11.2.9 Аннотация программы дисциплины Б2.В.ДВ.01-2 «Получение жидкого водорода»

Общая трудоёмкость изучения дисциплины составляет 4 ЗЕ (144 часа).

Цели и задачи изучения дисциплины

Целью изучения дисциплины является приобретение студентами теоретических знаний и представлений о методах и способах получения жидкого водорода, а также особенностях его промышленного использования.

Задачей дисциплины является освоение студентами навыков расчета, оптимизации, проектирования и конструирования ожижителей водорода в целом, а также основного оборудования, входящего в их состав.

Основные дидактические единицы

Основные свойства водорода; нахождение в природе и способы получения водорода; орто и параводород; водородная энергетика; ожижение водорода методом дросселирования; ожижение водорода в цикле двух давлений; ожижение водорода с использованием детандерных циклов; гелиево-водородный конденсационный цикл; водородные ожижители; хранение жидкого водорода; техника безопасности при работе с водородом.

Компетенции, приобретаемые студентом в процессе изучения дисциплины

ПК-3	Выпускник готов выявить естественнонаучную сущность про-
	блем, возникающих в ходе профессиональной деятельности, и
	способен привлечь для их решения соответствующий физико-
	математический аппарат
ПК-12	Выпускник готов к проведению физического и численного экс-
	перимента, к разработке с этой целью соответствующих экспе-
	риментальных стендов
ПК-15	Выпускник способен разрабатывать проекты узлов аппаратов
	новой техники с учетом сформулированных к ним требований,
	использовать в разработке технических проектов новые инфор-
	мационные технологии
ПКВ-1	Выпускник готов выполнять расчетно-экспериментальные рабо-
	ты и решать научно-технических задачи в области низкотемпе-
	ратурной техники и систем жизнеобеспечения на основе дости-
	жений техники и технологий, классических и технических тео-
	рий и методов, теплофизических, математических и компьютер-
	ных моделей, обладающих высокой степенью адекватности ре-
	альным процессам, машинам и аппаратам
ПКВ-16	Выпускник способен принимать участие в монтаже, наладке,
	испытаниях и приемке/сдаче в эксплуатацию холодильного и
	криогенного оборудования в целом, а также изделий, узлов, сис-
	тем и деталей в отдельности

В результате изучения дисциплины обучаемые должны:

знать:

Способы получения водорода; основные свойства орто и пара модификации (ПК-3); особенности и техническую реализацию ускоренной орто-пара конверсии (ПК-3); основные циклы получения жидкого водорода (ПКВ-1); принцип действия и конструкцию водородных ожижителей (ПКВ-16); конструкции основных типов хранилищ для жидкого водорода, требования по их эксплуатации и расчет (ПКВ-1); особенности конструкционных материалов для изготовления водородных систем (ПК-15); основные критерии безопасной работы с жидким водородом (ПК-12).

уметь:

разрабатывать и конструировать основные элементы водородных ожижителей; производить их эксплуатацию и ремонт (ПК-15);

владеть:

современными методами проектирования и расчета водородных систем; основами эксплуатации водородных ожижителей (ПК-15).

Виды учебной работы: лекции, практические занятия.

Изучение дисциплины: заканчивается зачетом с оценкой.