МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета экономики менеджмента и информационных технологий

С.А.Баркалов

«30» августа 2017 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Аппаратно-программная реализация вычислительных машин»

Направление подготовки $\underline{09.03.02}$ ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ

Профиль Информационные системы и технологии в строительстве

Квалификация выпускника <u>Бакалавр</u> Нормативный период обучения <u>4 года</u> Форма обучения <u>очная</u> Год начала подготовки <u>2017</u>

Автор программы

/Минакова О.В./

Заведующий кафедрой Информационных технологий и автоматизированного проектирования в строительстве

Руководитель ОПОП

/Смольянинов А.В./

/Курипта О.В./

Воронеж 2017

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

формирование у студентов представлений о принципах построения и архитектуре ЭВМ, структурной организации и характеристиках элементов вычислительной техники, особенностях функционирования и способах взаимодействия периферийных устройств и системных компонентов.

1.2. Задачи освоения дисциплины

- понимать архитектуру и организацию ЭВМ, устройство функциональных компонент ЭВМ и принципы их взаимодействия;
- определять характеристики различных компонентов и оценивать по ним производительность, функциональность и эффективность применения ЭВМ в конкретной системе;
- выбирать и комплектовать ЭВМ по заданным требованиям производительности, функциональности, эффективности;
- использовать методы выбора элементной базы и архитектуры для построения различных вычислительных средств.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Аппаратно-программная реализация вычислительных машин» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Аппаратно-программная реализация вычислительных машин» направлен на формирование следующих компетенций:

- OK-1 владение культурой мышления, способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения, умение логически верно, аргументировано и ясно строить устную и письменную речь
- ОПК-3 способностью применять основные приемы и законы создания и чтения чертежей и документации по аппаратным и программным компонентам информационных систем
- ОПК-6 Способность выбирать и оценивать способ реализации информационных систем и устройств (программно-, аппаратно- или программно аппаратно-) для решения поставленной задачи

ПК-2 - способность проводить техническое проектирование

Компетенция	Результаты обучения, характеризующие сформированность компетенции	
ОК-1	знать принципы осуществления взаимодействия	
	элементов вычислительной техники	
	уметь работать с технической документацией	

владеть приемами анализа и синтеза
научно-технической информации
знать функциональное устройство и
характеристики компонентов ЭВМ
уметь инсталлировать, тестировать, испытывать и
использовать программно-аппаратные средства
вычислительных и информационных систем
владеть инструментальными средствами
разработки технической документации
знать основы построения и архитектуры ЭВМ;
уметь выбирать, комплектовать и эксплуатировать
программно-аппаратные средства в создаваемых
вычислительных и информационных системах;
владеть методами выбора элементной базы для
построения различных архитектур вычислительных
средств
знать современные технические и программные
средства взаимодействия с ЭВМ
уметь ставить и решать схемотехнические задачи,
связанные с выбором элементов системы при
заданных требованиях к параметрам;
владеть приемами технического проектирования
вычислительных средств

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Аппаратно-программная реализация вычислительных машин» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Drywy gwefyei nefemy	Всего	Семестры	
Виды учебной работы		2	
Аудиторные занятия (всего)	72	72	
В том числе:			
Лекции	36	36	
Лабораторные работы (ЛР)	36	36	
Самостоятельная работа	36	36	
Виды промежуточной аттестации - зачет	+	+	

Общая трудоемкость		
академические часы	108	108
3.e.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	очная форма обучения					
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Информационно-логические основы построения ЭВМ	Понятие структурной организации и архитектуры ЭВМ. Эволюция ЭВМ (краткий исторический экскурс). Основные принципы Фон-Неймановской машины. Основные типы архитектур. Основные базовые компоненты ЭВМ, их функции, назначение и взаимодействие. Стандартный цикл выполнения машинной команды. Представление информации в ЭВМ. Представление чисел в формате с плавающей и фиксированной запятой. Представление текста, символов и др. нечисловой информации.	6	8	12	26
2	Архитектура и структурная организация процессора	Типы и форматы команд в архитектуре системы команд процессора. Типы и форматы операндов. Способы адресации операндов в системе команд процессоров. Понятие CISC и RISC архитектур. Архитектура CISC-процессора на примере Intel 80286/Особенности RISC-архитектуры. Архитектура RISC-процессора на примере ARM7. Структура процессора, основные логические блоки: АЛУ, регистры, УУ, их назначение и виды. Взаимодействие процессора с памятью и внешними устройствами. Организация обработки прерываний в ЭВМ Конвейеризация, выборка команд с опережением, предсказание переходов. Понятие ILP.	12	10	8	30
3	Организация памяти ЭВМ	Иерархия памяти в ЭВМ. Основные технические характеристики памяти. Логическая организация памяти: стек, память с произвольным и ассоциативным доступом. Основная и внешняя память. Организация кэш памяти (преобразование адресов, политика замещения и сохранения, обеспечения	10	10	8	28

4 Принципы организации ввода	целостности). Запоминающие устройства ЭВМ (полупроводниковая память DRAM, SRAM). Организация, логическая структура накопителя на жестких магнитных дисках, оптических носителей. RAID-архитектуры.				
4 Принципы организации ввода вывода и периферийные устройства	Логическая организация ввода-вывода. Программируемый ввод-вывод и ввод-вывод по прерыванию, буферизация, структура прерываний. Понятие канала и процессора ввода-вывода. Системные и локальные шины. Понятие арбитража. Функциональные характеристики шин. Протоколы, организация доступа к общей шине, прямой доступ к памяти. Интерфейсы внутренних и внешних устройств. Стандартизация интерфейсов. Обзор современных стандартных интерфейсов. Классификация и виды периферийных устройств. Технологии отображения информации. Клавиатура и устройства позиционирования. Обзор устройств вывода информации.	8	8	8	24
	Итого	36	36	36	108

5.2 Перечень лабораторных работ

- 1. Анализ комбинационных логических схем
- 2. Синтез комбинационных логических схем
- 3. Анализ и синтез последовательных логических схем
- 4. Кодирование чисел и символов в ВМ
- 5. Типы и форматы операндов в архитектуре системы команд современных ВМ
- 6. Элементы программирования процессора
- 7. Организация вычислений на основе аппаратного стека
- 8. Оценка производительности процессоров с использованием бенчмарков
- 9. Динамическое и статическое распределение памяти
- 10.Определение характеристик запоминающих устройств, составляющих структуру памяти ЭВМ
- 11. Оценка быстродействия внешних запоминающих устройств
- 12 Обработка прерываний в ВМ
- 13. Выбор конфигурации рабочего места с заданной функциональностью и производительностью

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
OK-1	знать принципы осуществления взаимодействия элементов вычислительной техники	Устный опрос, тестирование	Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок, предусмотренный
	уметь работать с технической документацией	Выполнение практических заданий на лабораторных работах	Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок, предусмотренный
	владеть приемами анализа и синтеза научно-технической информации	Подготовка отчета по лабораторной работе	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ОПК-3	знать функциональное устройство и характеристики компонентов ЭВМ	Устный опрос, тестирование	Выполнение работ в срок, предусмотренный в рабочих программах	
	уметь инсталлировать, тестировать, испытывать и использовать программно-аппаратные средства вычислительных и информационных систем	Выполнение практических заданий на лабораторных работах	Выполнение работ в срок, предусмотренный в рабочих программах	
	владеть инструментальными средствами разработки технической документации	Подготовка отчета по лабораторной работе	Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок, предусмотренный
ОПК-6	знать основы построения и архитектуры ЭВМ;	Устный опрос, тестирование	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный
	уметь выбирать,	Выполнение	Выполнение работ в	Невыполнение

		v		~
	комплектовать и	практических заданий на	срок,	работ в срок,
	эксплуатировать	лабораторных работах	предусмотренный в	
	программно-аппаратные		рабочих программах	в рабочих
	средства в создаваемых			программах
	вычислительных и			
	информационных			
	системах;			
	владеть методами выбора	Подготовка отчета по	Выполнение работ в	Невыполнение
	элементной базы для	лабораторной работе	срок,	работ в срок,
	построения различных		предусмотренный в	предусмотренный
	архитектур		рабочих программах	
	вычислительных средств			программах
ПК-2	знать современные	Устный опрос,	Выполнение работ в	Невыполнение
	технические и	тестирование	срок,	работ в срок,
	программные средства		предусмотренный в	предусмотренный
	взаимодействия с ЭВМ		рабочих программах	
				программах
	уметь ставить и решать	Выполнение	Выполнение работ в	Невыполнение
	схемотехнические	практических заданий на	срок,	работ в срок,
	задачи, связанные с	лабораторных работах	предусмотренный в	предусмотренный
	выбором элементов		рабочих программах	
	системы при заданных			программах
	требованиях к			
	параметрам;			
	владеть приемами	Подготовка отчета по	Выполнение работ в	Невыполнение
	технического	лабораторной работе	срок,	работ в срок,
	проектирования	·	предусмотренный в	
	вычислительных средств		рабочих программах	в рабочих
				программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 2 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
OK-1	знать принципы осуществления взаимодействия элементов вычислительной техники	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь работать с технической документацией	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	владеть приемами анализа и синтеза научно-технической информации	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ОПК-3	знать функциональное устройство и характеристики компонентов ЭВМ	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь инсталлировать, тестировать, испытывать и использовать программно-аппаратные средства вычислительных и	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

	информационных систем			
	владеть инструментальными средствами разработки технической документации	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ОПК-6	знать основы построения и архитектуры ЭВМ; уметь выбирать,	Тест Решение стандартных	Выполнение теста на 70-100% Продемонстрирова	Выполнение менее 70% Задачи не решены
	комплектовать и эксплуатировать программно-аппаратные средства в создаваемых вычислительных и информационных системах;	практических задач	н верный ход решения в большинстве задач	
	владеть методами выбора элементной базы для построения различных архитектур вычислительных средств	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ПК-2	знать современные технические и программные средства взаимодействия с ЭВМ	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь ставить и решать схемотехнические задачи, связанные с выбором элементов системы при заданных требованиях к параметрам;	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	владеть приемами технического проектирования вычислительных средств	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Характерным признаком основной памяти является наличие
 - а) адреса
 - b) команд
 - с) операндов
 - d) управляющих сигналов
- 2. Характерной особенностью общей шины является
 - а) совместное использование ее всеми подключенными к ней устройствами
 - b) наличие линий адреса, данных и управляющих сигналов
 - с) возможность адресного обмена данными
 - d) общий механизм обработки запросов прерываний
- 3. ля обмена информации с ЭВМ предназначены
 - а) устройства ввода-вывода
 - b) память
 - с) процессор

- d) системная шина
- 4. Укажите размер адресного пространства 16-разрядного процессора с побайтной адресацией
 - а) 4ГБайт
 - b) 1024 бит
 - с) 16 Байт
 - d) 4КБайт
 - 5. Согласно Фон-Нейману управление ЭВМ осуществляется
 - а) Последовательностью команд
 - b) Потоком данных
 - с) Способами адресации
 - d) Механизмом обработки прерываний
 - 6. Взаимодействие всех компонентов ПК осуществляется
 - а) Системой шин
 - b) Центральным процессором
 - с) Специализированным процессором
 - d) Устройствами ввода-вывода
- 7. Набор команд, полно характеризующий конкретную ЭВМ, называется
 - а) Системой команд
 - b) Программой
 - с) Операционной системой
 - d) Базовой системой ввода-вывода
 - 8. Управление процессором осуществляется посредством...
 - а) команд
 - b) управляющих сигналов
 - с) прерываний
 - d) тактовых импульсов
- 9. Управляет ходом вычислительного процесса и обеспечивает взаимодействие различных компонентов процессора друг с другом
 - а) устройство управления
 - b) АЛУ
 - с) генератор тактовых импульсов
 - d) сопроцессор
- 10. Операция преобразования форматов представления данных выполняется в процессоре в ...
 - а) АЛУ
 - b) регистре команд
 - с) регистре-аккумуляторе
- d) устройстве управления (правильный ответ 1-10 вопроса -a)

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Сколько раз процессор должен обратиться к памяти при извлечении и выполнении команд вычисления, требующие одного операнда и использующих косвенную адресацию.

Ответ 3

2. Емкость накопителя имеющего 2 рабочие поверхности 50 дорожек по 2000 секторов в каждой (размер сектора 512 байт) составляет

Ответ 100МБ

- 3. Представьте число -5 в 8-разрядном дополнительном коде Ответ 11111011
- 4. Укажите положение запятой (количество разрядов представления целой части) для представления чисел в диапазоне от -10 до 10 в формате с фиксированной запятой с максимально возможной точностью

Ответ: 4

5. Для команды, мнемоническая запись которой имеет вид MOVE 1234, (R6) укажите тип операции и способ адресации операндов, месторасположение операндов и куда должен быть помещен результата операции?

Ответ: перемещение, прямая, косвенно-регистровая

6. Чему равен размер адресного пространства 32-битного процессора.

Ответ: 4Г

- 7. Укажите 3 запоминающих устройства с последовательным доступом. Ответ: DVD, CD, магнитная лента
- 8. В ЭВМ используется побайтовая адресация памяти с 32-разрядным машинным словом и обратным порядком байтов (big-engine). Программа считывает вводимые с клавиатуры ASCII-символы и сохраняет их с адреса 1000. Какой символ будет записан по адресу 1003 при записи слова ВҮТЕ.

Ответ: Ү

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Определите функциональные характеристики и нарисуйте структурную схему компьютера заданной конфигурации: Hoyтбук Samsung N100S (N03) Atom N2100 (1600) 2048Mb 320Gb 10.1" Lan Wi-Fi Cam MeeGo
- 2. Определите функциональные характеристики и нарисуйте структурную схему компьютера заданной конфигурации Hoyтбук Samsung 350E5C (S0D) Pentium B980 (2400) 4096Mb 500Gb DVD+/-RW 15.6" Lan Wi-Fi BT Cam Win'8
- 3. Определите функциональные характеристики и нарисуйте структурную схему компьютера заданной конфигурации Ноутбук ASUS EEE PC 1225C Atom N2600 (1600) 2048Mb 320Gb 11.6" Lan Wi-Fi BT Cam Linux
- 4. Определите функциональные характеристики и нарисуйте структурную схему компьютера заданной конфигурации Ноутбук ASUS K55VJ Core i7 3630QM (2400) 8192Mb 750Gb DVD+/-RW 15.6" Lan Wi-Fi BT Cam Win8
- 5. Укажите функциональные характеристики системной платы Gigabyte GA-E350N E350 AMD A45 DualDDR3 SATAII Video Sound GLan COM LPT miniATX
- 6. Укажите функциональные характеристики системной платы MSI Z77MA-G45, iZ77, $5\Gamma\Gamma\mu$, 4DDR3 2800, PCI-E3.0x16, PCI-E3.0x16(x8), 2*PCI-E2.0x1, DVI/HDMI/VGA без видео, 4SATAII/2SATAIII RAID(5), 3вук

7.1, 4USB2.0/2USB3.0, LAN1Gb, mATX

- 7. Укажите функциональные характеристики системной платы Gigabyte GA-H87-D3H Socket1150 iH87 DualDDR3 PCI-E SATAIII VideoOut Sound GLan ATX
- 8. Укажите функциональные характеристики системной платы Gigabyte GA-X58A-OC Socket1366 iX58 DDR3 PCI-E SATAII+SATAIII Sound GLan ATX

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Функциональная структура ЭВМ: Базовые функции и основные компоненты ЭВМ. Основные характеристики ЭВМ.
- 2. Основные принципы функционирования ЭВМ (принципы фон Неймана). Архитектура ЭВМ с общей шиной
- 3. Состав и функции основных логических компонентов процессора (АЛУ, УУ и регистры).
- 4. Цикл обработки команды. Последовательность операций, выполняемых процессором при обработке команды
- 5. Система команд процессора. Типы операндов в системе команд процессора. Основные форматы числовых данных. Типы команд процессора: команды передачи, обработки данных, управления и ввода-вывода. Формат команды: структура и назначение полей команды, одно-, двух- и трехадресный формат. Способы адресации операндов в системе команд процессора.
- 6. Показатели производительности процессора (единицы измерения и способы оценивания).
- 7. Способы повышения производительности процессоров. Конвейерная обработка команд процессора. Кеширование.
- 8. Иерархия памяти в ЭВМ: назначение и структура. Виды запоминающих устройств и их технические характеристики.
 - 9. Адресная и стековая организация памяти.
- 10. Методы доступа к данным в памяти: прямой, произвольный, последовательный, ассоциативный.
 - 11. Принцип локальности и организация Кеш-памяти процессора.
- 12. Физическая и логическая структура накопителей на жестких магнитных дисках.
- 13. Назначение и виды прерывания в ЭВМ. Последовательность действий при обработке прерываний. Механизм прерывания при поступлении множества запросов.
 - 14. Назначение и основные функции системы ввода-вывода.
 - 15. Программно-управляемый ввод-вывод.
- 16. Аппаратные интерфейсы общего назначения. Примеры стандартных интерфейсов, их характеристики и особенности функционирования.
- 17. Структура и принципы функционирования шин. Функциональные характеристики шин (выделенная, мультиплексируемая, синхронная, асинхронная). Виды арбитража.

- 18. Прямой доступ к памяти как метод организации ввода-вывода.
- 19. Ввод-вывод по прерыванию.
- 20. Периферийный устройства ЭВМ и их основные характеристики

7.2.5 Примерный перечень заданий для подготовки к экзамену Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по билетам, каждый из которых содержит 2 теоретических вопросов и стандартную задачу.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент не ответил ни на один вопрос и не решил задачу.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент ответил на один теоретический вопрос и ход решения задачи был правильный
- 3. Оценка «Хорошо» ставится в случае, если студент ответил на теоретические вопросы и получил правильный ответ в задаче, но решение задачи не было обосновано, а на теоретические вопросы не был дан развернутый ответ.
- 4. Оценка «Отлично» ставится, если студент подробно ответил на теоретические вопросы и представил правильный ответ и последовательность решения стандартной задачи.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Информационно-логические основы построения ЭВМ	ОК-1, ОПК-3, ОПК -6, ПК-2	Тест, контрольная работа, защита лабораторных работ
2	Архитектура и структурная организация процессора	ОК-1, ОПК-3, ОПК -6, ПК-2	Тест, контрольная работа, защита лабораторных работ
3	Организация памяти ЭВМ	ОК-1, ОПК-3, ОПК -6, ПК-2	Тест, контрольная работа, защита лабораторных работ
4	Принципы организации ввода вывода и периферийные устройства	ОК-1, ОПК-3, ОПК -6, ПК-2	Тест, контрольная работа, защита лабораторных работ

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно

методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Таненбаум Э. Архитектура компьютера [Текст] Structured Computer organization. 4-е изд. СПб. : Питер, 2016 698 с.
- 2. Пятибратов А.П. Вычислительные машины, сети и телекоммуникационные системы [Электронный ресурс]: учебное пособие/ Пятибратов А.П., Гудыно Л.П., Кириченко А.А.— Электрон. текстовые данные.— М.: Евразийский открытый институт, 2015.— 292 с.— Режим доступа: http://www.iprbookshop.ru/10644
- 3. Гуров В.В. Архитектура микропроцессоров [Электронный ресурс]: учебное пособие/ Гуров В.В.— Электрон. текстовые данные.— М.: БИНОМ. Лаборатория знаний, Интернет-Университет Информационных Технологий (ИНТУИТ), 2010.— 272 с. Режим доступа: http://www.iprbookshop.ru/15852
- 4. Гуров В.В., Чуканов В.О. Логические и арифметические основы и принципы работы ЭВМ / В.О.Чуканов, В.В.Гуров Национальный Открытый Университет "ИНТУИТ" 2016 Режим доступа: http://www.book.ru/view/917748
- 5. Кирнос В.Н. Введение в вычислительную технику. Основы организации ЭВМ и программирование на Ассемблере [Электронный ресурс]: учебное пособие/ Кирнос В.Н.— Электрон. текстовые данные.— Томск: Эль Контент, Томский государственный университет систем управления и радиоэлектроники, 2011.— 172 с.— Режим доступа: http://www.iprbookshop.ru/13921.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Программное обеспечение:

обучающие программы — имитатор системы команд процессора с регистровой архитектурой, имитатор стекового процессора, пакет программ «Компьютерная арифметика», «Форматы операндов», «Цифровая логика»;

специальное $\Pi O-AIDA$ 64/Everest (FinalWire Ltd.), SiSoftware Sandra. Информационно-справочные системы:

1. Сайт ixbt.com www.ixbt.com Полная оперативная и

объективная информация о персональных компьютерах, их компонентах и периферийных устройствах

- 2. Caйт CITForum www.citforum.ru Библиотека технических материалов по информационным технологиям
- 3. База знаний сообщества преподавателей архитектуры ЭВМ (ACM Special Interest Group on Computer Architecture) www.acm.org
- 4. Справочная и нормативная техническая документация Комитета по стандартизации в области радиоэлектроники и вычислительной техники (IEEE Technical Committee on Computer Architecture) www.ieee.org
- 5. Форум WWW Computer Architecture Home Page сообщества преподавателей архитектуры ЭВМ arch-www.cs.wisc.edu

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Лекционная аудитория, оснащённая мультимедийным оборудованием (проектор, экран, звуковоспроизводящее оборудование), обеспечивающим демонстрацию (воспроизведение) мультимедиа-материалов.

Аудитории для лабораторных работ, оснащенные:

- компьютерной техникой с подключением к сети Интернет;
- прикладными программными продуктами для проведения лабораторных работ.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Аппаратно-программная реализация вычислительных машин» проводятся лекции и лабораторные занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на компьютерах с использованием специальных программ в соответствии с методиками, приведенными в указаниях к выполнению работ.

Контроль усвоения материала дисциплины производится проверкой курсовой работы, защитой курсовой работы.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично,
	последовательно фиксировать основные положения, выводы,
	формулировки, обобщения; помечать важные мысли, выделять
	ключевые слова, термины. Проверка терминов, понятий с
	помощью энциклопедий, словарей, справочников с
	выписыванием толкований в тетрадь. Обозначение вопросов,
	терминов, материала, которые вызывают трудности, поиск

	ответов в рекомендуемой литературе. Если самостоятельно не
	удается разобраться в материале, необходимо сформулировать
	вопрос и задать преподавателю на лекции или на практическом
	занятии.
Лабораторная работа	Лабораторные работы позволяют научиться применять
	теоретические знания, полученные на лекции при решении
	конкретных задач. Чтобы наиболее рационально и полно
	использовать все возможности лабораторных для подготовки к
	ним необходимо: следует разобрать лекцию по соответствующей
	теме, ознакомится с соответствующим разделом учебника,
	проработать дополнительную литературу и источники, решить
	задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому
	усвоения учебного материала и развитию навыков
	самообразования. Самостоятельная работа предполагает
	следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически,
промежуточной	в течение всего семестра. Интенсивная подготовка должна
аттестации	начаться не позднее, чем за месяц-полтора до промежуточной
	аттестации. Данные перед зачетом три дня эффективнее всего
	использовать для повторения и систематизации материала.