элементов системы;
- г) расчет методом сил.

9. Четырёхугольные конечные элементы плоской оболочки имеют

- а) нулевую Гауссову кривизну;
- б) отрицательную Гауссову кривизну;
- в) положительную Гауссову кривизну;
- г) среднюю Гауссову кривизну.

10. Расчёт по второй группе предельных состояний подразумевает

- а) обеспечение прочности конструкций;
- б) ограничение перемещений системы;
- в) расчёт на прогрессирующее обрушение;
- г) расчёт на действие ветровой нагрузки.

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Что означает геометрически изменяемая рассчитываемая система

- а) это система в которой нагрузка прикладывается только в узлах;
- б) это любая статически не определимая система;
- в) это система состоящая из замкнутых треугольников;
- г) это система форма которой может меняться без деформации элемента.

2. Сгущение сетки конечных элементов системы приводит

- а) к возможности производить расчёты на устойчивость;
- б) к увеличению скорости расчёта;
- в) к увеличению точности расчётов;
- г) к геометрической изменяемости системы.

3. Поля напряжений отображают

- а) нормальные напряжения в конечных элементах;
- б) напряжения в пластинчатых и объёмных конечных элементах;
- в) только отрицательные значения напряжений;
- г) значения главных напряжений.

4. Усилия вычисляемые в плоской раме

- a) T_x , M_y , Q_z ;
- б) N, M_v, Q_z;
- в) $M_x, M_v, Q_z;;$
- г) N, T, M.

5. Что могут воспринимать односторонние связи

- а) только ветровую нагрузку;
- б) только изгибающий момент;
- в) только сосредоточенную нагрузку;
- г) усилия только определённого знака.

6. Ферменной конструкцией является

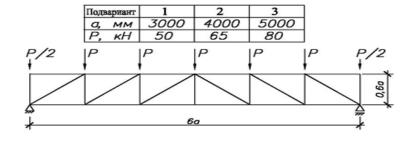
- а) система с жёстким примыканием элементов в узлах;
- б) система с регулярной решёткой;
- в) статически определимая система;
- г) шарнирно-стержневая система.

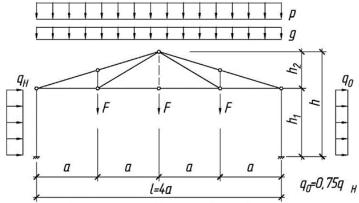
7. Чем неподвижный шарнир отличается от подвижного

- а) это одинаковое условие закрепление;
- б) величиной перемещения;
- в) ограничением линейных перемещений относительно горизонтальной и вертикальной осей;
- г) ограничением на угол поворота.

8. По характеру действия нагрузка бывает

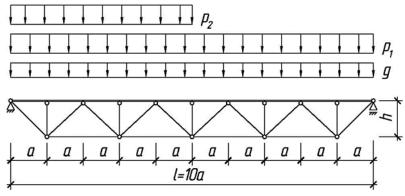
- а) маленькая и большая;
- б) постоянная и временная;
- в) сложная и простая;
- г) отрицательная и положительная.


9. Отрицательное усилие N в элементе означает

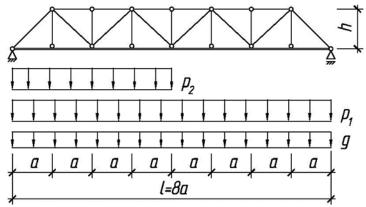

- а) элемент потерял прочность;
- б) элемент растянут;
- в) элемент сжат;
- г) элемент работает на изгиб.

10. Что работа элемента на центральное сжатие

- а) наличие в элементе только продольной силы N;
- б) наличие в элементе только изгибающего момента \mathbf{M}_{y} и поперечной силы \mathbf{Q}_{z} ;
- в) наличие в элементе только крутящего момента M_k ;
- Γ) наличие в элементе только поперечной силы Q_7 .


7.2.3 Примерный перечень заданий для решения прикладных задач

Элемен, показанный штриховой линией, вводить по согласованию с преподавателем


Компоновочные	Подвариант			
парамеры	1	2	3	4
<i>[</i> ,м	8	10	12	16
Д, м	2	2,5	3	4
<i>h</i> , м	4,5	5,25	6,5	8,0
h ₁ ,м	3,5	4,0	5,0	6,0
h ₂ , м	1,0	1,25	1,5	2,0
<i>g</i> , кН/м	3,0	4,0	6,0	8,0
<i>р</i> , кН/м	5,4	7,2	10,8	14,4
<i>Q_H</i> , кН/м	1,0	1,27	2,0	2,53
F, KH	7,5	10,0	12,0	15,0

g приложена к верхнему поясу, с которым совмещена плита настила. \mathbf{p}_1 - нагрузка от подвижного состоава. Интенсивность нагрузки \mathbf{p}_2 , равномерно распределенной на левом полупролёте, совпадает с \mathbf{p}_1 . \mathbf{p}_1 и \mathbf{p}_2 приложены вертикально сверху вниз к верхнему поясу.

 p_1 и p_2 действуют не одновременно.

Компоновочные	Подвариант			
парамеры	1	2	3	4
<i>l</i> ,м	24	30	36	40
Д, м	2,4	3,0	3,6	4,0
<i>h</i> , м	2,0	2,6	3,0	3,6
<i>g</i> , кН/м	4	6	8	10
<i>Р</i> ₁ , кН/м	14	12	10	8

 ${\bf g}$ приложена к нижнему поясу, с которым совмещена плита настила. ${\bf p}_1$ - нагрузка от подвижного состоава.

Интенсивность нагрузки р₂, равномерно распределенной на левом полупролёте, совпадает с р₁.

р₁ и р₂ приложены вертикально сверху вниз к нижнему поясу.

р, и р, действуют не одновременно.

Компоновочные	Подвариант			
парамеры	1	2	3	4
<i>l</i> ,м	32	40	48	56
а, м	4,0	5,0	6,0	7
<i>h</i> , м	3,0	4,0	5,0	6,0
<i>g</i> , кН/м	6	8	10	12
<i>Р</i> ₁ , кН/м	12	10	20	16

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Описать порядок сбора нагрузки и формирование расчётной схемы.
- 2. Описать порядок сбора нагрузки и формирование расчётной модели.
- 3. Указать порядок назначения условий примыкания и условий закрепления расчётной схемы или модели.
- 4. Указать порядок назначения жёсткостных характеристик элементов строительных конструкций спортивного сооружения.
- 5. Понятие степень свободы и количество степеней свободы в принятой расчётной схеме (или модели).
- 6. Виды конечных элементов (КЭ) и их характеристики.
- 7. Глобальная и локальные системы координат в программных комплексах.
- 8. Состав библиотеки КЭ.
- 9. Порядок выполнения проверок по первой и второй группам предельных состояний конструкций.
- 10. Проверка элементов расчётной схемы (или модели) по прочности.
- 11. Проверка элементов расчётной схемы (или модели) по устойчивости.
- 12. Проверка элементов расчётной схемы (или модели) по деформациям.
- 13. Виды напряжённо-деформированного состояния строительных

конструкций.

- 14. Особенности назначения связевых элементов в схемах (или моделях).
- 15. Понятие устойчивости системы в целом и способ её проверки.
- 16. Прогрессирующее разрушение: общее описание и способы борьбы.
- 17. Учёт температурных воздействий на строительные конструкции.
- 18. Определение осадки фундаментов и влияние осадки на работу конструкций.
- 19. Расчётные длины: понятие, способ нахождения.
- 20. Местная устойчивость элементов строительных конструкций в программных комплексах.
- 21. Анализ результатов расчёта и подготовка документации в современных программных комплексах.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 3 вопроса, 1 стандартную задачу и 1 прикладную задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов – 5.

- 1. «Зачтено» ставится в случае, если студент набрал 3 и более балов.
- 2. «Не зачтено» ставится в случае, если студент набрал менее 3 балов.

7.2.7 Паспорт оценочных материалов

	<u> </u>		
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Общие принципы расчёта и проектирования строительных конструкций с применением ПЭВМ	ПК-2	Тест, защита лабораторных работ, зачёт
2	Расчётная схема и расчётная модель сооружения	ПК-2	Тест, защита лабораторных работ, зачёт
3	Интерфейс расчётных программ. Алгоритм ввода исходных данных	ПК-2	Тест, защита лабораторных работ, зачёт
4	Анализ результатов расчётов. Обратная связь результатов с исходными данными	ПК-2	Тест, защита лабораторных работ, зачёт
5	Подготовка чертежей в составе комплекта рабочей документации	ПК-2	Тест, защита лабораторных работ, зачёт

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- СП 20.13330.2016 «Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*». http://docs.cntd.ru/document/456044318
- СП 16.13330.2017 «Стальные конструкции. Актуализированная редакция СНиП II-23-81*». http://docs.cntd.ru/document/456069588
- СП 294.1325800.2017 «Конструкции стальные. Правила проектирования». http://docs.cntd.ru/document/456088764
- ГОСТ 27772-2015 «Прокат для строительных стальных конструкций. Общие технические условия». http://docs.cntd.ru/document/1200133727
- ГОСТ 27751-2014 «Надежность строительных конструкций и оснований. Основные положения».
 http://docs.cntd.ru/document/1200115736
- Колоколов С.Б. Автоматизированное проектирование стального балочного перекрытия [Электронный ресурс]: учебное пособие/ Колоколов С.Б., Никулина О.В., Лисов С.В.— Электрон. текстовые данные.— Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2014.— 136 с. http://biblioclub.ru/index.php?page=book&id=330543
- Белов В.А. Моделирование и расчёт металлических конструкций зданий и сооружений [Электронный ресурс]: монография/ Белов В.А., Круль К.— Электрон. текстовые данные.— М.: Московский государственный строительный университет, ЭБС АСВ, 2012.— 160 с. http://www.iprbookshop.ru/20012.html.

Беляева С. Ю., Расчёт и конструирование несущих элементов каркаса однопролётного здания: учеб.-метод. пособие / С. Ю. Беляева, Д. Н. Кузнецов; Воронежский ГАСУ.- Воронеж, 2015.-137с. – 150 экземпляров

– Плешивцев, А. А.

Основы архитектуры и строительные конструкции: Учебное пособие / Плешивцев А. А. - Москва: Московский государственный строительный университет, ЭБС АСВ, 2015. - 105 с. - ISBN 978-5-7264-1030-2.

URL: http://www.iprbookshop.ru/30765

- Федоров, Ю. А.

Строительная механика и металлические конструкции : Учебное пособие / Федоров Ю. А. - Иваново : Ивановский государственный архитектурно-строительный университет, ЭБС АСВ, 2013. - 196 с. - ISBN 978-5-88015-261-2.

URL: http://www.iprbookshop.ru/20547

Ушаков, Игорь Иванович.

Коррозионные повреждения стальных конструкций и основы диагностики [Текст] : учебное пособие. - Москва : АСВ, 2013 (Чехов : Первая Образцовая тип., фил. "Чеховский Печатный Двор"). - 144 с. : ил. - Библиогр.: с. 144 (31 назв.). - ISBN 978-5-93093-924-8 : 200-00.

- Шмелев, Геннадий Дмитриевич.

Техническая экспертиза строительных конструкций гражданских зданий [Текст] : учебное пособие : рек. ВГАСУ / Воронеж. гос. архит.-строит. ун-т. - Воронеж : [б. и.], 2011 (Воронеж : Отдел оперативной полиграфии ВГАСУ, 2011). - 65 с. - ISBN 978-5-89040-355-1 : 27-95.

Жулай, В. А.

Механизация и автоматизация строительства : Практикум / Жулай В. А. - Воронеж : Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, 2014. - 95 с. - ISBN 978-5-89040-483-1.

URL: http://www.iprbookshop.ru/30841

- Юдин, К. А.

Автоматизация проектирования с применением Autodesk Inventor 2012: Учебное пособие / Юдин К. А. - Белгород : Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2013. - 129 с.

URL: http://www.iprbookshop.ru/28870

– Системы автоматизации проектирования в строительстве: Учебное пособие / Гинзбург А. В. - Москва: Московский государственный строительный университет, ЭБС АСВ, 2014. - 664 с. - ISBN 978-5-7264-0928-3.

URL: http://www.iprbookshop.ru/30356

– Драпалюк, Дмитрий Александрович.

Мониторинг состояния жилого фонда и его физический износ, проведение обследований строительных материалов и конструкций [Текст]: учебно-методическое пособие / Воронеж. гос. архит.-строит. ун-т. - Воронеж: [б. и.], 2013 (Воронеж: Отдел оперативной полиграфии ВГАСУ, 2013). - 82 с. - ISBN 978-5-89040-476-3: 38-29

- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - Microsoft Office Word 2013/2007
 - Microsoft Office Excel 2013/2007
 - Microsoft Office Power Point 2013/2007
 - Microsoft Office Outlook 2013/2007
 - Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic (многопользовательская лицензия)
 - ABBYY FineReader 9.0
 - Microsoft Win SL 8.1 Russian Academic OPEN 1 License NP LEVEL Legalization GET Genuine
 - Лира 9.6 PRO
 - Мономах 4.5 PRO
 - САПФИР 1.3
 - SCADA-система "КАСКАД"
 - Rapid SCADA
 - Программный комплекс "ЛИРА 10", версия 8
 - Модуль поиска текстовых заимствований по коллекции научной электронной библиотеки eLIBRARY.RU
 - Программный комплекс "ЛИРА 10", версия 8
 - AutoCAD
 - 3ds Max
 - Revit
 - BIM 360 Build
 - Autodesk Civil 3D
 - "ЛИРА-САПР 2016 PRO"
 - OpenSCADA
 - nanoCad Plus версия 8.0 локальная
 - nanoCAD ОПС версия 8.0 сетевая

- 7zip
- Компьютерная программа «СтройКонсультант»
- http://www.stroitel.club/
- http://stroitelnii-portal.ru/
- http://www.edu.ru/
- Образовательный портал ВГТУ
- http://window.edu.ru
- <u>https://wiki.cchgeu.ru/</u>
- LibreOffice
- http://www.edu.ru/
- Образовательный портал ВГТУ
- https://картанауки.рф/;
- http://tehne.com/node/5728
- http://retrolib.narod.ru/book_e1.html
- PDF24 Creator
- dwg.ru

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Наименование помещений для проведения всех	Адрес (местоположение) помещений для
видов учебной деятельности, предусмотренной	проведения всех видов учебной деятельности,
учебным планом, в том числе помещения для	предусмотренной учебным планом (в случае
самостоятельной работы, с указанием перечня	реализации образовательной программы в сетевой
основного оборудования, учебно-наглядных	форме дополнительно указывается наименование
пособий	организации, с которой заключен договор)
Ауд. 1018	394006, Воронежская
Комплект учебной мебели:	область, г. Воронеж,
-рабочее место преподавателя (стол, стул);	ул. 20-летия Октября д. 84
-рабочие места обучающихся (столы, стулья) на 24	(Здание – учебный корпус №1)
человека	
Ауд. 2102	394006, Воронежская
Комплект учебной мебели:	область, г. Воронеж,
-рабочее место преподавателя (стол, стул);	ул. 20-летия Октября д. 84
-рабочие места обучающихся (столы, стулья)	(Здание – учебный корпус №2)
на 20 человек	
Сварочный выпрямитель ВДМ-1202	
Машина для испытания материалов	
Шкаф сушильный СНОЛ	
Ауд. 2103	394006, Воронежская
Комплект учебной мебели:	область, г. Воронеж,
-рабочее место преподавателя (стол, стул);	ул. 20-летия Октября д. 84
-рабочие места обучающихся (столы, стулья)	(Здание – учебный корпус №2)
на 24 человека	
1. Установка аргонодуговой сварки УДГУ-351	
Ауд. 2104	394006, Воронежская
Комплект учебной мебели:	область, г. Воронеж,
-рабочее место преподавателя (стол, стул);	ул. 20-летия Октября д. 84
-рабочие места обучающихся (столы, стулья)	(Здание – учебный корпус №2)
на 20 человек	
1. Комплект плакатов для сварочного производства	
Ауд. 2106	394006, Воронежская
Комплект учебной мебели:	область, г. Воронеж,
-рабочее место преподавателя (стол, стул);	ул. 20-летия Октября д. 84
-рабочие места обучающихся (столы, стулья)	(Здание – учебный корпус №2)

на 20 человек	
Электропечь СНОЛ	
Комплект плакатов для материаловедения	
Ауд. 2108	394006, Воронежская
Комплект учебной мебели:	область, г. Воронеж,
-рабочее место преподавателя (стол, стул);	ул. 20-летия Октября д. 84
-рабочие места обучающихся (столы, стулья)	(Здание – учебный корпус №2)
на 10 человек	
Машина разрывная ИР-6055	

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Автоматизация расчета стальных строительных конструкций зданий и сооружений» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически,

промежуточной	в течение всего семестра. Интенсивная подготовка должн
аттестации	начаться не позднее, чем за месяц-полтора до промежуточно
	аттестации. Данные перед зачетом три дня эффективнее всег
	использовать для повторения и систематизации материала.