МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
Декан факультета радиотехники
факультет радиотехники
факультет радиотехники
и электроники
/ В.А. Небольсин /
31 августа 2021 г.

РАБОЧАЯ ПРОГРАММА дисциплины «Спецглавы математики»

Направление подготовки 11.03.04 Электроника и наноэлектроника Профиль Микроэлектроника и твердотельная электроника Квалификация выпускника бакалавр Нормативный период обучения 4 года / 4 года и 11 мес. Форма обучения очная / заочная

Год начала подготовки 2021

Автор программы

Зав. кафедрой высшей математики и физико-математического моделирования

Руководитель ОПОП

Е.И. Максимова

И.Л. Батаронов

А.В. Арсентьев

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

- **1.1. Цели дисциплины:** изучение закономерностей теории вероятностей, математической логики, теории функций комплексного переменного, операционного исчисления, уравнений математической физики и отвечающих им методов расчета; формирование навыков построения и применения моделей, возникающих в инженерной практике и проведение расчетов по таким моделям.
- **1.2.** Задачи освоения дисциплины: научить умению использовать основные понятия и методы теории вероятностей, математической логики, теории функций комплексного переменного, операционного исчисления, уравнений математической физики в приложениях.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина Б1.В.10 «Спецглавы математики» относится к дисциплинам части блока Б1 учебного плана, формируемой участниками образовательных отношений.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Спецглавы математики» направлен на формирование следующих компетенций:

УК-1: способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;

ПК-1: способность строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования.

Компе-	Результаты обучения, характеризующие
тенция	сформированность компетенции
УК-1	знать основные понятия и методы теории вероятностей и матема-
	тической статистики; основные законы и методы дискретной ма-
	тематики (теорию множеств, методы минимизации булевых функ-
	ций, теорию графов); основные понятия и методы математической
	физики; основные понятия и методы теории поля; основные поня-
	тия и методы операционного исчисления;
	уметь решать радиотехнические задачи с привлечением методов и
	средств теории вероятностей и математической статистики; дока-
	зывать тождества с использованием законов, осуществлять мини-
	мизацию булевых функций с использованием различных методов;
	решать задачи с применением основ теории поля; применять мето-
	ды операционного исчисления;

	владеть навыками использования математического аппарата теории вероятностей и математической статистики для решения радиотехнических задач; навыками применения методов дискретной математики; навыками решения задач теории поля; навыками при-
	менения методов операционного исчисления.
ПК-1	знать стандартные пакеты прикладных программ, предназначенных для математического моделирования и исследования;
	уметь применять стандартные пакеты прикладных программ для реализации изучаемых математических моделей на примере численных методов;
	владеть навыками построения математических моделей типовых задач (численных методов), с использованием стандартных пакетов прикладных программ.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Спецглавы математики» составляет 5 зачетных единиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего	Семестры
	часов	4
Аудиторные занятия (всего)	48	48
В том числе:		
Лекции	16	16
Практические занятия (ПЗ)	16	16
Лабораторные работы (ЛР)	16	16
Самостоятельная работа	96	96
Часы на контроль	36	36
Вид промежуточной аттестации - экзамен	+	+
Общая трудоемкость час	180	180
зач. ед.	5	5

Заочная форма обучения

Suo mun Gopmu ooy tennn			
Вид учебной работы	Всего	Семестры	
	часов	4	
Аудиторные занятия (всего)	8	8	
В том числе:			
Лекции	2	2	
Практические занятия (ПЗ)	2	2	
Лабораторные работы (ЛР)	4	4	

Самостоятельная работа	163	163
Часы на контроль	9	9
Вид промежуточной аттестации - экзамен	+	+
Общая трудоемкость час	180	180
зач. ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

Очная форма обучения

		o man popula ody remini					
№	Наименование	Содержание раздела		Прак	Лаб.	CPC	Всего,
Π/Π	темы			зан.	зан.		час
1	Элементы теории вероятностей	Случайные события. Классическое определение вероятности. Формула Байеса. Схема Бернулли. Случайные величины. Законы распределения дискретной и непрерывной случайных величин. Функция распределения. Плотность распределения. Числовые характеристики. Системы случайных величин.	10	10	4	68	96
2	Элементы математической статистики	Выборки и их характеристики. Точечные и интервальные оценки параметров распределения. Проверка гипотез о законе распределения.	6	6	12	28	48
		Всего	16	16	16	96	144
		Контроль					36
		Итого					180

Заочная форма обучения

No॒	Наименование	Содержание раздела	Лекц	Прак	Лаб.	CPC	Всего,
п/п	темы	содержание раздела		зан.	зан.		час
1	Элементы теории вероятностей	Случайные события. Классическое определение вероятности. Формула Байеса. Схема Бернулли. Случайные величины. Законы распределения дискретной и непрерывной случайных величин. Функция распределения. Плотность распределения. Числовые характеристики. Системы случайных величин.	2	2	2	108	114
2	Элементы математической статистики	Выборки и их характеристики. Точечные и интервальные оценки параметров распределения. Проверка гипотез о законе распределения.	-	-	2	55	57
		Всего	2	2	4	163	171
		Контроль					9
	•	Итого					180

5.2 Перечень лабораторных работ

- 1. Решение нелинейных уравнений.
- 2. Решение систем линейных уравнений.
- 3. Аппроксимация функций.
- 4. Важнейшие математические операции.
- 5. Решение обыкновенных дифференциальных уравнений.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины «Спецглавы математики» не предусматривает выполнение курсового проекта (работы) и контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Ком- петен- ция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
УК-1	знать основные понятия и методы теории вероятностей и математической статистики; основные законы и методы дискретной математики (теорию множеств, методы минимизации булевых функций, теорию графов); основные понятия и методы математической физики; основные понятия и методы теории поля; основные понятия и методы операционного исчисления;	Активная работа на практических и лабораторных занятиях	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь решать радиотехнические задачи с привлечением методов и средств теории вероятностей и математической статистики; доказывать тождества с использованием законов, осуществлять минимизацию булевых функций с использованием различных методов; решать задачи с применением основ теории поля; применять методы операционного исчисления;	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками использования математического аппарата теории вероятностей и математической статистики для решения радиотехнических задач; навыками применения методов дискретной математики; навыками решения задач теории поля; навыками применения методов операционного исчисления.	Решение при- кладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-1	знать стандартные пакеты прикладных программ, предназначенных для математического моделирования и исследования;	Активная ра- бота на прак- тических и лабораторных занятиях	Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок, предусмотрен-
	уметь применять стандартные пакеты прикладных программ для реализации изучаемых математических моделей на примере численных методов;	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками построения математических моделей типовых задач (численных методов), с использованием стандартных пакетов прикладных программ.	Решение при- кладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 4 семестре для очной формы обучения, в 4 семестре для заочной формы обучения по системе:

«отлично»; «хорошо»; «удовлетворительно»; «неудовлетворительно»

Ком- петен- ция	Результаты обучения, характеризующие сформированность компетенции	Критерии оцени- вания	Отлично	Хорошо	Удовл	Неудовл
УК-1	знать основные понятия и методы теории вероятностей и математической статистики; основные законы и методы дискретной математики (теорию множеств, методы минимизации булевых функций, теорию графов); основные понятия и методы математической физики; основные понятия и методы теории поля; основные понятия и методы операционного исчисления;	Тест	Выполнение теста на 90 – 100 %	Выполнение теста на 80 – 90 %	Выполнение теста на 70 – 80 %	В тесте менее 70 % пра- вильных ответов
	уметь решать радиотехнические задачи с привлечением методов и средств теории вероятностей и математической статистики; доказывать тождества с использованием законов, осуществлять минимизацию булевых функций с использованием различных методов; решать задачи с применением основ теории поля; применять методы операционного исчисления;	Решение стандарт- ных практи- ческих задач	Задачи решены в полном объеме и получены верные ответы	Продемон- стрирован вер- ный ход реше- ния всех, но не получен вер- ный ответ во всех задачах	Продемон- стрирован верный ход реше- ния в большин- стве задач	Задачи не ре- шены
	владеть навыками использования математического аппарата теории вероятностей и математической статистики для решения радиотехнических задач; навыками применения методов дискретной математики; навыками решения задач теории поля; навыками применения методов операционного исчисления.	Решение приклад- ных задач в конкрет- ной пред- метной области	Задачи решены в полном объеме и получены верные ответы	Продемон- стрирован вер- ный ход реше- ния всех, но не получен вер- ный ответ во всех задачах	Продемон- стрирован верный ход реше- ния в большин- стве задач	Задачи не ре- шены
ПК-1	знать стандартные пакеты прикладных программ, предназначенных для математического моделирования и исследования;	Тест	Выполнение теста на 90 — 100 %	Выполнение теста на 80 – 90 %	Выпол- нение теста на 70- 80%	В тесте менее 70 % пра-вильных ответов
	уметь применять стандартные пакеты прикладных программ для реализации изучаемых математических моделей на примере численных методов;	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемон- стрирован вер- ный ход реше- ния всех, но не получен вер- ный ответ во всех задачах	Продемон- стрирован верный ход реше- ния в большин- стве задач	Задачи не ре- шены

владеть навыками построения мате-	Решение	Задачи	Продемон-	Продемон-	Задачи
матических моделей типовых задач	приклад-	решены в	стрирован вер-	стрирован	не ре-
(численных методов), с использова-	ных задач	полном	ный ход реше-	верный	шены
нием стандартных пакетов приклад-	в конкрет-	объеме и	ния всех, но не	ход реше-	
ных программ.	ной пред-	получены	получен вер-	ния в	
	метной	верные	ный ответ во	большин-	
	области	ответы	всех задачах	стве задач	

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Когда применяется классический способ задания вероятности:
 - а) пространство элементарных событий бесконечно, все события равновозможные и независимые;
 - б) пространство элементарных событий замкнуто, все события независимы;
 - в) пространство элементарных событий конечно, все события равновозможные;
 - г) пространство элементарных событий конечно, все элементарные события независимы.
- 2. Когда применяется геометрический способ задания вероятности:
 - а) пространство элементарных событий бесконечно, все события равновозможные и независимые;
 - б) пространство элементарных событий замкнуто, все события независимы;
 - в) пространство элементарных событий конечно, все события равновозможные;
 - г) пространство элементарных событий конечно, все элементарные события независимы.
- 3. Эксперимент состоит в подбрасывании один раз правильной шестигранной игральной кости. При каких событиях A, B верно: А влечет за собой B?
 - а) $A = \{ выпало нечетное число очков \}, B = \{ выпало число 3 \};$
 - б) $A = \{$ выпало число $2\}$, $B = \{$ выпало четное число очков $\}$;
 - в) $A = \{$ выпало число $6\}$, $B = \{$ выпало число очков, меньше $6\}$.
- 4. Взятая наудачу деталь может оказаться либо первого (событие A), либо второго (событие B), либо третьего (событие C) сорта. Что представляет собой событие: A+C?
 - а) {деталь первого или третьего сорта};
 - б) {деталь второго сорта};
 - в) {деталь первого и третьего сорта}.
- 5. В урне 5 белых, 3 черных, 4 красных шаров. Вероятность того, что из урны вынут белый или черный шар равна:
 - a) 1/4;
 - б) 15/8;
 - в) 2/3.
- 6. Количество перестановок в слове «ТВМС» равно:
 - a) 4;
 - б) 16;
 - в) 24

- 7. Каково наивероятнейшее число годных деталей среди 15 проверенных отделом технического контроля, если вероятность того, что деталь стандартна, равна 0,7?
 - a) 9;
 - б) 10;.
 - в) 11
- 8. При проведении контроля качества среди 100 случайно отобранных деталей 2 оказалось бракованными. Среди 5000 деталей бракованными окажутся:
 - a) 250;
 - б) 100;
 - в) 50.
- 9. Функция плотности распределения случайной величины:
 - а) невозрастающая;
 - б) неубывающая;
 - в) возрастающая;
 - г) убывающая.
- 10. Сущность предельных теорем и закона больших чисел заключается:
 - а) в определении числовых характеристик случайных величин при большом числе наблюдаемых данных;
 - б) в поведении числовых характеристик и законов распределения наблюдаемых значений случайных величин;
 - в) в определении области применения нормального закона распределения случайных величин при сложении большого количества случайных величин;
 - г) в поведении числовых характеристик и законов распределения случайных величин при увеличении числа наблюдений и опытов.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Ребенок играет с четырьмя буквами разрезной азбуки A, A, M, M. Какова вероятность того, что при случайном расположении букв в ряд он получит слово «МАМА»?
- 2. Экзаменационный билет для письменного экзамена состоит из 10 вопросов по 2 вопроса из 20 по каждой из пяти тем, представленных в билете. По каждой теме студент подготовил лишь половину всех вопросов. Какова вероятность того, что студент сдаст экзамен, если для этого необходимо ответить хотя бы на один вопрос по каждой из пяти тем в билете?
- 3. Прибор может собираться из высококачественных деталей и из деталей обычного качества. Известно, что около 40 % приборов собирается из высококачественных деталей, при этом вероятность безотказной его работы за время t равна 0,95. Если прибор собран из деталей обычного качества, эта вероятность равна 0.7. Прибор испытывался в течение времени t и работал безотказно. Найти вероятность того, что он собран из высококачественных деталей.
- 4. В квадрат с вершинами в точках (0,0), (0,1), (1,1), (1,0) наудачу брошена точка (x,y). Найдите вероятность того, что координаты этой точки удовлетворяют неравенству y < 2x.
- 5. Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Определить вероятность того, что
 - а) все три билета стоят вместе семь рублей,
 - б) все три билета стоимостью по одному рублю.

- 6. Из урны, содержащей 5 белых шаров и 5 черных, наудачу достают 6 штук. Найти вероятность того, что среди вынутых шаров окажется одинаковое число черных и белых (шары отличаются только цветом).
- 7. Вероятность получения бракованной детали равна 0,01. Какова вероятность того, что среди 400 деталей бракованных окажется:
 - а) 3 детали;
 - б) хотя бы одна.
- 8. Пусть вероятность того, что покупателю магазина женской обуви необходимы туфли 37 размера, равна 0,25. Оценить с помощью теоремы Бернулли и интегральной теоремы Муавра-Лапласа, вероятность того, что доля покупателей, которым необходимы туфли 37 размера, отклонится по абсолютной величине от вероятности 0,25 не более чем на 0,1, если всего в день магазин посещает 1000 покупателей.
- 9. На заводе изготовлен новый игровой автомат, который должен обеспечить появление выигрыша в трех случаях из 150 бросаний монеты. Для проверки годности автомата произведено 500 испытаний, где выигрыш появился 5 раз. Оценить вероятность появления выигрыша. Построить приближенные доверительные границы для этой вероятности при $\gamma = 0.9$, используя интегральную теорему Муавра-Лапласа. Как изменится доверительный интервал, если при той же частости появления выигрыша число наблюдений возрастет в 10 раз?
- 10. Пусть вероятность того, что автомат по продаже горячих напитков сработает равна 0,97. Пользуясь теоремой Бернулли, оценить вероятность того, что при использовании 1000 наборов из купюр в автомате отклонение частности правильной работы автомата от ее вероятности не превысит по абсолютной величине 0,02.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Рассматривается двумерная случайная величина (X,Y), где X поставка сырья, Y поступление требования на него. Известно, что поступление сырья и поступление требования на него могут произойти в любой день месяца (30 дней) с равной вероятностью. Определить:
- а) выражение совместной плотности и функции распределения двумерной случайной величины (X,У),
- б) плотности вероятности и функции распределения одномерных составляющих X и Y:
 - в) зависимы или независимы Х и Y;
- г) вероятности того, что поставка сырья произойдет до и после поступления требования.
- 2. Дан закон распределения дискретной случайной величины X. Найти математическое ожидание, дисперсию и среднеквадратическое отклонение. Построить график функции распределения.

X	45	70	95	120	145
p	0,1	0,2	0,5	0,1	0,1

3. В испытательной лаборатории изучалось влияние переменного магнитного поля на микропроцессорные реле. Был сформирован двумерный массив данных, содержащий значения напряжённости магнитного поля, Н и времени срабатывания реле t. По выборке объемом N = 122, извлечённой из двумерного массива, найден коэффициент корреляции r = 0,4. Необходимо, при уровне значимости 0,05, проверить гипотезу о значимости выборочного коэффициента корреляции. Другими словами, узнать действительно ли напряженность магнитного поля влияет на эффективность работы исследуемых реле.

- 4. Амперметр со шкалой 0...5 А и классом точности 0.5 подключен через трансформатор тока (коэффициент трансформации 20/5, класс точности 0.2) к электрической цепи. Показания прибора -4.1 А. Определить величину измеренного тока и предел основной допустимой погрешности.
- 5. Вероятность того, что суточный расход электроэнергии не превысит установленной нормы, равна 0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
- 6. Найти вероятность того, что 80 из 400 цифровых вольтметров не будут соответствовать классу точности, если вероятность появления такого события в каждом испытании составляет 0,2.
- 7. По результатам измерений активной мощности на подстанции в течении месяца был сформирован массив экспериментальных данных. По выборке объема n=20, извлеченной из генеральной совокупности (месячный архив данных по активной мощности) найдены выборочная средняя $=16~\mathrm{kBT}$ и «исправленное» среднеквадратичное отклонение $=4,5~\mathrm{kBT}$. Требуется, при уровне значимости 0,05, проверить нулевую гипотезу H0, при конкурирующей гипотезе H1: $P=16~\mathrm{kBT}$, $M(P)\neq15\mathrm{kBT}$.
- 8. Случайная величина X имеет нормальное распределение с параметрами m=10, $\sigma=2$. Написать выражение плотности распределения, нарисовать график плотности. Найти вероятность того, что X примет значение, принадлежащее интервалу $0 \le X \le 12$, а также вероятность неравенства |X-10| < 6.
- 9. Найти доверительный интервал для оценки математического ожидания m нормального закона с надежностью 0,9; зная выборочную среднюю $\overline{X} = 100,31; n = 100; \sigma = 5$.
- 10. В вычислительный центр коллективного пользования с тремя компьютерами поступают заказы от предприятий на вычислительные работы. Если заняты все три компьютера, то вновь поступающий заказ не принимается и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 часа. Интенсивность потока заявок 0,25 (з/час). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

7.2.4 Примерный перечень вопросов для подготовки к зачету

Не предусмотрено учебным планом.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Элементы комбинаторики. Основные понятия и формулы.
- 2. Предмет и основные определения теории вероятностей.
- 3. Случайные события. Виды случайных событий.
- 4. Классическое определение вероятности.
- 5. Свойства вероятности, вытекающие из классического определения вероятности.
- 6. Теоремы сложения и умножения вероятностей.
- 7. Формула полной вероятности. Формула Байеса.
- 8. Схема Бернулли.
- 9. Асимптотические формулы к формуле Бернулли. Теорема Пуассона. Локальная и интегральная теоремы Муавра-Лапласа.
- 10. Случайные величины.
- 11. Законы распределения дискретной и непрерывной случайных величин.

- 12. Функция распределения.
- 13. Плотность распределения.
- 14. Числовые характеристики.
- 15. Системы случайных величин.
- 16. Закон больших чисел.
- 17. Выборки и их характеристики.
- 18. Точечные и интервальные оценки параметров распределения.
- 19. Проверка гипотез о законе распределения.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ. Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.

При получении оценок «Отлично», «Хорошо» и «Удовлетворительно» требуемые в рабочей программе знания, умения, владения по соответствующим компетенциям на промежуточном этапе считаются достигнутыми.

7.2.7 Паспорт оценочных материалов

No	Контролируемые	Код контролируемой	Наименование
Π/Π	разделы (темы)	компетенции	оценочного
	дисциплины	(или ее части)	средства
1	Элементы теории вероятностей	УК-1, ПК-1	Тест
2	Элементы математической статистики	УК-1, ПК-1	Тест

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется провер-

ка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Гмурман В.Е. Теория вероятностей и математическая статистика. 2008.
- 2. Вентцель Е.С., Овчаров Л.А. Теория случайных процессов и ее инженерные приложения. М.: Академия, 2003. 432 с.
- 3. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. 2007.
- 4. Чудесенко В.Ф. Сборник задач по специальным курсам высшей математики. Типовые расчеты. -2010.
- 5. Письменный Д.Т. Конспект лекций по высшей математике: полный курс. М.: Айрис-Пресс, 2006. 608 с.
- 6. Блатов, И.А. Теория вероятностей и математическая статистика [Электронный ресурс]: учебное пособие / И.А. Блатов, О.В. Старожилова. Электрон. текстовые данные. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2017. 276 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

ПО: Windows, Open office, Acrobat reader

https://old.education.cchgeu.ru- образовательный портал ВГТУ.

Для выполнения домашних заданий рекомендуется использовать

Mathstudio

Современная профессиональная база данных

Mathnet.ru,

Информационные справочные системы

dist.sernam.ru, Wikipedia,

http://eios.vorstu.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных и практических занятий необходимы учебные аудитории, оснащенные техническими средствами для проведения занятий по математике.

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Спецглавы математики» читаются лекции, проводятся практические и лабораторные занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета моделей, возникающих в инженерной практике. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на персональных компьютерах в соответствии с методическими указаниями к выполнению работ.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию обо всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины производится методом промежуточного тестирования. Освоение дисциплины оценивается на экзамене.

Вид учебных заня- тий	Деятельность студента		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.		
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, решение задач по алгоритму.		
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных, для подготовки к ним необходимо: разобрать лекцию по соответствующей теме, ознакомиться с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.		

Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвое-			
	нию учебного материала и развитию навыков самообразования. Са-			
	мостоятельная работа предполагает следующие составляющие:			
	- работа с текстами: учебниками, справочниками, дополнительной			
	литературой, а также проработка конспектов лекций;			
	- выполнение домашних заданий и расчетов;			
	- работа над темами для самостоятельного изучения;			
	- участие в работе студенческих научных конференций, олимпиад;			
	- подготовка к промежуточной аттестации.			
	Готовиться к промежуточной аттестации следует систематически, в			
Подготовка	течение всего семестра. Интенсивная подготовка должна начаться не			
к промежуточной	позднее, чем за месяц-полтора до промежуточной аттестации. Дан-			
аттестации ные перед экзаменом три дня эффективнее всего испол				
	повторения и систематизации материала.			

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1			
2			
3			
4			
5			